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Abstract

We consider the one-dimensional free Fokker-Planck equation

∂µt

∂t
=

∂

∂x

[

µt

(

1

2
V ′ −Hµt

)]

,

where H denotes the Hilbert transform and V is a particular double-
well quartic potential, namely V (x) = 1

4
x4 + c

2
x2, with −2 ≤ c < 0.

We prove that the solution (µt)t≥0 of this PDE converges to the equi-
librium measure µV as t goes to infinity, which provides a first result
of convergence in a non-convex setting. The proof involves free prob-
ability and quadratic differentials techniques.
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1 Introduction

We consider the following one-dimensional free Fokker-Planck equation

∂µt

∂t
=

∂

∂x

[

µt

(

1

2
V ′ −Hµt

)]

. (1)
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In this equation, µt denotes an unknown probability measure on R, V : R →
R is a given potential, and H denotes the Hilbert transform, that is, for any
measure µ on R and x ∈ R,

Hµ(x) =

 

R

1

x− y
dµ(y) ,

where
ffl

stands for the principal value of the integral. Partial differential
equation (1), abbreviated PDE (1), must be understood in the sense of
distributions, i.e. for any regular enough test function ϕ : R → R,

d

dt

ˆ

ϕ(x) dµt(x) = −1

2

ˆ

V ′(x)ϕ′(x) dµt(x)+
1

2

¨

ϕ′(x)− ϕ′(y)
x− y

dµt(x)dµt(y) .

Under this form, it is sometimes called McKean-Vlasov equation with loga-
rithmic interaction.

1.1 Existence and uniqueness

As far as we know, the problems of existence and uniqueness of the solution
to this PDE are not completely solved. They have been tackled when the
potential V satisfies some properties but a general result is not known to us.

Starting from the following classical result: if (Xt)t≥0 denotes the solu-
tion of the stochastic differential equation (SDE)

dXt = dBt −
1

2
V ′(Xt)dt ,

then, by Itô’s formula, the distribution of the solution Xt satisfies the linear
Fokker-Planck equation

∂µt

∂t
= ∆µt −

1

2

∂

∂x
(µtV

′) ,

Biane and Speicher [9] considered the following free SDE:

dXt = dSt −
1

2
V ′(Xt)dt , (2)

where S is a free Brownian motion and X is an unknown free diffusion
process. They proved the following existence and uniqueness result using
free stochastic calculus (see [7, 8] for an introduction).

Theorem 1.1 (see [9, Theorem 3.1]). We assume that V is a C1 potential
such that V ′ is locally Lipschitz, and that there exist a ∈ R and b > 0 such
that for all x ∈ R,

−xV ′(x) ≤ ax2 + b . (3)

Then, for any given X0 with compactly supported distribution, free SDE (2)
admits a unique solution (Xt)t≥0 starting from X0 and the distribution of
the solution Xt satisfies Equation (1).
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This is why PDE (1) is also called free Fokker-Planck equation.

As for uniqueness, Li, Li, and Xie [23] proved the following, using free
transportation techniques.

Theorem 1.2 (see [23, Theorem 1.3]). Let us consider a C2 potential V
such that:

(i) We have
lim

|x|→+∞
V (x)− 2 log |x| = +∞ .

(ii) For all R > 0, there exists KR > 0 such that for all x, y ∈ [−R,R],

(x− y)(V ′(x)− V ′(y)) ≥ −KR(x− y)2 .

(iii) There exists γ > 0 such that for all x ∈ R,

−xV ′(x) ≤ γ(1 + x2) .

(iv) There exists K ∈ R such that for all x ∈ R,

V ′′(x) ≥ K .

Then, for any given µ0 with compact support, free Fokker-Planck equation
(1) admits a unique solution starting from µ0.

This solution obviously coincide with the one of Biane and Speicher.

In this paper, we are interested in free Fokker-Planck equation (1) for
the particular potential

V (x) =
1

4
x4 +

c

2
x2 , −2 ≤ c < 0 . (4)

Indeed, after the quadratic potential which is well understood, the quartic
potential is the most simple example of potential for which everything is
well defined.

Note that for this potential, Equation (1) admits a unique solution given
an initial condition with compact support. Indeed, the assumptions of The-
orem 1.2 are satisfied here, in particular, the potential V defined by (4) has
a second derivative which is uniformly bounded below (by c). Consequently,
we can identify the solution µt of free Fokker-Planck with the distribution
of the solution Xt to free SDE (2).

The aim of this paper is to study the asymptotic behaviour of the solution
(µt)t≥0 under the quartic potential (4).
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Figure 1: Potential V defined by (4).

1.2 Main result of the paper

We recall that for p ≥ 1, the Wasserstein distance of order p is defined on
the set Pp(R) of real probability measures having a finite p-th moment by

Wp(µ, ν) =



 inf
(X,Y ) r.v.
X∼µ, Y∼ν

E |X − Y |p




1/p

.

We also recall that if (µn), µ are probability measures in Pp(R) such that
Wp(µn, µ) → 0 as n → +∞, then (µn) converges in distribution to µ. The
converse is true if in addition, the p-th moment of µn converges to the p-th
moment of µ, or equivalently, if we have

lim
A→+∞

lim sup
n→+∞

ˆ

R \[−A,A]
|x|p dµn(x) = 0 .

See [33, Theorem 7.12] for instance.

Moreover, we recall from potential theory that, for a given admissible
domain D ⊂ C and a given potential V : D → C satisfying

lim
|z|→+∞, z∈D

ReV (z) − 2 log |z| = +∞ ,

the functional

ΣV : µ 7→ −
¨

C
2

log |z − t| dµ(z)dµ(t) +
ˆ

C

ReV (z) dµ(z) , (5)

called Voiculescu free entropy, admits a unique minimizer among probability
measures supported on D. This minimizer is called the equilibrium measure
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associated to V and D, and is denoted by µV . Note that when D ⊂ R and
V is real-valued, we have

ΣV (µ) = −
¨

R
2

log |x− y| dµ(x)dµ(y) +
ˆ

R

V (x) dµ(x) .

See Saff and Totik’s book [28] for a development on this topic.
For the quartic potential

V (x) =
1

4
x4 +

c

2
x2

and D = R, the equilibrium measure is explicitly known (see [21, Example
3.2] for instance):

• when c ≥ −2, it is given by the density

ρV (x) =
1

π

(

1

2
x2 + b0

)

√

a2 − x2 1[−a,a](x) (6)

where

a2 =
2

3

(
√

c2 + 12 − c
)

, b0 =
1

3

(

c+

√

c2

4
+ 3

)

,

• when c < −2, it is given by the density

ρV (x) =
1

2π
|x|
√

(x2 − a2)(b2 − x2)1[−b,−a]∪[a,b](x) (7)

where a2 = −2− c, b2 = 2− c.

We are now able to present some existing results about the asymptotic
behaviour of the solution µt to free Fokker-Planck equation (1) and to state
our main result.

First, Li, Li, and Xie described the asymptotic behaviour of µt under a
convex potential V .

Theorem 1.3 (see [23, Theorem 1.6 (ii)]). Assume that V is C2 and strictly
convex and µ0 has compact support. Then we have

lim
t→+∞

W2(µt, µV ) = 0 .

This result can be proved using free transportation inequalities, and an
explicit rate of convergence can be obtained:

W2(µt, µV ) ≤ e−KtW2(µ0, µV ) ,
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where K > 0 is such that for all x ∈ R, V ′′(x) ≥ K. Note that this result
applies for the potential V defined by (4) when c > 0. Using the fact P2(R)
is a nonpositively curved space, it is also possible to prove convergence when
V is C2 and convex but not necessarily strictly convex, see [23, Theorem 1.6
(i)]. Besides, for the quartic potential, Li, Li, and Xie conjectured the con-
vergence of µt towards the equilibrium measure when c < 0 is close to zero.

In this paper, we will focus on the case when c ∈ [−2, 0), in which the
equilibrium measure has a connected support and we expect the wells of the
potential are small enough in order to get the convergence of µt towards the
equilibrium measure µV even though.

Here is the main result of this paper.

Theorem 1.4. Let V (x) = 1
4x

4+ c
2x

2 with −2 ≤ c < 0. The solution (µt)t≥0

of free Fokker-Planck equation (1) starting from any compactly supported µ0

satisfies
lim

t→+∞
Wp(µt, µV ) = 0

for all p ≥ 1, where µV is given by (6).

This result solves the conjecture raised by Li, Li, and Xie. Furthermore,
as we will explain in Section 1.4, it provides a first case of convergence in
granular media equation (10) with both a singular interaction potential W
and a non-convex confinement potential V.

In addition to this, when c is very negative, the support of µV has two
connected components (see Formula (7)) and because of a result of Biane and
Speicher [9, Section 7.1], the solution (µt)t≥0 can not converge towards the
equilibrium measure µV if the filling fractions of µ0 and µV do not coincide,
which means a neighbourhood of any connected component of supp(µV )
must have the same mass for both measures. Consequently, Theorem 1.4
fills a part of the gap between the result of Li, Li, and Xie on the one hand,
and the result of Biane and Speicher on the other hand.

Let us comment the choice of this special potential V with a varying
parameter c, which is of particular interest. First, it is convex for a nonneg-
ative c but it presents two wells when c is negative. Besides, the behaviour
of the equilibrium measure of V presents a phase transition at c = −2, see
Formulas (6) and (7). Finally, as we will discuss in Section 4, an other phase
transition probably occurs at c = −

√
15 when considering critical measures

instead of equilibrium measure. When we know that these objects play a
fundamental role in the convergence of the solution of free Fokker-Planck
equation, this explains why different long-time behaviours can happen, de-
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pending on the value of the parameter c.

We will end this introduction giving two motivations for the study of the
long-time behaviour in free Fokker-Planck equation and explaining why this
particular quartic potential is of natural interest.

1.3 Generalized Dyson Brownian motion

A first motivation comes from random matrix theory (RMT). In [19], Dyson
showed that the eigenvalues of a N × N Hermitian matrix (HN

t )t≥0 with
Brownian entries form a diffusive Coulomb gas, which we call Dyson Brow-
nian motion. More precisely, the ordered eigenvalues (λN

1 (t), . . . , λN
N (t))t≥0

of the rescaled matrix HN
t /

√
N live almost surely in the open simplex

∆N =
{

(x1, . . . , xN ) ∈ R
N | x1 < x2 < . . . < xN

}

,

and satisfy the following system of SDEs:

∀i ∈ J1, NK, dλN
i (t) =

1√
N

dBi(t) +
1

N

∑

j 6=i

1

λN
i (t)− λN

j (t)
dt ,

where the Bi’s are independent one-dimensional standard Brownian mo-
tions. See also [3, Section 4.3].

We are interested here in generalized Dyson Brownian motion (GDBM),
defined as the solution of the following system of SDEs:

∀i ∈ J1, NK, dλN
i (t) =

√

2

βN
dBi(t)+

1

N

∑

j 6=i

1

λN
i (t)− λN

j (t)
dt−1

2
V ′(λN

i (t))dt ,

(8)
where the Bi’s are independent one-dimensional Brownian motions, β > 0
is the standard Dyson parameter in RMT, and V is a general confinement
potential for particles. When V is zero or quadratic, this system has been
much studied, see [17, 27] for instance. Let us also remark that for β = 2
and a general V , the eigenvalues of the N ×N Hermitian diffusion process
XN

t defined as the solution to

dXN
t =

1√
N

dHN
t − 1

2
V ′(XN

t )dt , (9)

where HN
t is a N ×N Hermitian matrix with Brownian entries, satisfy the

SDEs (8), and that for β ∈ [0, 2] and a quadratic V , GDBM also represents
the eigenvalues of a solution to a matricial SDE, see [2]. However, we do not
know whether in general, GDBM represents the eigenvalues of an explicit
matrix model.
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Adapting the original proof for Dyson Brownian motion, Li, Li, and Xie
[23, Theorem 1.1] showed that if β ≥ 1 and V satisfies Assumptions (i)-(iii)
of Theorem 1.2, then GDBM is well-defined, i.e. given an initial value λN (0)
in ∆N , the system of SDEs (8) admits a unique strong solution (λN (t))t≥0

taking values in ∆N . Note that in [1], Allez and Dumaz showed GDBM can
also be defined in the case of a non-confining cubic potential.

For this process of N particles, we define the empirical spectral measure
at time t by

LN (t) =
1

N

N
∑

i=1

δλN

i
(t) .

On the one hand, for a fixed N , it is known that when t → +∞, the mea-
sure LN (t) converges to the empirical measure LN of N particles distributed
according to

1

ZN

∏

1≤i<j≤N

|xi − xj|β exp
(

−βN

2

N
∑

i=1

V (xi)

)

dx1 . . . dxN .

This is because this measure is the Gibbs measure associated to the system of
SDEs (8) and because we can apply an ergodic theorem. Moreover, when N
then goes to infinity, this measure LN converges to the equilibrium measure
µV associated to V .

On the other hand, Li, Li, and Xie [23, Theorem 1.4] proved that, if
LN (0) converges to a compactly supported µ(0) and if V ′′ is uniformly
bounded below, then the limit as N → +∞ of LN (t) is µt, given by the
solution of free Fokker-Planck equation (1) with initial condition µ(0).

Consequently, it is natural to ask whether the following diagram is com-
mutative

LN (t) → µt

↓ ↓ ?

LN → µV

i.e. in which cases µt converges to µV as t grows to infinity.

As we mentioned earlier, Li, Li, and Xie proved that this is indeed the
case for a convex potential V . They also raised the conjecture of the com-
mutativity of the previous diagram for the non-convex potential

V (x) =
1

4
x4 +

c

2
x2

when c < 0 is close to zero. We also recall that when c is very negative,
the support of µV has two connected components and because of a result
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of Biane and Speicher [9, Section 7.1], the solution (µt)t≥0 can not converge
towards the equilibrium measure in general. As a consequence, in this paper,
we focus on the intermediate case of the quartic potential with c ∈ [−2, 0),
when the potential is not convex but the equilibrium measure is still one-cut.

1.4 Granular media equation

Free Fokker-Planck equation (1) also appears as a particular case of granular
media equation. This equation generally writes

∂µt

∂t
= ∇.

[

µt∇(U ′(µt) + V +W ∗ µt)
]

(10)

where

• U : R+ → R is an internal energy,

• V : Rd → R is a confinement potential,

• W : Rd → R is an interaction potential,

• µt is an unknown probability measure on R
d.

Free Fokker-Planck equation (1) corresponds to d = 1, U(s) = 0, V(x) =
1
2V (x), and W(x) = − log |x|.

Granular media equation contains several classes of classical partial dif-
ferential equations arising from physics, such as heat equation for U(s) =
s log(s), V = 0, W = 0. See [33, Chapter 9.1] for more examples. In many
cases, conditions are known to ensure that Equation (10) admits a unique
solution, but we will not discuss this point here. We will rather review some
existing results in the literature about the behaviour of the solution (µt)t≥0

as t → ∞.

To study the long-time behaviour of the solution, a classical technique
is to define an entropy associated to Equation (10) by

F (µ) =

ˆ

R
d

U(µ(x)) dx+

ˆ

R
d

V(x) dµ(x) + 1

2

¨

R
d ×R

d

W(x− y) dµ(x)dµ(y) ,

as the sum of an internal energy, a potential energy, and an interaction en-
ergy associated to a given measure µ, and to show that this entropy is strictly
decreasing along the trajectory (µt)t≥0. Under reasonable assumptions we
will not discuss here, F admits a unique minimizer µ∞, which provides a
natural candidate for the limit of µt as t → ∞.

Most of works in the literature deal with the case where V,W are zero
or polynomials, and U(s) is 0 or s log(s). The first results we could find are
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due to Benedetto, Caglioti, Pulvirenti [5] and Benedetto, Caglioti, Carrillo,
Pulvirenti [4] respectively. These works provide two examples of granular
media equations arising from physics, for which we can make explicit calcu-
lations on F in order to get the convergence of µt towards the minimizing
measure µ∞.

Later, Carrillo, McCann, and Villani [15] managed to prove convergence
results for general potentials V,W under convexity and positivity assump-
tions. Their powerful method relies on mass transportation methods and on
the Riemannian structure of the set of probabilty measures P2(R) equipped
with the Wasserstein distance W2. Furthermore, this method allows to get
explicit rates of convergence. Some of their results have been also proved
by Malrieu [24] using an approximating particle system and propagation of
chaos. Various improvements of Carrillo, McCann, and Villani’s results ex-
ist in the literature, see for instance [16, 12, 10, 11].

Let us also mention a series of works by Tugaut, see in particular [32, 31].
In these works, granular media equation with polynomial potentials V,W is
considered, but a Laplacian term mulitplied by a small coefficient is added,
i.e. U(s) = σs log(s) with a small σ > 0. Convergence results can be ob-
tained in this setting, even when V is not convex but a double-well potential,
similar to the one we are studying here.

Most of the results we have discussed about concern a polynomial or
a convex interaction potential W. Li, Li, and Xie [23] recently tackled the
problem of a logarithmic repulsion potential, namely W(x) = − log |x|. Note
that this potential is singular in 0, which makes granular media equation
more complicated to study, since the previous methods do not apply any
longer. However, using free probability and more precisely free transporta-
tion methods, Li, Li, and Xie have adapted Carrillo, McCann, and Villani’s
method to get similar results when V is a convex potential, such as Theo-
rem 1.3. We also mention the recent work [14] by Carrillo, Castorina, and
Volzone, in which a two-dimensional logarithmic interaction is considered,
corresponding to Keller-Segel model.

Consequently, the issue of the long-time behaviour of the solution of
granular media equation for this singular interaction W(x) = − log |x| and
a non-convex confinement potential V is of natural interest. As suggested
by the conjecture of Li, Li, and Xie mentioned above, we will focus in this
paper on the non-convex potential V given by (4) with −2 ≤ c < 0.

The rest of the paper is organized as follows. Several tools, such as free
diffusions and the description of critical measures via quadratic differentials,
are introduced in Section 2 and are used in Section 3, which consists in the
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achievement of the proof of Theorem 1.4. Section 4 is the final section of
this paper, in which we present some perspectives for future works.

2 Free probability and quadratic differentials tools

2.1 Some properties of the solution of free Fokker-Planck

equation

As we explained in Introduction, the solution of free Fokker-Planck equation
(1) can be interpreted as the distribution of the solution to free SDE

dXt = dSt −
1

2
V ′(Xt)dt ,

where S is a free Brownian motion. This approach requires to work with free
probability, however, instead of studying a singular PDE, we are working
with a free SDE whose drift is locally Lipschitz. In this free probability
context, classical tools such as Picard iteration, Euler scheme, etc. can be
adapted. As a consequence, the solution of free Fokker-Planck equation
inherits from properties of free diffusions, studied by Biane and Speicher [9].

First, as in classical works around granular media equation (see [15] for
instance), we have a formula for the derivative of free entropy (5) along
solutions, showing it decreases.

Lemma 2.1 (see [9, Proposition 6.1]). Let (µt)t≥0 be the solution of free
Fokker-Planck equation (1). We have

d

dt
ΣV (µt) = −2

ˆ

∣

∣

∣

∣

1

2
V ′ −Hµt

∣

∣

∣

∣

2

dµt . (11)

The next statement summarizes two important strong properties of free
diffusions and a corollary of these properties.

Proposition 2.2 (see [9, Theorems 3.1 and 5.2]). Let V be a potential satis-
fying the assumptions of Theorem 1.1 with a < 0. Let (µt)t≥0 be the solution
of free Fokker-Planck equation (1) starting from a compactly supported µ0.

(i) There exists M > 0 such that for every t > 0,

supp(µt) ⊂ [−M,M ] . (12)

(ii) There exist K1,K2 > 0 depending only on V such that for every t > 0,
the density ρt of µt satisfies

‖ρt‖∞ ≤ K1√
t
+K2, ‖D1/2ρt‖2 ≤ K1

t
+K2 , (13)

where D1/2 is the fractional derivative of order 1/2.
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(iii) The family {ρt}t≥1 lives in a subset A of L2([−M,M ]) which is com-
pact for the topology induced by ‖.‖2.

In the statement of Point (ii), the notion of half-derivative appeared.
It can be defined by several ways, we will just mention that for u ∈ L2,
the derivative of order 1/2 of u is the inverse Fourier transform of ξ 7→
(1 + ξ2)1/4û(ξ), where û is the Fourier transform of u. See [18, Chapter 4]
for instance.

Let us make some remarks about Proposition 2.2, which can be applied
to the quartic potential and which is fundamental in our study.

First, Point (i) asserts that the µt’s have a uniformly bounded support.
Not only does it imply tightness, but it also means that the trajectory lives in
a compact set of probability measures for weak topology. Besides, uniform
estimates of Point (ii) also imply compactness for L2-topology, see Point
(iii). Consequently, we will be able to extract from (µt)t≥0 a converging
subsequence in a strong sense (convergence in distribution and convergence
of the densities in L2) and the limit of this ”good” converging subsequence
will keep the properties of the µt’s, such as a support in [−M,M ] and a
bounded density.

Moreover, the estimates in Point (ii) make some singular functionals
continuous along the trajectory. For instance, the map t 7→ ΣV (µt) is con-
tinuous even if free entropy ΣV is not continuous at all, and the integrals
´

∣

∣

1
2V

′ −Hµt

∣

∣

2
dµt converge to

´

∣

∣

1
2V

′ −Hµ
∣

∣

2
dµ, as we will prove in Sec-

tion 3.

Proof (of Proposition 2.2 (iii)). By Proposition 2.2 (i)-(ii), there exist
M,K1,K2 > 0 such that for every t > 0, (12) and (13) hold. For every
t > 0, we denote by At the set of probability density functions f with sup-
port in [−M,M ] which satisfy ‖f‖∞ ≤ K1√

t
+K2 and ‖D1/2f‖2 ≤ K1

t +K2.

Note that, for t > 0, At contains all the ρt+s’s, s ≥ 0, where ρt+s denotes
the density of the measure µt+s as in Point (ii).

Furthermore, for every t > 0, At is a subset of the Sobolev space
H1/2([−M,M ]), defined as the set of L2-probability density functions whose
derivative of order 1/2 belongs to L2. Because the injection ofH1/2([−M,M ])
in Lp([−M,M ]) is compact for every p ∈ [1,∞) (see [18, Theorem 4.54] for
instance) and At is bounded in H1/2([−M,M ]), we can deduce that the set
At is relatively compact in L2([−M,M ]). Hence, we can choose for A the
closure of A1.

Remark. Following arguments from [34], as a consequence of Point (iii),
convergence of (µt)t≥0 in distribution and convergence of (ρt)t≥0 in Lp are
equivalent, but we will not prove this fact here.
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2.2 Equilibrium, stationary, and critical measures

Three kinds of measures appear in our problem. First, as we have ever dis-
cussed in Section 1.2, the equilibrium measure of a potential V , well known
in potential theory, is the unique minimizer over all probability measures on
R of Voiculescu free entropy ΣV defined in (5). We refer again to Saff and
Totik’s book [28] for more details.

Second, we consider stationary measures. We say a real probability
measure µ is a stationary measure for a real potential V if it satisfies Euler-
Lagrange equation

Hµ =
1

2
V ′ µ−a.e. (14)

We call these measures stationary measures because they are exactly the
stationary solutions of Equation (1) in the sense of PDEs, i.e. they are the
constant (in time) solutions of Equation (1).

Finally, as the map t 7→ ΣV (µt) decreases, it admits a limit and we
have in mind that the solution of free Fokker-Planck equation (µt)t≥0 will
converge to a local minimum of free entropy. But this functional is strictly
convex, thus we need to precise what we mean by a local extremum of ΣV .
This leads to the notion of critical measure, defined as follows by Mart́ınez-
Finkelshtein and Rakhmanov [25].

A probability measure µ on C such that ΣV (µ) < +∞ is called a critical
measure associated to V if for every h : C → C regular enough, the quantity

DhΣV (µ) = lim
s→0

ΣV (µ
h,s)− ΣV (µ)

s

is zero, where µh,s is the push-forward measure of µ by the deformation of
identity z 7→ z + sh(z), s ∈ C.

By [25, Lemma 3.7], we have

DhΣV (µ) = Re

(
ˆ

V ′(x)h(x) dµ(x) −
¨

h(x)− h(y)

x− y
dµ(x)dµ(y)

)

,

hence for a µ supported on R, the previous condition is equivalent to Euler-
Lagrange equation (14). As a result, critical measures supported on R are
exactly stationary measures, and we will be able to use some tools developed
to identify critical measures in order to identify stationary measures.

Note that in general, several critical measures may exist while there is
only one equilibrium measure. This is the case for a potential satisfying the
conditions given in [9, Section 7.1] for instance.
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In the proof of Theorem 1.4, we will be interested in real critical mea-
sures associated to the quartic potential. A key point in the proof will be
to show that for the quartic potential (4), there is no other critical measure
than the equilibrium measure, since we expect the convergence towards this
one.

The following statement gives the most important properties of real crit-
ical measures we will use in the sequel. The key point is that the Stieltjes
transform of a critical measure µ, defined on C \R by

Gµ(z) =

ˆ

R

1

z − x
dµ(x) ,

satisfies an algebraic equation. This allows to recover a critical measure
from an associated polynomial.

Proposition 2.3 (see [22, 20]). Let V be a polynomial and µ be a critical
measure supported on R.

(i) There exists a polynomial R of degree 2 deg(V )− 2 such that

R(z) =

(

1

2
V ′(z)−Gµ(z)

)2

(15)

almost everywhere for Lebesgue measure on C. Moreover, we have

R(z) =
1

4
V ′(z)2 −

ˆ

R

V ′(x)− V ′(z)
x− z

dµ(x) . (16)

(ii) Every non-real root of R has even multiplicity.

(iii) The support of µ is a finite union of intervals connecting zeros of R.

Point (i) combines Proposition 3.7 and Formula (3.31) from [22]. Point
(ii) is an easy consequence of analyticity of Stieltjes transform, see [20,
Lemma 2.6]. At last, Point (iii) comes from [22, Proposition 3.9].

Let us remark that a critical measure µ is completely determined by the
associated polynomial R. To see this, without entering into the details of
the theory of quadratic differentials (see [29] for an introduction), we can
say that the support of a critical measure is a union of analytic arcs, which
are maximal trajectories of the quadratic differential −R(z) dz2. Moreover,
in the interior of each arc, µ admits a density with respect to the arclength
measure, which is given by

dµ(s) =
1

iπ

√

R(s) ds .

Hence, to find critical measures boils down to determining all possible poly-
nomials R. For the quartic potential and other polynomials with few monics,
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this is possible to do so. However, in the quartic case, we will only use R in
order to show that a critical measure has a connected support. Indeed, as
soon as this is the case, we can just recover µ by solving a singular integral
equation, as we will do in the next subsection.

See [25] and [22] for more details on the technique using quadratic differ-
entials and [25, 20] for bringing it into play in order to study the asymptotics
of the distribution of the zeros of some polynomials, such as some orthogonal
polynomials.

2.3 A uniqueness result about stationary measures for the

quartic potential

As we explained in Section 2.1, in the proof of Theorem 1.4, we will extract
from (µt)t≥0 a ”good” converging subsequence whose limit µ has a compact
support, a bounded density, and satisfies Euler-Lagrange equation

Hµ =
1

2
V ′ µ−a.e.

where

Hµ(x) =

 

R

1

x− y
dµ(y) .

This singular integral equation can be easily solved when we know a pri-
ori that µ has a connected support. In the proof of Theorem 1.4, we will
show this additional property, using the quadratic differentials tools intro-
duced above (see Proposition 2.3). Then, µ will be identified thanks to the
following result, whose proof is given at the end of this subsection.

Proposition 2.4. For the potential V (x) = 1
4x

4 + c
2x

2 with −2 ≤ c < 0,
the only stationary probability measure with bounded density and connected
support is the equilibrium measure µV , which is defined by (6) .

In order to establish this result, we will use a result due to Muskhelishvili
[26], which allows to solve singular integral equations once we know the
support of the solution, or at least its number of connected components.
For a slightly different approach, see Tricomi [30].

Theorem 2.5 (see [26, §88]). Let L be a finite union
⋃p

j=1[a2j−1, a2j ] and
f a given Hölder continuous function on L. The singular integral equation

∀x ∈ L,

 

L

ϕ(t)

t− x
dt = f(x)

admits a Hölder continuous, bounded solution ϕ if and only if f satisfies the
p following conditions:

∀k ∈ J0, p− 1K,

ˆ

L

tkf(t)
∏2p

j=1

√

|t− aj |
dt = 0 .

15



In this case, the solution is unique and it is given by

∀x ∈ L, ϕ(x) = − 1

π2

2p
∏

j=1

√

|x− aj |
 

L

f(t)

(t− x)
∏2p

j=1

√

|t− aj |
dt .

We now prove that for the quartic potential with −2 ≤ c < 0, the only
suitable stationary measure is the equilibrium measure.

Proof (of Proposition 2.4). Let µ be a stationary probability measure with
bounded density, denoted by ρ, and with connected support, denoted by
[a, b]. By Theorem 2.5 applied to f(x) = −1

2V
′(x) and p = 1, the existence

of µ is ensured by the condition

ˆ b

a

t3 + ct
√

(t− a)(b− t)
dt = 0 . (17)

An elementary computation leads to

ˆ b

a

t3 + ct
√

(t− a)(b− t)
dt =

π

16
(5b3 + 3ab2 + 3a2b+ 5a3) + c

π

2
(a+ b) ,

thus condition (17) reads

(a+ b)(5b2 − 2ab+ 5a2 + 8c) = 0 . (18)

Moreover, by Theorem 2.5 again, the density of µ is given by

ρ(x) =

√

(x− a)(b− x)

2π2

 b

a

t3 + ct

(t− x)
√

(t− a)(b− t)
dt

=
1

2π

√

(x− a)(b− x)

(

x2 +
a+ b

2
x+

3

8
b2 +

1

4
ab+

3

8
a2 + c

)

.(19)

This result has been obtained by standard integral computations. By in-
tegrating this expression between a and b, since ρ is a probability density
function, we get a new equation on a and b:

(b− a)2

256
(15a2 + 18ab+ 15b2 + 16c) = 1 . (20)

The two equations (18) and (20) allow us to determine a and b. First,
Equation (18) gives three families of possible solutions:

a = −b, a =
1

5
b+

2

5

√

−10c− 6b2, a =
1

5
b− 2

5

√

−10c− 6b2 .

Equation (20) will then allow to eliminate some cases. Note before that if c
is nonnegative, then only the first case would be possible, and that the same

16



situation occurs when c is negative but b2 > −5
3c.

• Case 1: a = −b.
In this case, Equation (20) gives

b =

√

2

3

(
√

c2 + 12− c
)

,

so the density given by (19) becomes

ρ(x) =
1

2π

√

b2 − x2
(

x2 +
2

3
c+

1

3

√

c2 + 12

)

.

This is exactly the equilibrium measure of V for c ≥ −2, see (6).

• Case 2: a =
1

5
b+

2

5

√
−10c − 6b2.

Equation (20) now implies that

45b8 +156cb6 + (182c2 − 552)b4 + (76c3 − 880c)b2 +5c4 − 200c2 +2000 = 0 .

We will show this is not possible under the conditions −2 ≤ c ≤ 0 and
0 ≤ b2 ≤ −5

3c. Indeed, we can study the polynomial function

f : (x, c) 7→ 45x4+156cx3+(182c2−552)x2+(76c3−880c)x+5c4−200c2+2000

on the compact set

K =

{

(x, c) ∈ R
2 | − 2 ≤ c ≤ 0, 0 ≤ x ≤ −5

3
c

}

.

Figure 2: Compact set K.
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The resolution of ∂f
∂x (x, c) = ∂f

∂c (x, c) = 0 shows that the only critical
point of f in K is (0, 0). Consequently, f attains its minimum on the
boundary of K. The study of the three functions

c 7→ f(0, c) = 5(c2 − 20)2 ,

x 7→ f(x,−2) = 45x4 − 312x3 + 176x2 + 1152x + 1280 ,

and

c 7→ f

(

−5

3
c, c

)

=
80

9
(c2 − 15)2

allows to conclude that the minimum of f on K is attained in
(

10
3 ,−2

)

and
is equal to 9680

9 . Consequently, f does not vanish on K and Case 2 does not
lead to a suitable solution µ.

• Case 3: a =
1

5
b− 2

5

√
−10c − 6b2.

Very similar computations lead to the fact that the same function f must
vanish on the same compact K, and thus to the same conclusion.

Finally, the only stationary probability measure with bounded density
and connected support is indeed the equilibrium measure µV .

Remark. The previous calculations show that the same conclusion holds
when c ≥ 0. However, there does not exist a stationary probability measure
with bounded density and connected support when −

√
15 < c < −2 because

in this situation, Case 1 of the proof leads to a density taking negative values,
and Cases 2 and 3 still lead to unsuitable solutions.

In addition to this, the same technique allows to prove that when c < −2,
the only symmetric stationary probability measure having a bounded density
and a support with two cuts is the equilibrium measure. Besides, when
c ≥ −2, there does not exist such a symmetric stationary measure.

3 Proof of Theorem 1.4

We are now able to prove Theorem 1.4. In Section 2, we introduced all the
necessary tools and we gave some ideas of the proof we now summarize.

First, thanks to properties of free diffusions, the solution (µt)t≥0 of free
Fokker-Planck equation (1) lives in compact sets for various topologies. Us-
ing in addition that free entropy ΣV decreases along the trajectory, we can
extract a particular converging subsequence (µtk). Its limit is stationary
and has a bounded density, but using quadratic differentials properties, we
show that it also has a connected support, which makes it is necessarily the
equilibrium measure µV .

Moreover, using again the estimates on the solution (µt)t≥0, we show
that free entropy ΣV is continuous along the solution, thus accumulation
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points of (µt)t≥0 must have the same entropy. As µV is the unique mini-
mizer of ΣV , this ends the proof.

From now, for every t ≥ 0, we denote by ρt the density of µt.

Proof (of Theorem 1.4). By (11), the function t 7→ ΣV (µt) is decreasing on
[0,+∞). As it is also bounded below (by ΣV (µV )), this function admits a
finite limit as t goes to infinity and there exists a sequence (tk)k∈N such that
tk → ∞ and d

dtΣV (µtk) → 0 when k → ∞.

By Proposition 2.2 (iii), even if it means to extract a subsequence again,
we can assume that the densities ρtk converge w.r.t. L2-topology to a limit
ρ. As the ρtk ’s are defined on the compact set [−M,M ], L2-convergence im-
plies that

´

ρtk(x) dx converges to
´

ρ(x) dx, hence the limit ρ is a density
probability function defined on [−M,M ]. We denote by µ the probability
measure associated to ρ. By Scheffé’s lemma, µtk also converges in distri-
bution towards µ.

We will now prove that µ is a stationary probability measure with a
bounded density. First, as the densities ρtk converge in L2([−M,M ]), even
if it means to extract a subsequence again, we can assume that they converge
almost everywhere on [−M,M ]. Thus, we have ‖ρ‖∞ ≤ K2.

Furthermore, for all k ∈ N, we can decompose
∣

∣

∣

∣

∣

ˆ

∣

∣

∣

∣

Hµtk −
1

2
V ′
∣

∣

∣

∣

2

dµtk −
ˆ

∣

∣

∣

∣

Hµ− 1

2
V ′
∣

∣

∣

∣

2

dµ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

ˆ

∣

∣

∣

∣

Hµtk −
1

2
V ′
∣

∣

∣

∣

2

dµtk −
ˆ

∣

∣

∣

∣

Hµ− 1

2
V ′
∣

∣

∣

∣

2

dµtk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ˆ

∣

∣

∣

∣

Hµ− 1

2
V ′
∣

∣

∣

∣

2

dµtk −
ˆ

∣

∣

∣

∣

Hµ− 1

2
V ′
∣

∣

∣

∣

2

dµ

∣

∣

∣

∣

∣

(21)

where the integrals are taken over [−M,M ].
The first term in the right-hand side goes to 0 as k → +∞. Indeed, denot-
ing by K a uniform bound on the densities and using the Cauchy-Schwarz
inequality, we have for all k ∈ N

∗,
∣

∣

∣

∣

∣

ˆ

∣

∣

∣

∣

Hµtk −
1

2
V ′
∣

∣

∣

∣

2

dµtk −
ˆ

∣

∣

∣

∣

Hµ− 1

2
V ′
∣

∣

∣

∣

2

dµtk

∣

∣

∣

∣

∣

≤ K

∣

∣

∣

∣

ˆ

|Hµtk(x)−Hµ(x)|
(

|Hµtk(x)| + |Hµ(x)| + |V ′(x)|
)

dx

∣

∣

∣

∣

≤ K‖Hµtk −Hµ‖2 ×
(

‖Hµtk‖2 + ‖Hµ‖2 + ‖V ′‖2
)

and by continuity of Hilbert transform from L2(R) to L2(R), Hµtk converges
to Hµ in L2.
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On the other hand, it follows from similar arguments and from ρ ∈ L4 that
the second term in (21) also tends to 0 when k → +∞. By (11), we finally
have

0 = lim
k→+∞

d

dt
ΣV (µtk) = lim

k→+∞
−2

ˆ

∣

∣

∣

∣

Hµtk −
1

2
V ′
∣

∣

∣

∣

2

dµtk = −2

ˆ

∣

∣

∣

∣

Hµ− 1

2
V ′
∣

∣

∣

∣

2

dµ .

The limit measure µ is thus stationary, in the sense of Section 2.2.

Moreover, we can show that µ has a connected support. Indeed, for the
potential V (x) = 1

4x
4 + c

2x
2, by (16), the polynomial R defined in (15) is

R(z) =
1

4
z6 +

c

2
z4 +

1

4
(c2 − 4)z2 −

ˆ

x dµ(x).z −
ˆ

x2 dµ(x)− c .

We can not find the roots of this polynomial because the two first moments
of µ are unknown, however, we will be able to count its real roots applying
Descartes’ rule of signs.

Proposition 3.1 (Descartes’ rule of signs). Let

P (X) = anX
n + . . .+ a1X + a0

be a polynomial. We denote by p, resp. q, the number of sign changes in
the sequence (an, . . . , a1, a0), resp. ((−1)nan, . . . ,−a1, a0), in which we have
removed the zeros. Then, the number of positive, resp. negative, roots of P
is at most p, resp. q, and has the same parity as p, resp. q.

If we distinguish the four possible cases, it easily follows that, due to the
inequalities −2 ≤ c < 0, the polynomial R admits 0, 2, or 4 non-zero real
roots, whatever the signs of the quantities

´

x dµ(x) and
´

x2 dµ(x) + c are.
In addition to this, every non-real root of R has even multiplicity by

Proposition 2.3 (ii). Since R admits 6 roots, it means that the multiplicity
of 0 is necessarily even.

• If 0 is not a root of R, then R admits at most 4 real roots, thus at
least two conjugate non-real roots. But, by Proposition 2.3 (ii), every
non-real root is at least a double root, thus R has in fact at most two
real roots. By Proposition 2.3 (iii), µ has a connected support in this
case.

• If 0 is a root of R, then it is at least a double root. Thus R is explicit
and we have R(z) = 1

4z
2(z2 + c + 2)(z2 + c − 2). This is impossible

for c > −2 by Proposition 2.3 (ii). For c = −2, this leads to R(z) =
1
4z

4(z − 2)(z + 2), thus by Proposition 2.3 (iii), the support of µ is
[−2, 0], [0, 2], or [−2, 2].
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In both cases, we showed that µ has a connected support.

If we summarize, µ is a stationary probability measure with bounded
density and connected support so, by Proposition 2.4, it is the equilibrium
measure µV .

We will now conclude the proof by showing that the density ρV of µV is
the only possible accumulation point for (ρt)t≥0 in L2-topology.

Indeed, let (ρsk)k∈N and (ρs′
k
)k∈N be two convergent subsequences from

(ρt)t≥0 for L
2-topology. We denote by ρ and ρ′ their respective limit. Clearly,

as the ρt’s for t ≥ 1, these limits are density probability functions supported
in [−M,M ] and they are bounded by K1 +K2. We denote by µ and µ′ the
associated probability measures.

By the Cauchy-Schwarz inequality, we have
∣

∣

∣

∣

ˆ

V (x) dµsk(x)−
ˆ

V (x) dµ(x)

∣

∣

∣

∣

≤ ‖ρsk − ρ‖2‖V ‖2

and
∣

∣

∣

∣

¨

log |x− y|ρsk(x)ρsk(y) dxdy −
¨

log |x− y|ρ(x)ρ(y) dxdy
∣

∣

∣

∣

≤
∣

∣

∣

∣

¨

log |x− y|ρsk(x)(ρsk(y)− ρ(y)) dxdy

∣

∣

∣

∣

+

∣

∣

∣

∣

¨

log |x− y|ρ(y)(ρsk(x)− ρ(x)) dxdy

∣

∣

∣

∣

≤ 2(K1 +K2).
√
2M‖ρsk − ρ‖2

(
¨

log2 |x− y| dxdy
)1/2

for k large enough. Therefore, we get

lim
k→+∞

ΣV (µsk) = ΣV (µ) .

Similarly, we have limk→+∞ΣV (µs′
k
) = ΣV (µ

′). Using that the function
t 7→ ΣV (µt) is decreasing, we thus have ΣV (µ) = ΣV (µ

′).

Consequently, two accumulation points of (ρt)t≥0 in L2-topology lead to
the same entropy. Since we proved that ρV is an accumulation point and
since µV the unique minimizer of free entropy ΣV , we conclude that the only
possible accumulation point in L2-topology is ρV . But, by Proposition 2.2
(iii), the ρt’s, t ≥ 1, are contained in a compact set A for this topology, so ρt
converges towards ρV in L2-topology. As we explained at the beginning of
this proof, this implies that µt converges in distribution towards µV . Since
weak convergence and Wp-convergence, p ∈ [1,+∞), coincide for distribu-
tions on a given compact set, the conclusion of Theorem 1.4 follows.
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4 Conclusion and perspectives

We have obtained in Theorem 1.4 that the solution (µt)t≥0 of free Fokker-
Planck equation (1) for the particular potential

V (x) =
1

4
x4 +

c

2
x2 , −2 ≤ c < 0 ,

converges as t grows to infinity towards the equilibrium measure µV asso-
ciated to V . This fills a part of the gap between a result by Li, Li, and
Xie [23], stating that the same conclusion holds for c ≥ 0, and a remark
by Biane and Speicher [9], asserting that when c is very negative, the con-
vergence towards µV is not possible if µ0 has not the same filling fractions
as µV . Moreover, this is the first convergence result we know when both
the interaction is singular and the confinement potential is non-convex in
granular media equation (10).

In addition to this, the proof we have proposed also applies in the case
when c ≥ 0. Hence, we can precise the result obtained by Li, Li, and Xie
[23]. Indeed, we have showed that the solution (µt)t≥0 of free Fokker-Planck
equation satisfies

lim
t→+∞

Wp(µt, µV ) = 0

for every p ≥ 1. Li, Li, and Xie proved only the case p = 2, and thus also
p ≤ 2. However, they obtained an exponential convergence rate when c > 0,
which is not possible with our method.

Many natural questions follow this work:

• Our result uses the fact that we have only one suitable critical measure
when c ∈ [−2, 0). Can we describe the suitable critical measures when
c < −2? For instance, there is no critical measure with bounded
density and connected support when −

√
15 < c < −2. In this case, is

the equilibrium measure µV the only suitable critical measure, and is
the convergence of the solution of (1) towards µV possible?

• The value c = −
√
15 appears as the value under which the existence of

unilateral critical measures for the quartic potential becomes possible.
This threshold also appears in a paper by Bertola and Tovbis [6] in a
slightly different context. Are the measures described in [6] the only
critical measures?

• When c is very negative, can we describe the basins of attraction as-
sociated to each possible limit for the solution of free Fokker-Planck
equation?

22



• We used the special form of the quartic potential in order to show that
a critical measure has a connected support and in order to compute it,
but nowhere else. Do our methods apply in other cases? For instance,
can we change the potential V , take a higher degree, or consider higher
dimensions?

• Several works deal with non-confining potentials. For instance, Allez
and Dumaz [1] studied a cubic potential, and Brézin, Itzykson, Parisi,
and Zuber [13] considered the quartic potential V (x) = 1

2x
2 + g

4x
4

with g < 0. For these potentials, once the problems of definitions are
solved, we can tackle the problem of long-time behaviour. Can we
prove a convergence result for the cubic potential or for the quartic
potential with − 1

12 < g < 0, as Biane and Speicher conjectured for the
latter?
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