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Parallel eigensolvers in plane-wave Density Functional Theory

Antoine Levitt∗, Marc Torrent
CEA, DAM, DIF, F-91297, Arpajon, France

Abstract

We consider the problem of parallelizing electronic structure computations in plane-wave Density
Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be
found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev
polynomials can scale into the tens of thousands of processors, outperforming block conjugate
gradient algorithms for large computations.

Keywords: Density Functional Theory, ABINIT, Projector Augmented-Wave, Chebyshev
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1. Introduction

Kohn-Sham Density Functional Theory is an efficient way to solve the Schrödinger equation
for quantum systems [13, 16]. By modelling the correlation between N electrons via exchange-
correlation functionals, it leads to the Kohn-Sham system, mathematically formulated as a non-
linear eigenvalue problem. This problem can be discretized and solved numerically, and the result
of this computation allows the determination of physical properties of interest via higher-level
processing such as geometry optimization, molecular dynamics or response-function computation.
Density Functional Theory (DFT) codes can be classified according to the discretization scheme
used to represent wavefunctions (plane waves, localized basis functions, finite differences ...) and
the treatment of core electrons (all-electron computations, pseudopotentials ...). We focus on the
ABINIT software [10], which uses a plane-wave basis and either norm-conserving pseudopotentials
or the Projector Augmented-Wave (PAW) approach [5, 25].

The bottleneck of most simulations is the computation of the electronic ground state. This is
done by a self-consistent cycle whose inner step is the solution of a linear eigenvalue problem. This
step has to be implemented efficiently, taking into account the specificities of the problem at hand,
which rules out the use of generic black-box solvers. Furthermore, the growing need for paralleliza-
tion constrains the choice of the eigensolver. Indeed, one specificity of plane-wave DFT as opposed
to real-space codes is that Fourier transforms do not scale beyond about 100 processors: effective
parallelization requires eigensolvers that are able to compute several Hamiltonian applications in
parallel.

The historic eigensolver used in plane-wave DFT, the conjugate gradient scheme of refs. [19, 17],
is inherently sequential, although there are attempts at parallelization by omitting orthogonaliza-
tions [14]. Several methods work on blocks of eigenvectors and are more suited for parallelization,
such as the residual vector minimization – direct inversion in the iterative subspace (RMM-DIIS)
scheme [17], and block Davidson algorithms [8], including the locally optimal block preconditioned
conjugate gradient (LOBPCG) algorithm [15], implemented in ABINIT [6].

Parallel implementations of plane-wave DFT codes include Quantum Espresso [9], VASP [17],
QBOX [11] or CASTEP [18]. The scalability of these codes is mainly limited by orthogonalizations
and the Rayleigh-Ritz step, a dense matrix diagonalization, which is hard to parallelize efficiently,
even using state-of-the-art libraries such as ELPA [1] or Elemental [21]. The Rayleigh-Ritz step
usually becomes the bottleneck when using more than a thousand processors.

There are two main ways to decrease the cost of this step. One is to use it as rarely as possible.
This usually means applying the Hamiltonian more than one time to each vector before applying
the Rayleigh-Ritz procedure, in order to speed up convergence. The other is getting rid of it
entirely. This requires the independent computation of parts of the spectrum, as in the methods of
spectrum slicing [24] or of contour integrals [20, 23]. These approaches effectively solve an interior
eigenvalue problem, which is considerably harder than the original exterior one. The result is that
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a large number of Hamiltonian applications is needed, to obtain a high-degree polynomial or to
solve linear systems.

While these spectrum decomposition techniques will surely become the dominant methods for
exascale computing, we address the current generation of supercomputers, on which the decrease
in the costs of the Rayleigh-Ritz step is not worth the great increase in the number of Hamiltonian
applications. We therefore focus in this paper on the method of Chebyshev filtering, which aims
to limit the number of Rayleigh-Ritz steps by applying polynomials of the Hamiltonian to each
vector. It can be seen as an accelerated subspace iteration, and dates back to the RITZIT code in
1970 [22]. It has been proposed for use in DFT in refs. [28, 27], and has recently been adopted by
several groups [4, 2].

The contribution of this paper is twofold. First, we show how to adapt the Chebyshev filtering
algorithm of ref. [28] in the context of generalized eigenproblems, here due to the PAW formalism.
By exploiting the particular nature of the PAW overlap matrix (a low-rank perturbation of the
identity), we are able to invert it efficiently. Second, we compare the Chebyshev filtering algorithm
with CG and LOBPCG, both in terms of convergence and scalability.

2. The eigenvalue problem

2.1. The operators
First, we define some relevant variables. For a system of Natoms atoms in a box, we solve the

Kohn-Sham equations in a plane-wave basis. This basis is defined by the set of all plane waves
whose kinetic energy is less than a threshold Ecut. This yields a sphere of Npw plane waves, upon
which the wavefunctions are discretized.

We consider a system where Nbands bands are sought. For a simple ground state computation,
Nbands represents the number of states occupied by valence electrons of the Natoms atoms. For
more sophisticated analysis such as Many-Body Perturbation Theory (MBPT), the computation
of empty states is necessary, and Nbands can be significantly higher. It is also convenient to speed
up convergence of ground state computations to use more bands than strictly necessary.

To account for the core electrons, we use pseudopotentials. ABINIT implements both norm-
conserving pseudopotentials and the Projector Augmented-Wave (PAW) method. For the purposes
of this paper, the main difference is the presence of an overlap matrix in the PAW case, leading to
a generalized eigenvalue problem. We will assume in the rest of this paper that we use the PAW
method: norm-conserving pseudopotentials follow as a special case.

For simplicity of notation, we consider in this paper the case where periodicity is not taken
explicitely into account, and the wavefunctions will be assumed to be real. The following discussion
extends to the periodic case by sampling of the Brillouin zone, provided that we consider complex
eigenproblems, with the necessary adjustments.

The Kohn-Sham equations for the electronic wavefunctions ψn are

Hψn = λnSψn, (1)

where H is the Hamiltonian, and S the overlap matrix arising from the PAW method (S = I with
norm-conserving pseudopotentials). H and S are Npw × Npw Hermitian matrices (although they
are never formed explicitely), and Ψ is a Npw × Nbands matrix of wavefunctions. The Hamiltonian
operator depends self-consistently on the wavefunctions Ψ. It can be written in the form

H = K + Vloc + Vnonloc. (2)
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The kinetic energy operator K is, in our plane wave basis, a simple diagonal matrix. The local
operator Vloc = Vext + VH + VXC is a multiplication in real space by a potential determined from
atomic data and the wavefunctions Ψ. It can therefore be computed efficiently using a pair of inverse
and direct FFTs. The nonlocal operator Vnonloc and the overlap matrix S depend on the atomic
data used. For both PAW method and norm-conserving pseudopotentials, we introduce a set of
nlmn projectors per atom, where nlmn is the number of projectors used to model the core electrons
of each atom, and usually varies between 1 and 40 according to the atom and pseudopotential
type. Therefore, for a homogeneous system of Natoms atoms we use a total of Nprojs = nlmnNatoms
projectors. We have Nprojs � Npw, but Nprojs is comparable to Nbands.

We gather formally these projectors in a Npw × Nprojs matrix P . The non-local operator Vnonloc
is computed as

Vnonloc = PDV P
T . (3)

Similarly, the overlap matrix in the PAW formalism is

S = I + PDSP
T . (4)

The matrices DS and DV do not couple the different atoms in the system: they are block-
diagonal. They can be precomputed from atomic data. The matrix DV additionally depends
self-consistently on the wavefunctions Ψ.

Therefore, for a single band ψ, the process of computing Hψ and Sψ can be decomposed as
follows

Input: a wavefunction ψ
Output: Hψ, Sψ
◦ Compute Kψ by a simple scaling
◦ Apply an inverse FFT to ψ to compute its real-space representation, multiply by Vloc,
and apply a FFT to get Vlocψ
◦ Compute the Nprojs projections pψ = P Tψ
Apply the block-diagonal matrices DV and DS to pψ
Compute the contributions PDV pψ and PDSpψ to the nonlocal and overlap operator
◦ Assemble Hψ = Kψ + Vlocψ + PDV pψ
◦ Assemble Sψ = ψ + PDSpψ

Algorithm 1: Computation of Hψ,Sψ

The total cost of this operation is O(Npw logNpw + NpwNprojs). As Npw and Nprojs both scale
with the number of atoms Natoms, the cost of computing the non-local operator dominates for
large systems. However, Npw is usually much greater than Nprojs, and the prefactor involved in
computing FFTs is much greater than the one involved in computing the simple matrix products
P Tψ and Ppψ (which can be efficiently implemented as a level-3 BLAS operation). The FFT and
non-local operator costs are usually of the same order of magnitude for systems up to about 50
atoms.

4



2.2. Solving the eigenvalue problem: conjugate gradient
The historical algorithm used to compute the Nbands first eigenvectors of (1) in the framework

of plane-wave DFT is the conjugate gradient algorithm, described in [19, 17]. It is mathematically
based on the following variationnal characterization of the n-th eigenvector of the eigenproblem
Hψ = λSψ:

ψn = arg min
〈ψi,Sψ〉=δi,n, i=1,...,Npw

〈ψ,Hψ〉 .

The conjugate gradient method of ref. [19, 17] consists of minimizing this functional by a
projected conjugate gradient method. Note that, because of the constraints, this is a nonlinear
conjugate gradient problem, to which classical (linear) results can not be applied. A number of
desirable characteristics have made it the algorithm of reference.

First, this algorithm only needs the application of the operators H and S to wavefunctions,
and can therefore be decoupled from their underlying structure. This is particularly suited to
plane-wave Density Functional Theory, where the application of H can be efficiently computed
with FFTs.

Second, the operator H = K+Vloc +Vnonloc is closely approximated by K in the high-frequency
regime. A good diagonal preconditionner can therefore be built by damping the high frequencies as
K−1 above a certain threshold. The implementation in [19, 17], still used in most plane-wave codes,
uses a smooth rational function with a variable threshold (typically taken to be the kinetic energy
of the band under consideration). The use of a preconditionner greatly accelerates the convergence
with only a negligible additional cost of O(Npw).

Third, the algorithm can naturally reuse approximate eigenvectors, in contrast to algorithms
based on a growing basis such as the Lanczos iteration. This is extremely attractive in DFT
computations, where very good approximations can be obtained from the previous self-consistent
cycle.

Typically, this algorithm is implemented in the following way: for each band in ascending order,
do a fixed number ninner of iterations of the conjugate gradient algorithm, orthogonalizing at each
step with respect to the other bands. Once every band is updated, use a Rayleigh-Ritz step (also
called subspace rotation or subspace diagonalization), update the density (usually, Pulay mixing
with preconditionning is used), and iterate until convergence. Therefore, one has a system of
inner-outer iterations controlled by the variable ninner. To our knowledge, little is known about the
correct way to choose this parameter, especially if it is allowed to vary between bands.

2.3. Block algorithms: LOBPCG
A number of alternative approaches have been developed over the years. We focus in this section

on the Locally-Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [15], which
was developed as a way to improve the convergence of the conjugate gradient method. In its single-
block version, it consists of a Rayleigh-Ritz method in the 3Nbands-dimensional subspace spanned
by the current trial wavefunctions, the wavefunctions computed at the previous iteration, and the
(preconditionned) residuals. For a single band, this would be equivalent to the conjugate gradient
algorithm. For multiple bands, by computing the eigenvectors as the solution to an eigenvalue
problem in a well-chosen subspace, this method achieves higher convergence rates [15].

The price to pay for this faster convergence is the solution of a dense eigenvalue problem of
size 3Nbands for the Rayleigh-Ritz method. While this cost is negligible for small systems, where
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the cost of applying the Hamiltonian dominates the computation, its O(N3
bands) cost becomes

problematic for larger systems, especially since it has poor parallel scaling. For this reason, a
“multiblock” scheme has been implemented in ABINIT [6]. In this scheme, the Nbands bands are
split in Nblocks blocks. The LOBPCG algorithm is applied in each block, which is additionally kept
orthogonal to the blocks of lower energy. In this way, the Rayleigh-Ritz cost is cut by a factor
N3

blocks. The LOBPCG algorithm as described suffers from ill-conditioning of the matrices involved
in the Rayleigh-Ritz step, and practical implementations have to be modified to use a more suitable
basis (see [15, 12]), but the resulting method has proven robust and improves the convergence of
the conjugate gradient algorithm.

The main advantage, and motivation of its adoption in ABINIT, is however not its improved
convergence, but the ability to build the residuals for all the bands of a block in parallel, as will be
discussed in the next section.

3. Parallelism

We consider the parallelization of ground state computations in plane-wave DFT, and its im-
plementation in ABINIT.

3.1. Parallelism in the Hamiltonian application
The most straightforward way of parallelizing problem (1) is to use multiple processors to

compute the Hamiltonian application Hψ needed in the conjugate gradient algorithm. In this
approach, the vector ψ of size Npw is distributed onto ppw processors, and the Hamiltonian is
computed in parallel. Although the non-local part can be computed very efficiently in this approach,
the parallel computation of FFTs is a challenge. 3D FFT can be parallelized by computing multiple
2D FFTs in parallel, but this approach is intrinsically unable to exploit more than N1/3

pw processors.
Even for large systems, with Npw of about 1 million, this only amounts to using 100 processors,
which is clearly insufficient to use today’s supercomputers.

Therefore, in contrast with codes that work in a real-space localized basis, our delocalized
basis is an obstacle to parallelism, limiting the scaling of the Hamiltonian application. To be used
efficiently on supercomputers, parallelism must be found elsewhere.

3.2. Eigenvector-level parallelism in block algorithms
Another way of solving (1) in parallel is to use a block algorithm such as LOBPCG, in which

the Hamiltonian application on the different vectors inside a block is done in parallel. This is the
approach taken by ABINIT.

In this approach, the wavefunction matrix Ψ is distributed along a 2D grid of ppw × pbands
processors (see Figure 1). The Hamiltonian can be applied with only column-wise communica-
tions between ppw processors. The orthogonalization and Rayleigh-Ritz steps are done using a
transposition to a (ppwpbands)× 1 processor grid. Implementation details can be found in [6].

Compared to using parallelism only in the Hamiltonian application, the scalability of the code
is greatly extended, up to hundreds and even thousands of processors for large systems. The main
obstacle to parallelism is the poor scalability of the Rayleigh-Ritz (subspace diagonalization) step.
Even using parallel solvers such as ScaLAPACK [7] or ELPA [1], the diagonalization stops scaling at
around 100 processors for large systems, and becomes the bottleneck when using many processors.
Furthermore, as the blocksize has to be at least equal to pbands, as the number of processors increase,
so does the size of the intermediate Rayleigh-Ritz procedures, quickly degrading performance.
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Npw

Nbands

Figure 1: Distribution of the wavefunctions Ψ, with Nbands = 8, Npw = 10. The data is distributed on a 2D
processor grid of ppw = 2, pbands = 2. Each processor is in charge of Nblocks = 2 blocks of size Npw/ppw = 5 by
Nbands/pbands/Nblocks = 2.

To reduce these costs, we should ideally get rid of the global Rayleigh-Ritz step. This requires
computing parts of the spectrum in parallel, which means solving an interior eigenvalue problem,
requiring considerably more matrix-vector operations. An intermediate approach is to limit the
number of global operations, i.e. to use several matrix-vector application for each Rayleigh-Ritz
step.

4. Chebyshev filtering

4.1. Filtering algorithms
The filtering approach to eigenvalue problems emphasizes the invariant subspace spanned by

the eigenvectors rather than the individual eigenvectors and eigenvalues. To obtain this invariant
subspace, one uses a filter, an approximation of the spectral projector on the invariant subspace.
Starting from an approximation to a basis of the invariant subspace, one applies the filter to each
vector. Then, the basis is orthonormalized to prevent instability, and the process is iterated until
convergence. Once a basis of the invariant subspace is obtained, a Rayleigh-Ritz procedure can be
applied to recover the individual eigenvectors and eigenvalues.

This procedure can be seen as an accelerated version of the classical subspace iteration al-
gorithm. This method is generally considered inferior to Krylov methods such as the Lanczos
algorithm, but has a number of advantages that make it attractive in our context. First, it is
able to use naturally the information of previous self-consistent iterations. Second, the filtering
step can be done in parallel on each vector, with interaction between vectors only occuring in the
Rayleigh-Ritz phase.
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Another motivation for the use of filtering algorithms (see for instance [3]) is that, in many cases,
one does not need the individual eigenvectors and eigenvalues, but aggregate quantities such as the
density, that can be computed from any orthonormal basis. Therefore, one can avoid the Rayleigh-
Ritz step altogether. We do not exploit this for two reasons. First, while this approach does avoid
the dense diagonalization in the Rayleigh-Ritz step, it still requires an orthogonalization, which also
scales poorly. Second, the algorithm becomes less stable, and provides less opportunities for error
control (such as residuals) and locking. Third, it is not obvious how to accomodate occupation
numbers, which, because of smearing schemes employed in computations of metals, depend self-
consistently on the eigenvalues.

Several forms of filters have been proposed in the literature. [20] and [23] both use rational
filters originating from discretizations of contour integrals to approximate the spectral projector.
This is very efficient, provides numerous opportunities for parallelization and has the advantage of
yielding “flat” filters, which have better stability properties. It is however inefficient in our case
because it requires inversions of systems of the form (H − zS)x = b, where z is a complex shift.
This becomes very poorly conditionned when the shift z becomes close to the real axis. Since our
matrix is not sparse, one cannot rely on factorizations to solve these systems, and our tests have
shown that solving these systems using iterative methods is too slow to be competitive.

Restricting ourselves to only Hamiltonian applications yields polynomial filters, that are less
efficient but faster to compute than rational filters. Since we are looking for a filter that is minimal
on the unwanted part of the spectrum, the natural idea is to use Chebyshev polynomials, as
proposed in ref. [28]. This is the approach we take in this paper.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Exact
Chebyshev
FEAST

Figure 2: Approximate filters to compute the [−1, 0] part of the full spectrum [−1, 2]. The Chebyshev polynomial is
of degree 4, FEAST corresponds to the rational approximation of ref. [20] with 8 quadrature points (with symmetry,
this amounts to 4 linear solves).
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4.2. Chebyshev filtering
The Chebyshev polynomials have the property of being minimal in L∞ norm on an interval

[a, b] among the polynomials of fixed degree and scaling. They are defined recursively by

T0(x) = 1,

T1(x) = x− c
r

,

Tn+1(x) = 2x− c
r

Tn(x)− Tn−1(x),

where the filter center and radius are defined by

c = a+ b

2 ,

r = b− a
2 .

This definition extends to any operator A and allows us to compute Tn(A)ψ using n applications
of A, and with only a modest additional memory cost.

If we denote by Λ and P the eigenvalues and eigenvectors of the eigenproblem Hψ = λSψ,
then we have the decomposition HP = SPΛ, or S−1H = PΛP−1. Therefore, Tn(S−1H)ψ =
PTn(Λ)P−1ψ will have its eigencomponents filtered by the spectral filter Tn. We then use a
Rayleigh-Ritz procedure to separate the individual eigenvectors and eigenvalues, and iterate until
convergence, as summarized in Algorithm 2.

Input: a set of Npw ×Nbands wavefunctions Ψ
Output: the updated wavefunctions Ψ
◦ Compute Rayleigh quotients for every band, and set λ− equal to the largest one.
◦ Set λ+ to be an upper bound of the spectrum.
◦ Compute the filter center and radius c = λ++λ−

2 , r = λ+−λ−
2

for each band ψ do
Set ψ0 = ψ, and ψ1 = 1

r (S−1Hψ0 − cψ0)
for i = 2, . . . , ninner do
ψi = 2

r (S−1Hψi−1 − cψi−1)− ψi−2

end for
end for
◦ Compute the subspace matrices Hψ = ΨTHΨ, and SΨ = ΨTSΨ
◦ Solve the dense generalized eigenproblem HΨX = SΨXΛ, where Λ is a diagonal matrix
of eigenvalues, and X is the Sψ-orthonormal set of eigenvectors
◦ Do the subspace rotation Ψ← ΨX

Algorithm 2: Chebyshev filtering

This algorithm is identical to the one found in [28], except that, since we are dealing with
a generalized eigenproblem, we need to apply a polynomial in S−1H instead of simply H. This
operator is not Hermitian, but has the same spectrum as the pencil (H,S), and the filtering
algorithm finds the same eigenvectors and eigenvalues with the same convergence properties as in
the Hermitian case. We will explain how to compute S−1 efficiently in Section 5.1.
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5. Implementation

5.1. Inversion of the overlap matrix
We need to compute the operator S−1, where the overlap matrix S is given by

S = I + PDSP
T .

This matrix is too large to invert directly, and is not even sparse. However, since Nprojs � Npw,
it is a low-rank perturbation of the identity. Therefore, we can apply the Woodbury formula [26]
and write its inverse as

S−1 = I − P (D−1
S + P TP )−1P T ,

reducing the problem of computing the inverse of S to that of computing the inverse of the reduced
Nprojs × Nprojs matrix (D−1

S + P TP ). This method for inverting S was also used in [? ] in the
context of preconditioning in ultrasoft computations.

In PAW, the projectors are compactly supported in spheres centered around the atoms. This
leads us to expect that the matrix (D−1

S + P TP ) is block-diagonal, and therefore easy to invert.
However, the projectors P are the discretization on the plane-wave basis of the true PAW projectors.
Because a function cannot be compactly supported in both Fourier and real space, the plane-wave
discretization of the projectors will spill over the neighbouring PAW spheres, and the Gram-matrix
will have off-block diagonal entries (see Figure 3). This phenomenon is all the more pronounced
when the projectors are not smooth (and therefore have slow Fourier-space decay), which is the case
in many pseudopotentials commonly used (often constructed by imposing matching conditions).

The result of this is that the matrix (D−1
S + P TP ) can not be considered block-diagonal, or

even sparse. While smaller than the full matrix S, it is still too large to invert directly in large
systems. Therefore, we use an iterative solver, preconditionned by the block-diagonal component
of (D−1

S + P TP ). Since the spillover phenomenon is relatively small, the preconditionner is a very
good approximation of the full matrix, and any iterative solver converges to machine precision in a
relatively modest number of iterations. We used iterative refinement for its ease of implementation,
although any symmetric indefinite solver such as MINRES could be used. In our tests, iterative
refinement converged in about 10 to 20 iterations, depending on the energy cutoff of plane waves
and the size of the PAW spheres. The cost of this inner iterative solver is O(N2

projs), and therefore
small compared to the total cost O(NprojsNpw) of applying the overlap operator.

One inner iteration of CG or LOBPCG requires one multiplication by P T and two by P (one
for H and one for S). Naively implemented, one inner iteration of the Chebyshev filter requires
two multiplications by P T and two by P (one for H and one for S−1). However, we can avoid the
multiplication by P T forH after the first iteration. Indeed, P TS−1ψ can be written as P Tψ−P TPq,
where both P Tψ and q have been computed before. By precomputing the Nprojs × Nprojs Gram
matrix P TP , this computation can be done in O(N2

projs) instead of the naive O(NprojsNpw).
Using this trick, the number of O(Npw ×Nprojs) operations for the application of a Chebyshev

filter of degree n is just one more as the number of such operations that would be necessary for n
steps of a conjugate gradient algorithm. The iterative algorithm described has an additional cost
of O(N2

projs) � O(Npw × Nprojs). In our tests, we found that this additional cost per iteration
compared to LOBPCG was largely compensated by the lack of orthogonalization: therefore, one
step of Chebyshev filtering is a little faster than one step of LOBPCG.
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Figure 3: Projectors overlap matrix P T P (logarithmic color scale) for a system of 4 aluminium atoms in a periodic box,
with 8 projectors by atom. As an indication of the size of the overspill, denoting by M the preconditioner obtained
by keeping only the 8 × 8 diagonal blocks, the condition number of M−1(P T P ) was 2.64, and the preconditionned
MINRES solver for the solution of P T P x = b with b a random vector converged to machine precision in 7 iterations.

5.2. Parallelism
We have implemented this algorithm in the ABINIT software using MPI. The Npw × Nbands

eigenvector matrix is distributed on a 2D ppw×pbands processors grid, in the same way as in [6]. We
apply the polynomial filter of degree ninner, requiring communication inside the ppw processor group
for the FFT and the reductions needed for the nonlocal operator. Then, we transpose the data to
a (ppwpbands)× 1 grid (using the MPI call MPI_ALLTOALL), build the submatrices, distribute them
between the processors and perform a Rayleigh-Ritz procedure. Note that, compared to LOBPCG,
there is only one Rayleigh-Ritz per outer (self-consistent) iteration.

All our computations are done on the Curie supercomputer installed at the TGCC in France,
a cluster of 16-core Intel processors with a total of about 80,000 processors. We used the Intel
MKL library for BLAS and LAPACK dense linear algebra, and the ELPA library [1] for the
dense eigenproblem in the Rayleigh-Ritz step (in our tests, we found it was about twice as fast as
ScaLAPACK).

5.3. Choice of the polynomial
The choice of the polynomial degree ninner is a subtle matter, requiring a balance between

stability, speed and convergence.
First, a small degree results in many Rayleigh-Ritz steps, which is detrimental to performance,

and especially to parallelism. On the other hand, if ninner is too large, we will solve very accurately
an inaccurate problem, since the density ρ is not yet converged. Experience with the CG and
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LOBPCG algorithms have showed that increasing ninner above a moderate value (the default in
ABINIT is 4) does not speed up the self-consistent cycle. The same goes for the Chebyshev filtering
algorithm. More details are provided in Section 6.

Finally, if the degree is too large, the Gram matrix Sψ will be ill-conditionned, even if the
columns of Ψ are rescaled beforehand. This leads to loss of precision (and, crucially, of orthogo-
nality). Therefore, we must have Tninner(λ1−c

r ) � 1/ε, where Tn is the Chebyshev polynomial of
degree n, and ε ≈ 10−16 is the machine precision. In our tests, this was always the case except for
large values of ninner, of about 20, and therefore this instability is not an issue.

A key ingredient to the success of this algorithm is a good bracketing of the unwanted part of
the spectrum. The authors in [28] propose a few steps of the Lanczos algorithms to compute an
upper bound, but we simply use the upper bound Ecut on the kinetic energy of our system. It is
not mathematically clear that this is an upper bound of the operator H = K + V , since V is not
non-positive, but we have found this to be true in all our numerical tests.

To obtain an approximation of the smallest eigenvalue in the unwanted part of the spectrum,
we use the maximum Rayleigh quotient (always an overestimation of the largest wanted eigenvalue
λNbands). We have found this to be more efficient than using the largest Ritz value of the previous
self-consistent iteration.

5.4. Locking
An important point for an effective implementation is the ability to lock converged eigenvectors,

and not iterate on them. Although it is far from clear what the optimal policy is in terms of self-
consistent convergence (how to optimize the number of iterations on each band to obtain the
lowest total running time), it is desirable to stop the iterations prematurely in computations where
a specified accuracy on the wavefunctions is desired.

In the Chebyshev algorithm, this means adaptatively choosing the degree of the polynomial,
band per band. The problem is that there is no simple way to obtain a measure of the error
while applying the polynomial: the vector being iterated on will become a combination of all the
eigenvectors, and the size of its residual is meaningless before the Rayleigh-Ritz step. However, since
an application of the Chebyshev polynomial of degree n enlarges the eigencomponent associated
with eigenvalue λi by a factor Tn(λi−c

r ), with the unwanted eigencomponents multiplied by a factor
of at most one, we can use the following approximation (which becomes exact at convergence)
for the residual rni of band number i with Rayleigh quotient λi after one full Chebyshev iteration
(application of a Chebyshev polynomial of degree n followed by a Rayleigh Ritz step)

‖rni ‖ ≈
‖ri‖

Tn(λ1−c
r )

, (5)

where ri is the residual before the Chebyshev iteration (more details can be found in [? ] and in
references therein). Using this estimate, we can choose a priori the polynomial degree that will be
needed to achieve a desired tolerance. This prediction can also be useful for other purposes, such
as providing the user with an estimate of the progress of the computation.

Another issue is that using a polynomial of different degree for each band leads to systematic
load imbalance between the processors: since the lower eigenvectors converge faster, the processors
treating these will have less work than those treating the slow-converging higher eigenvectors. We
avoid this by using a cyclic distribution of the bands between the processors, so that each processor
treats a mix of low and high bands. This could be optimized further by redistributing dynamically
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the bands so as to minimize the work imbalance, but we did not implement this as the simple cyclic
distribution led to a load imbalance of less than 5% in our tests.

By contrast, the LOBPCG algorithm suffers from incomplete locking when a large number of
processors is used, because the number of iteration has to be the same for each band in a block.
Because of the dependence between the blocks, one cannot use a redistribution scheme such as in
the Chebyshev algorithm. To keep the comparaison fair between Chebyshev and LOBPCG, we did
not use any locking in the numerical results presented here.

6. Results

6.1. Non-self-consistent convergence
As a first test, we study the non-self-consistent convergence of our solver, meaning that we fix

the Hamiltonian H and focus on the linear eigenvalue problem. Our test case is a system of 19
atoms of Barium titanate, with formula BaTiO3, an insulator. We used an energy cutoff of 20
hartrees, representative of standard computations. With our PAW pseudopotential, there is a total
of 77 totally filled bands. We run three algorithms: CG, the classical conjugate gradient of ref.
[19, 17], the implementation of LOBPCG in ABINIT [6], and our Chebyshev algorithm. The full-
block version of LOBPCG (Nblocks = 1) was used. In all cases, the parameter ninner, which controls
the number of inner iterations in all three algorithms, was set to 4. We monitor the convergence
of all eigenpairs using their residual ‖Hψ − λSψ‖.

−1.5 −1 −0.5 0 0.50

20

40

60

80

100

Eigenvalue λ

N
um

be
r
of

ite
ra
tio

ns

Chebyshev
CG
LOBPCG

Figure 4: Number of iterations to obtain a precision of 10−10, BaTiO3, 100 bands.

Figure 4 displays the number of iterations that was necessary for each eigenpair to attain an
accuracy of 10−10, using a total of 100 bands. We see that the Chebyshev algorithm is very efficient
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towards the bottom of the spectrum, outperforming the CG algorithm and even coming close to the
full-block LOBPCG algorithm. However, the situation degrades for the upper eigenvalues, where
the Chebyshev algorithm performs poorly, in part due to the intrinsically poorer performance of
Chebyshev algorithms compared to Krylov methods, but in a large part due to the absence of pre-
conditionner. In tests not shown here, Chebyshev consistently outperformed non-preconditionned
CG and was competitive with non-preconditionned LOBPCG except for the last eigenpairs.

Figure 5 shows the exact same computation, but with 200 bands. First, note that increasing
the number of bands yields improved convergence rates: the eigenpairs near 0.5 now converge in
about 30 iterations for Chebyshev, whereas they did not converge in 100 iterations before. The
inclusion of a large number of bands in the computation (200, compared with a total dimension of
Npw ≈ 7000) also greatly enhances the effectiveness of the CG algorithm, although we do not fully
understand this effect. In this situation, the Chebyshev algorithm is not competitive.
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Figure 5: Number of iterations to get to obtain a precision of 10−10, BaTiO3, 200 bands.

We also note that the performance of the Chebyshev algorithm degrades like 1/
√
Ecut as the

energy cutoff is increased, whereas LOBPCG and CG, thanks to their preconditionning, only show
a moderate increase in the number of iterations.

6.2. Self-consistent convergence
We now study the impact of the linear solver on the self-consistent cycle, and on the overall

efficiency. Our tests are on a crystal of 256 atoms of Titanium. The partial occupation scheme
used leads to about 1300 fully occupied bands and 500 partially occupied ones. We performed our
tests with a total of 2048 bands.

14



The computations were stopped when the residual on the potential went below 10−10. We
report the convergence for ninner equal to 4 and 8 in Figure 6. The results show that Chebyshev
and LOBPCG are competitive on this system. The superior parallel performance of the Chebyshev
algorithm yields large speedups when using more processors, as can be seen in Figure 7. In this
case, taking the best time among all processor numbers yields a total time of about 15 minutes on
4096 processors for Chebyshev compared to more than an hour with 1024 processors for LOBPCG.
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Figure 6: Self-consistent convergence. The blocksize for LOBPCG was 128.

15



256 512 1024 2048 4096

20

40

60

80

100

120

Processors

T
im

e
to

so
lu
tio

n
(m

in
ut
es
)

Chebyshev
LOBPCG

Figure 7: Total time to solution. ninner was fixed to 4, and ppw to 32. The total number of iterations was 70 for
Chebyshev. It varied from 65 to 55 for LOBPCG, as the blocksize was increased from 32 on 256 processors to 512
on 4096.
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6.3. Scalability
We now study more precisely the parallel scalability of our algorithms on a cristal of 512 atoms

of Titanium, with a total of 4096 bands. We chose ppw = 64. As before, we chose ninner = 4.
We measured the average running time of a single iteration. We began our measurements at 512
processors, and timed the individual routines. The speedups of Figure 8 are obtained with reference
to a base case extrapolated by substracting the time spent in communications from the total time.

The scalability for the Chebyshev algorithm is again much better, still scaling at 16384 proces-
sors for the Ti512 crystal when LOBPCG saturates at 2048. Figure 9 shows the breakdown of a
step of the Chebyshev method. While the Hamiltonian application scales perfectly, as expected,
the Rayleigh-Ritz step saturates very quickly and goes from negligible at 512 to being as costly as
the Hamiltonian application at 16384 processors.

512 1024 2048 4096 8192 16384

512

1024

2048

4096

8192

16384

Processors

Sp
ee
du

p

Ideal
Chebyshev
LOBPCG

Figure 8: Speedups for the Chebyshev and LOBPCG method, Ti512.

7. Conclusion

Using a Woodbury decomposition of the PAW overlap matrix, we extended the Chebyshev
filtering algorithm of [28, 27] to a generalized eigenproblem, and implemented it in the ABINIT
software. Comparisons with the current implementation, based on the LOBPCG algorithm, show
that its convergence properties are competitive for some systems, although it proves slower for
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Figure 9: Breakdown of one step of the Chebyshev method, Ti512.

others, due to its lack of preconditioning. Because it needs much less Rayleigh-Ritz steps, it is able
to achieve much greater parallel speedups, and scale into the tens of thousands of processors.

This scaling behavior is acceptable for current generations of machines, where it is rare to be
able to use more than 10,000 cores. However, exascale computations will only be possible with the
help of algorithms that avoid global Rayleigh-Ritz steps. For plane-wave DFT, the only competitive
algorithm seems to be the spectrum slicing algorithm of [24], but the high-degree polynomials it
uses render it uncompetitive for all but extremely large systems. More research is needed to be
able to develop alternatives.
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