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We consider the problem of parallelizing electronic structure computations in plane-wave Density Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for large computations.

Introduction

Kohn-Sham Density Functional Theory is an efficient way to solve the Schrödinger equation for quantum systems [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. By modelling the correlation between N electrons via exchangecorrelation functionals, it leads to the Kohn-Sham system, mathematically formulated as a nonlinear eigenvalue problem. This problem can be discretized and solved numerically, and the result of this computation allows the determination of physical properties of interest via higher-level processing such as geometry optimization, molecular dynamics or response-function computation. Density Functional Theory (DFT) codes can be classified according to the discretization scheme used to represent wavefunctions (plane waves, localized basis functions, finite differences ...) and the treatment of core electrons (all-electron computations, pseudopotentials ...). We focus on the ABINIT software [START_REF] Gonze | ABINIT: First-principles approach to material and nanosystem properties[END_REF], which uses a plane-wave basis and either norm-conserving pseudopotentials or the Projector Augmented-Wave (PAW) approach [START_REF] Blöchl | Projector augmented-wave method[END_REF][START_REF] Torrent | Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure[END_REF].

The bottleneck of most simulations is the computation of the electronic ground state. This is done by a self-consistent cycle whose inner step is the solution of a linear eigenvalue problem. This step has to be implemented efficiently, taking into account the specificities of the problem at hand, which rules out the use of generic black-box solvers. Furthermore, the growing need for parallelization constrains the choice of the eigensolver. Indeed, one specificity of plane-wave DFT as opposed to real-space codes is that Fourier transforms do not scale beyond about 100 processors: effective parallelization requires eigensolvers that are able to compute several Hamiltonian applications in parallel.

The historic eigensolver used in plane-wave DFT, the conjugate gradient scheme of refs. [START_REF] Payne | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF], is inherently sequential, although there are attempts at parallelization by omitting orthogonalizations [START_REF] Iwata | A massively-parallel electronic-structure calculations based on real-space density functional theory[END_REF]. Several methods work on blocks of eigenvectors and are more suited for parallelization, such as the residual vector minimization -direct inversion in the iterative subspace (RMM-DIIS) scheme [START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF], and block Davidson algorithms [START_REF] Davidson | The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices[END_REF], including the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method[END_REF], implemented in ABINIT [START_REF] Bottin | Large-scale ab initio calculations based on three levels of parallelization[END_REF].

Parallel implementations of plane-wave DFT codes include Quantum Espresso [START_REF] Giannozzi | Quantum espresso: a modular and open-source software project for quantum simulations of materials[END_REF], VASP [START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF], QBOX [START_REF] Gygi | Large-scale electronic structure calculations of high-z metals on the bluegene/l platform[END_REF] or CASTEP [START_REF] Milman | Electron and vibrational spectroscopies using dft, plane waves and pseudopotentials: Castep implementation[END_REF]. The scalability of these codes is mainly limited by orthogonalizations and the Rayleigh-Ritz step, a dense matrix diagonalization, which is hard to parallelize efficiently, even using state-of-the-art libraries such as ELPA [START_REF] Auckenthaler | Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations[END_REF] or Elemental [START_REF] Poulson | Elemental: A new framework for distributed memory dense matrix computations[END_REF]. The Rayleigh-Ritz step usually becomes the bottleneck when using more than a thousand processors.

There are two main ways to decrease the cost of this step. One is to use it as rarely as possible. This usually means applying the Hamiltonian more than one time to each vector before applying the Rayleigh-Ritz procedure, in order to speed up convergence. The other is getting rid of it entirely. This requires the independent computation of parts of the spectrum, as in the methods of spectrum slicing [START_REF] Schofield | A spectrum slicing method for the Kohn-Sham problem[END_REF] or of contour integrals [START_REF] Polizzi | Density-matrix-based algorithms for solving eigenvalue problems[END_REF][START_REF] Sakurai | A projection method for generalized eigenvalue problems using numerical integration[END_REF]. These approaches effectively solve an interior eigenvalue problem, which is considerably harder than the original exterior one. The result is that a large number of Hamiltonian applications is needed, to obtain a high-degree polynomial or to solve linear systems.

While these spectrum decomposition techniques will surely become the dominant methods for exascale computing, we address the current generation of supercomputers, on which the decrease in the costs of the Rayleigh-Ritz step is not worth the great increase in the number of Hamiltonian applications. We therefore focus in this paper on the method of Chebyshev filtering, which aims to limit the number of Rayleigh-Ritz steps by applying polynomials of the Hamiltonian to each vector. It can be seen as an accelerated subspace iteration, and dates back to the RITZIT code in 1970 [START_REF] Rutishauser | Simultaneous iteration method for symmetric matrices[END_REF]. It has been proposed for use in DFT in refs. [START_REF] Zhou | Self-consistent-field calculations using Chebyshev-filtered subspace iteration[END_REF][START_REF] Zhou | Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration[END_REF], and has recently been adopted by several groups [START_REF] Berljafa | An optimized and scalable eigensolver for sequences of eigenvalue problems[END_REF][START_REF] Banerjee | A spectral scheme for kohn-sham density functional theory of clusters[END_REF].

The contribution of this paper is twofold. First, we show how to adapt the Chebyshev filtering algorithm of ref. [START_REF] Zhou | Self-consistent-field calculations using Chebyshev-filtered subspace iteration[END_REF] in the context of generalized eigenproblems, here due to the PAW formalism. By exploiting the particular nature of the PAW overlap matrix (a low-rank perturbation of the identity), we are able to invert it efficiently. Second, we compare the Chebyshev filtering algorithm with CG and LOBPCG, both in terms of convergence and scalability.

The eigenvalue problem

The operators

First, we define some relevant variables. For a system of N atoms atoms in a box, we solve the Kohn-Sham equations in a plane-wave basis. This basis is defined by the set of all plane waves whose kinetic energy is less than a threshold E cut . This yields a sphere of N pw plane waves, upon which the wavefunctions are discretized.

We consider a system where N bands bands are sought. For a simple ground state computation, N bands represents the number of states occupied by valence electrons of the N atoms atoms. For more sophisticated analysis such as Many-Body Perturbation Theory (MBPT), the computation of empty states is necessary, and N bands can be significantly higher. It is also convenient to speed up convergence of ground state computations to use more bands than strictly necessary.

To account for the core electrons, we use pseudopotentials. ABINIT implements both normconserving pseudopotentials and the Projector Augmented-Wave (PAW) method. For the purposes of this paper, the main difference is the presence of an overlap matrix in the PAW case, leading to a generalized eigenvalue problem. We will assume in the rest of this paper that we use the PAW method: norm-conserving pseudopotentials follow as a special case.

For simplicity of notation, we consider in this paper the case where periodicity is not taken explicitely into account, and the wavefunctions will be assumed to be real. The following discussion extends to the periodic case by sampling of the Brillouin zone, provided that we consider complex eigenproblems, with the necessary adjustments.

The Kohn-Sham equations for the electronic wavefunctions ψ n are

Hψ n = λ n Sψ n , ( 1 
)
where H is the Hamiltonian, and S the overlap matrix arising from the PAW method (S = I with norm-conserving pseudopotentials). H and S are N pw × N pw Hermitian matrices (although they are never formed explicitely), and Ψ is a N pw × N bands matrix of wavefunctions. The Hamiltonian operator depends self-consistently on the wavefunctions Ψ. It can be written in the form

H = K + V loc + V nonloc . ( 2 
)
The kinetic energy operator K is, in our plane wave basis, a simple diagonal matrix. The local operator V loc = V ext + V H + V XC is a multiplication in real space by a potential determined from atomic data and the wavefunctions Ψ. It can therefore be computed efficiently using a pair of inverse and direct FFTs. The nonlocal operator V nonloc and the overlap matrix S depend on the atomic data used. For both PAW method and norm-conserving pseudopotentials, we introduce a set of n lmn projectors per atom, where n lmn is the number of projectors used to model the core electrons of each atom, and usually varies between 1 and 40 according to the atom and pseudopotential type. Therefore, for a homogeneous system of N atoms atoms we use a total of N projs = n lmn N atoms projectors. We have N projs N pw , but N projs is comparable to N bands . We gather formally these projectors in a N pw × N projs matrix P . The non-local operator V nonloc is computed as

V nonloc = P D V P T . ( 3 
)
Similarly, the overlap matrix in the PAW formalism is

S = I + P D S P T . ( 4 
)
The matrices D S and D V do not couple the different atoms in the system: they are blockdiagonal. They can be precomputed from atomic data. The matrix D V additionally depends self-consistently on the wavefunctions Ψ.

Therefore, for a single band ψ, the process of computing Hψ and Sψ can be decomposed as follows Input: a wavefunction ψ Output: Hψ, Sψ • Compute Kψ by a simple scaling • Apply an inverse FFT to ψ to compute its real-space representation, multiply by V loc , and apply a FFT to get V loc ψ • Compute the N projs projections p ψ = P T ψ Apply the block-diagonal matrices D V and D S to p ψ Compute the contributions P D V p ψ and P D S p ψ to the nonlocal and overlap operator

• Assemble Hψ = Kψ + V loc ψ + P D V p ψ • Assemble Sψ = ψ + P D S p ψ Algorithm 1: Computation of Hψ, Sψ
The total cost of this operation is O(N pw log N pw + N pw N projs ). As N pw and N projs both scale with the number of atoms N atoms , the cost of computing the non-local operator dominates for large systems. However, N pw is usually much greater than N projs , and the prefactor involved in computing FFTs is much greater than the one involved in computing the simple matrix products P T ψ and P p ψ (which can be efficiently implemented as a level-3 BLAS operation). The FFT and non-local operator costs are usually of the same order of magnitude for systems up to about 50 atoms.

Solving the eigenvalue problem: conjugate gradient

The historical algorithm used to compute the N bands first eigenvectors of (1) in the framework of plane-wave DFT is the conjugate gradient algorithm, described in [START_REF] Payne | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF]. It is mathematically based on the following variationnal characterization of the n-th eigenvector of the eigenproblem Hψ = λSψ:

ψ n = arg min ψ i ,Sψ =δ i,n , i=1,...,Npw ψ, Hψ .
The conjugate gradient method of ref. [START_REF] Payne | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF] consists of minimizing this functional by a projected conjugate gradient method. Note that, because of the constraints, this is a nonlinear conjugate gradient problem, to which classical (linear) results can not be applied. A number of desirable characteristics have made it the algorithm of reference.

First, this algorithm only needs the application of the operators H and S to wavefunctions, and can therefore be decoupled from their underlying structure. This is particularly suited to plane-wave Density Functional Theory, where the application of H can be efficiently computed with FFTs.

Second, the operator H = K + V loc + V nonloc is closely approximated by K in the high-frequency regime. A good diagonal preconditionner can therefore be built by damping the high frequencies as K -1 above a certain threshold. The implementation in [START_REF] Payne | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF], still used in most plane-wave codes, uses a smooth rational function with a variable threshold (typically taken to be the kinetic energy of the band under consideration). The use of a preconditionner greatly accelerates the convergence with only a negligible additional cost of O(N pw ).

Third, the algorithm can naturally reuse approximate eigenvectors, in contrast to algorithms based on a growing basis such as the Lanczos iteration. This is extremely attractive in DFT computations, where very good approximations can be obtained from the previous self-consistent cycle.

Typically, this algorithm is implemented in the following way: for each band in ascending order, do a fixed number n inner of iterations of the conjugate gradient algorithm, orthogonalizing at each step with respect to the other bands. Once every band is updated, use a Rayleigh-Ritz step (also called subspace rotation or subspace diagonalization), update the density (usually, Pulay mixing with preconditionning is used), and iterate until convergence. Therefore, one has a system of inner-outer iterations controlled by the variable n inner . To our knowledge, little is known about the correct way to choose this parameter, especially if it is allowed to vary between bands.

Block algorithms: LOBPCG

A number of alternative approaches have been developed over the years. We focus in this section on the Locally-Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method[END_REF], which was developed as a way to improve the convergence of the conjugate gradient method. In its singleblock version, it consists of a Rayleigh-Ritz method in the 3N bands -dimensional subspace spanned by the current trial wavefunctions, the wavefunctions computed at the previous iteration, and the (preconditionned) residuals. For a single band, this would be equivalent to the conjugate gradient algorithm. For multiple bands, by computing the eigenvectors as the solution to an eigenvalue problem in a well-chosen subspace, this method achieves higher convergence rates [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method[END_REF].

The price to pay for this faster convergence is the solution of a dense eigenvalue problem of size 3N bands for the Rayleigh-Ritz method. While this cost is negligible for small systems, where the cost of applying the Hamiltonian dominates the computation, its O(N 3 bands ) cost becomes problematic for larger systems, especially since it has poor parallel scaling. For this reason, a "multiblock" scheme has been implemented in ABINIT [START_REF] Bottin | Large-scale ab initio calculations based on three levels of parallelization[END_REF]. In this scheme, the N bands bands are split in N blocks blocks. The LOBPCG algorithm is applied in each block, which is additionally kept orthogonal to the blocks of lower energy. In this way, the Rayleigh-Ritz cost is cut by a factor N 3 blocks . The LOBPCG algorithm as described suffers from ill-conditioning of the matrices involved in the Rayleigh-Ritz step, and practical implementations have to be modified to use a more suitable basis (see [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method[END_REF][START_REF] Hetmaniuk | Basis selection in LOBPCG[END_REF]), but the resulting method has proven robust and improves the convergence of the conjugate gradient algorithm.

The main advantage, and motivation of its adoption in ABINIT, is however not its improved convergence, but the ability to build the residuals for all the bands of a block in parallel, as will be discussed in the next section.

Parallelism

We consider the parallelization of ground state computations in plane-wave DFT, and its implementation in ABINIT.

Parallelism in the Hamiltonian application

The most straightforward way of parallelizing problem ( 1) is to use multiple processors to compute the Hamiltonian application Hψ needed in the conjugate gradient algorithm. In this approach, the vector ψ of size N pw is distributed onto p pw processors, and the Hamiltonian is computed in parallel. Although the non-local part can be computed very efficiently in this approach, the parallel computation of FFTs is a challenge. 3D FFT can be parallelized by computing multiple 2D FFTs in parallel, but this approach is intrinsically unable to exploit more than N 1/3 pw processors. Even for large systems, with N pw of about 1 million, this only amounts to using 100 processors, which is clearly insufficient to use today's supercomputers.

Therefore, in contrast with codes that work in a real-space localized basis, our delocalized basis is an obstacle to parallelism, limiting the scaling of the Hamiltonian application. To be used efficiently on supercomputers, parallelism must be found elsewhere.

Eigenvector-level parallelism in block algorithms

Another way of solving (1) in parallel is to use a block algorithm such as LOBPCG, in which the Hamiltonian application on the different vectors inside a block is done in parallel. This is the approach taken by ABINIT.

In this approach, the wavefunction matrix Ψ is distributed along a 2D grid of p pw × p bands processors (see Figure 1). The Hamiltonian can be applied with only column-wise communications between p pw processors. The orthogonalization and Rayleigh-Ritz steps are done using a transposition to a (p pw p bands ) × 1 processor grid. Implementation details can be found in [START_REF] Bottin | Large-scale ab initio calculations based on three levels of parallelization[END_REF].

Compared to using parallelism only in the Hamiltonian application, the scalability of the code is greatly extended, up to hundreds and even thousands of processors for large systems. The main obstacle to parallelism is the poor scalability of the Rayleigh-Ritz (subspace diagonalization) step. Even using parallel solvers such as ScaLAPACK [START_REF] Choi | ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers[END_REF] or ELPA [START_REF] Auckenthaler | Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations[END_REF], the diagonalization stops scaling at around 100 processors for large systems, and becomes the bottleneck when using many processors. Furthermore, as the blocksize has to be at least equal to p bands , as the number of processors increase, so does the size of the intermediate Rayleigh-Ritz procedures, quickly degrading performance. To reduce these costs, we should ideally get rid of the global Rayleigh-Ritz step. This requires computing parts of the spectrum in parallel, which means solving an interior eigenvalue problem, requiring considerably more matrix-vector operations. An intermediate approach is to limit the number of global operations, i.e. to use several matrix-vector application for each Rayleigh-Ritz step.

Chebyshev filtering

Filtering algorithms

The filtering approach to eigenvalue problems emphasizes the invariant subspace spanned by the eigenvectors rather than the individual eigenvectors and eigenvalues. To obtain this invariant subspace, one uses a filter, an approximation of the spectral projector on the invariant subspace. Starting from an approximation to a basis of the invariant subspace, one applies the filter to each vector. Then, the basis is orthonormalized to prevent instability, and the process is iterated until convergence. Once a basis of the invariant subspace is obtained, a Rayleigh-Ritz procedure can be applied to recover the individual eigenvectors and eigenvalues.

This procedure can be seen as an accelerated version of the classical subspace iteration algorithm. This method is generally considered inferior to Krylov methods such as the Lanczos algorithm, but has a number of advantages that make it attractive in our context. First, it is able to use naturally the information of previous self-consistent iterations. Second, the filtering step can be done in parallel on each vector, with interaction between vectors only occuring in the Rayleigh-Ritz phase.

Another motivation for the use of filtering algorithms (see for instance [START_REF] Bekas | Computing charge densities with partially reorthogonalized lanczos[END_REF]) is that, in many cases, one does not need the individual eigenvectors and eigenvalues, but aggregate quantities such as the density, that can be computed from any orthonormal basis. Therefore, one can avoid the Rayleigh-Ritz step altogether. We do not exploit this for two reasons. First, while this approach does avoid the dense diagonalization in the Rayleigh-Ritz step, it still requires an orthogonalization, which also scales poorly. Second, the algorithm becomes less stable, and provides less opportunities for error control (such as residuals) and locking. Third, it is not obvious how to accomodate occupation numbers, which, because of smearing schemes employed in computations of metals, depend selfconsistently on the eigenvalues.

Several forms of filters have been proposed in the literature. [START_REF] Polizzi | Density-matrix-based algorithms for solving eigenvalue problems[END_REF] and [START_REF] Sakurai | A projection method for generalized eigenvalue problems using numerical integration[END_REF] both use rational filters originating from discretizations of contour integrals to approximate the spectral projector. This is very efficient, provides numerous opportunities for parallelization and has the advantage of yielding "flat" filters, which have better stability properties. It is however inefficient in our case because it requires inversions of systems of the form (H -zS)x = b, where z is a complex shift. This becomes very poorly conditionned when the shift z becomes close to the real axis. Since our matrix is not sparse, one cannot rely on factorizations to solve these systems, and our tests have shown that solving these systems using iterative methods is too slow to be competitive.

Restricting ourselves to only Hamiltonian applications yields polynomial filters, that are less efficient but faster to compute than rational filters. Since we are looking for a filter that is minimal on the unwanted part of the spectrum, the natural idea is to use Chebyshev polynomials, as proposed in ref. [START_REF] Zhou | Self-consistent-field calculations using Chebyshev-filtered subspace iteration[END_REF]. This is the approach we take in this paper. . The Chebyshev polynomial is of degree 4, FEAST corresponds to the rational approximation of ref. [START_REF] Polizzi | Density-matrix-based algorithms for solving eigenvalue problems[END_REF] with 8 quadrature points (with symmetry, this amounts to 4 linear solves).

Chebyshev filtering

The Chebyshev polynomials have the property of being minimal in L ∞ norm on an interval [a, b] among the polynomials of fixed degree and scaling. They are defined recursively by

T 0 (x) = 1, T 1 (x) = x -c r , T n+1 (x) = 2 x -c r T n (x) -T n-1 (x),
where the filter center and radius are defined by

c = a + b 2 , r = b -a 2 .
This definition extends to any operator A and allows us to compute T n (A)ψ using n applications of A, and with only a modest additional memory cost.

If we denote by Λ and P the eigenvalues and eigenvectors of the eigenproblem Hψ = λSψ, then we have the decomposition HP = SP Λ, or S -1 H = P ΛP -1 . Therefore, T n (S -1 H)ψ = P T n (Λ)P -1 ψ will have its eigencomponents filtered by the spectral filter T n . We then use a Rayleigh-Ritz procedure to separate the individual eigenvectors and eigenvalues, and iterate until convergence, as summarized in Algorithm 2.

Input: a set of N pw × N bands wavefunctions Ψ Output: the updated wavefunctions Ψ • Compute Rayleigh quotients for every band, and set λ -equal to the largest one.

• Set λ + to be an upper bound of the spectrum.

• Compute the filter center and radius c = λ + +λ - 2 , r = λ + -λ - 2 for each band ψ do Set ψ 0 = ψ, and ψ 1 = 1 r (S -1 Hψ 0 -cψ 0 ) for i = 2, . . . , n inner do ψ i = 2 r (S -1 Hψ i-1 -cψ i-1 ) -ψ i-2 end for end for • Compute the subspace matrices H ψ = Ψ T HΨ, and S Ψ = Ψ T SΨ • Solve the dense generalized eigenproblem H Ψ X = S Ψ XΛ, where Λ is a diagonal matrix of eigenvalues, and X is the S ψ -orthonormal set of eigenvectors • Do the subspace rotation Ψ ← ΨX Algorithm 2: Chebyshev filtering This algorithm is identical to the one found in [START_REF] Zhou | Self-consistent-field calculations using Chebyshev-filtered subspace iteration[END_REF], except that, since we are dealing with a generalized eigenproblem, we need to apply a polynomial in S -1 H instead of simply H. This operator is not Hermitian, but has the same spectrum as the pencil (H, S), and the filtering algorithm finds the same eigenvectors and eigenvalues with the same convergence properties as in the Hermitian case. We will explain how to compute S -1 efficiently in Section 5.1.

Implementation

Inversion of the overlap matrix

We need to compute the operator S -1 , where the overlap matrix S is given by

S = I + P D S P T .
This matrix is too large to invert directly, and is not even sparse. However, since N projs N pw , it is a low-rank perturbation of the identity. Therefore, we can apply the Woodbury formula [START_REF] Woodbury | Inverting modified matrices[END_REF] and write its inverse as

S -1 = I -P (D -1 S + P T P ) -1 P T ,
reducing the problem of computing the inverse of S to that of computing the inverse of the reduced N projs × N projs matrix (D -1 S + P T P ). This method for inverting S was also used in [? ] in the context of preconditioning in ultrasoft computations.

In PAW, the projectors are compactly supported in spheres centered around the atoms. This leads us to expect that the matrix (D -1 S + P T P ) is block-diagonal, and therefore easy to invert. However, the projectors P are the discretization on the plane-wave basis of the true PAW projectors. Because a function cannot be compactly supported in both Fourier and real space, the plane-wave discretization of the projectors will spill over the neighbouring PAW spheres, and the Gram-matrix will have off-block diagonal entries (see Figure 3). This phenomenon is all the more pronounced when the projectors are not smooth (and therefore have slow Fourier-space decay), which is the case in many pseudopotentials commonly used (often constructed by imposing matching conditions).

The result of this is that the matrix (D -1 S + P T P ) can not be considered block-diagonal, or even sparse. While smaller than the full matrix S, it is still too large to invert directly in large systems. Therefore, we use an iterative solver, preconditionned by the block-diagonal component of (D -1 S + P T P ). Since the spillover phenomenon is relatively small, the preconditionner is a very good approximation of the full matrix, and any iterative solver converges to machine precision in a relatively modest number of iterations. We used iterative refinement for its ease of implementation, although any symmetric indefinite solver such as MINRES could be used. In our tests, iterative refinement converged in about 10 to 20 iterations, depending on the energy cutoff of plane waves and the size of the PAW spheres. The cost of this inner iterative solver is O(N 2 projs ), and therefore small compared to the total cost O(N projs N pw ) of applying the overlap operator.

One inner iteration of CG or LOBPCG requires one multiplication by P T and two by P (one for H and one for S). Naively implemented, one inner iteration of the Chebyshev filter requires two multiplications by P T and two by P (one for H and one for S -1 ). However, we can avoid the multiplication by P T for H after the first iteration. Indeed, P T S -1 ψ can be written as P T ψ-P T P q, where both P T ψ and q have been computed before. By precomputing the N projs × N projs Gram matrix P T P , this computation can be done in O(N 2 projs ) instead of the naive O(N projs N pw ). Using this trick, the number of O(N pw × N projs ) operations for the application of a Chebyshev filter of degree n is just one more as the number of such operations that would be necessary for n steps of a conjugate gradient algorithm. The iterative algorithm described has an additional cost of O(N 2 projs ) O(N pw × N projs ). In our tests, we found that this additional cost per iteration compared to LOBPCG was largely compensated by the lack of orthogonalization: therefore, one step of Chebyshev filtering is a little faster than one step of LOBPCG. 

Parallelism

We have implemented this algorithm in the ABINIT software using MPI. The N pw × N bands eigenvector matrix is distributed on a 2D p pw × p bands processors grid, in the same way as in [START_REF] Bottin | Large-scale ab initio calculations based on three levels of parallelization[END_REF]. We apply the polynomial filter of degree n inner , requiring communication inside the p pw processor group for the FFT and the reductions needed for the nonlocal operator. Then, we transpose the data to a (p pw p bands ) × 1 grid (using the MPI call MPI_ALLTOALL), build the submatrices, distribute them between the processors and perform a Rayleigh-Ritz procedure. Note that, compared to LOBPCG, there is only one Rayleigh-Ritz per outer (self-consistent) iteration.

All our computations are done on the Curie supercomputer installed at the TGCC in France, a cluster of 16-core Intel processors with a total of about 80,000 processors. We used the Intel MKL library for BLAS and LAPACK dense linear algebra, and the ELPA library [START_REF] Auckenthaler | Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations[END_REF] for the dense eigenproblem in the Rayleigh-Ritz step (in our tests, we found it was about twice as fast as ScaLAPACK).

Choice of the polynomial

The choice of the polynomial degree n inner is a subtle matter, requiring a balance between stability, speed and convergence.

First, a small degree results in many Rayleigh-Ritz steps, which is detrimental to performance, and especially to parallelism. On the other hand, if n inner is too large, we will solve very accurately an inaccurate problem, since the density ρ is not yet converged. Experience with the CG and LOBPCG algorithms have showed that increasing n inner above a moderate value (the default in ABINIT is 4) does not speed up the self-consistent cycle. The same goes for the Chebyshev filtering algorithm. More details are provided in Section 6.

Finally, if the degree is too large, the Gram matrix S ψ will be ill-conditionned, even if the columns of Ψ are rescaled beforehand. This leads to loss of precision (and, crucially, of orthogonality). Therefore, we must have T n inner ( λ 1 -c r ) 1/ε, where T n is the Chebyshev polynomial of degree n, and ε ≈ 10 -16 is the machine precision. In our tests, this was always the case except for large values of n inner , of about 20, and therefore this instability is not an issue.

A key ingredient to the success of this algorithm is a good bracketing of the unwanted part of the spectrum. The authors in [START_REF] Zhou | Self-consistent-field calculations using Chebyshev-filtered subspace iteration[END_REF] propose a few steps of the Lanczos algorithms to compute an upper bound, but we simply use the upper bound E cut on the kinetic energy of our system. It is not mathematically clear that this is an upper bound of the operator H = K + V , since V is not non-positive, but we have found this to be true in all our numerical tests.

To obtain an approximation of the smallest eigenvalue in the unwanted part of the spectrum, we use the maximum Rayleigh quotient (always an overestimation of the largest wanted eigenvalue λ N bands ). We have found this to be more efficient than using the largest Ritz value of the previous self-consistent iteration.

Locking

An important point for an effective implementation is the ability to lock converged eigenvectors, and not iterate on them. Although it is far from clear what the optimal policy is in terms of selfconsistent convergence (how to optimize the number of iterations on each band to obtain the lowest total running time), it is desirable to stop the iterations prematurely in computations where a specified accuracy on the wavefunctions is desired.

In the Chebyshev algorithm, this means adaptatively choosing the degree of the polynomial, band per band. The problem is that there is no simple way to obtain a measure of the error while applying the polynomial: the vector being iterated on will become a combination of all the eigenvectors, and the size of its residual is meaningless before the Rayleigh-Ritz step. However, since an application of the Chebyshev polynomial of degree n enlarges the eigencomponent associated with eigenvalue λ i by a factor T n ( λ i -c r ), with the unwanted eigencomponents multiplied by a factor of at most one, we can use the following approximation (which becomes exact at convergence) for the residual r n i of band number i with Rayleigh quotient λ i after one full Chebyshev iteration (application of a Chebyshev polynomial of degree n followed by a Rayleigh Ritz step)

r n i ≈ r i T n ( λ 1 -c r ) , ( 5 
)
where r i is the residual before the Chebyshev iteration (more details can be found in [? ] and in references therein). Using this estimate, we can choose a priori the polynomial degree that will be needed to achieve a desired tolerance. This prediction can also be useful for other purposes, such as providing the user with an estimate of the progress of the computation. Another issue is that using a polynomial of different degree for each band leads to systematic load imbalance between the processors: since the lower eigenvectors converge faster, the processors treating these will have less work than those treating the slow-converging higher eigenvectors. We avoid this by using a cyclic distribution of the bands between the processors, so that each processor treats a mix of low and high bands. This could be optimized further by redistributing dynamically the bands so as to minimize the work imbalance, but we did not implement this as the simple cyclic distribution led to a load imbalance of less than 5% in our tests.

By contrast, the LOBPCG algorithm suffers from incomplete locking when a large number of processors is used, because the number of iteration has to be the same for each band in a block. Because of the dependence between the blocks, one cannot use a redistribution scheme such as in the Chebyshev algorithm. To keep the comparaison fair between Chebyshev and LOBPCG, we did not use any locking in the numerical results presented here.

Results

Non-self-consistent convergence

As a first test, we study the non-self-consistent convergence of our solver, meaning that we fix the Hamiltonian H and focus on the linear eigenvalue problem. Our test case is a system of 19 atoms of Barium titanate, with formula BaTiO 3 , an insulator. We used an energy cutoff of 20 hartrees, representative of standard computations. With our PAW pseudopotential, there is a total of 77 totally filled bands. We run three algorithms: CG, the classical conjugate gradient of ref. [START_REF] Payne | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF], the implementation of LOBPCG in ABINIT [START_REF] Bottin | Large-scale ab initio calculations based on three levels of parallelization[END_REF], and our Chebyshev algorithm. The fullblock version of LOBPCG (N blocks = 1) was used. In all cases, the parameter n inner , which controls the number of inner iterations in all three algorithms, was set to 4. We monitor the convergence of all eigenpairs using their residual Hψ -λSψ . Figure 4 displays the number of iterations that was necessary for each eigenpair to attain an accuracy of 10 -10 , using a total of 100 bands. We see that the Chebyshev algorithm is very efficient towards the bottom of the spectrum, outperforming the CG algorithm and even coming close to the full-block LOBPCG algorithm. However, the situation degrades for the upper eigenvalues, where the Chebyshev algorithm performs poorly, in part due to the intrinsically poorer performance of Chebyshev algorithms compared to Krylov methods, but in a large part due to the absence of preconditionner. In tests not shown here, Chebyshev consistently outperformed non-preconditionned CG and was competitive with non-preconditionned LOBPCG except for the last eigenpairs.

Figure 5 shows the exact same computation, but with 200 bands. First, note that increasing the number of bands yields improved convergence rates: the eigenpairs near 0.5 now converge in about 30 iterations for Chebyshev, whereas they did not converge in 100 iterations before. The inclusion of a large number of bands in the computation (200, compared with a total dimension of N pw ≈ 7000) also greatly enhances the effectiveness of the CG algorithm, although we do not fully understand this effect. In this situation, the Chebyshev algorithm is not competitive. We also note that the performance of the Chebyshev algorithm degrades like 1/ √ E cut as the energy cutoff is increased, whereas LOBPCG and CG, thanks to their preconditionning, only show a moderate increase in the number of iterations.

Self-consistent convergence

We now study the impact of the linear solver on the self-consistent cycle, and on the overall efficiency. Our tests are on a crystal of 256 atoms of Titanium. The partial occupation scheme used leads to about 1300 fully occupied bands and 500 partially occupied ones. We performed our tests with a total of 2048 bands.

The computations were stopped when the residual on the potential went below 10 -10 . We report the convergence for n inner equal to 4 and 8 in Figure 6. The results show that Chebyshev and LOBPCG are competitive on this system. The superior parallel performance of the Chebyshev algorithm yields large speedups when using more processors, as can be seen in Figure 7. In this case, taking the best time among all processor numbers yields a total time of about 15 minutes on 4096 processors for Chebyshev compared to more than an hour with 1024 processors for LOBPCG. 

Scalability

We now study more precisely the parallel scalability of our algorithms on a cristal of 512 atoms of Titanium, with a total of 4096 bands. We chose p pw = 64. As before, we chose n inner = 4. We measured the average running time of a single iteration. We began our measurements at 512 processors, and timed the individual routines. The speedups of Figure 8 are obtained with reference to a base case extrapolated by substracting the time spent in communications from the total time.

The scalability for the Chebyshev algorithm is again much better, still scaling at 16384 processors for the Ti 512 crystal when LOBPCG saturates at 2048. Figure 9 shows the breakdown of a step of the Chebyshev method. While the Hamiltonian application scales perfectly, as expected, the Rayleigh-Ritz step saturates very quickly and goes from negligible at 512 to being as costly as the Hamiltonian application at 16384 processors. 

Conclusion

Using a Woodbury decomposition of the PAW overlap matrix, we extended the Chebyshev filtering algorithm of [START_REF] Zhou | Self-consistent-field calculations using Chebyshev-filtered subspace iteration[END_REF][START_REF] Zhou | Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration[END_REF] to a generalized eigenproblem, and implemented it in the ABINIT software. Comparisons with the current implementation, based on the LOBPCG algorithm, show that its convergence properties are competitive for some systems, although it proves slower for others, due to its lack of preconditioning. Because it needs much less Rayleigh-Ritz steps, it is able to achieve much greater parallel speedups, and scale into the tens of thousands of processors. This scaling behavior is acceptable for current generations of machines, where it is rare to be able to use more than 10,000 cores. However, exascale computations will only be possible with the help of algorithms that avoid global Rayleigh-Ritz steps. For plane-wave DFT, the only competitive algorithm seems to be the spectrum slicing algorithm of [START_REF] Schofield | A spectrum slicing method for the Kohn-Sham problem[END_REF], but the high-degree polynomials it uses render it uncompetitive for all but extremely large systems. More research is needed to be able to develop alternatives.
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 1 Figure 1: Distribution of the wavefunctions Ψ, with N bands = 8, Npw = 10. The data is distributed on a 2D processor grid of ppw = 2, p bands = 2. Each processor is in charge of N blocks = 2 blocks of size Npw/ppw = 5 by N bands /p bands /N blocks = 2.
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 2 Figure 2: Approximate filters to compute the [-1, 0] part of the full spectrum [-1, 2]. The Chebyshev polynomial is of degree 4, FEAST corresponds to the rational approximation of ref.[START_REF] Polizzi | Density-matrix-based algorithms for solving eigenvalue problems[END_REF] with 8 quadrature points (with symmetry, this amounts to 4 linear solves).
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 3 Figure 3: Projectors overlap matrix P T P (logarithmic color scale) for a system of 4 aluminium atoms in a periodic box, with 8 projectors by atom. As an indication of the size of the overspill, denoting by M the preconditioner obtained by keeping only the 8 × 8 diagonal blocks, the condition number of M -1 (P T P ) was 2.64, and the preconditionned MINRES solver for the solution of P T P x = b with b a random vector converged to machine precision in 7 iterations.
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 4 Figure 4: Number of iterations to obtain a precision of 10 -10 , BaTiO 3 , 100 bands.
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 5 Figure 5: Number of iterations to get to obtain a precision of 10 -10 , BaTiO 3 , 200 bands.
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 48486 Figure 6: Self-consistent convergence. The blocksize for LOBPCG was 128.
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 7 Figure 7: Total time to solution. ninner was fixed to 4, and ppw to 32. The total number of iterations was 70 for Chebyshev. It varied from 65 to 55 for LOBPCG, as the blocksize was increased from 32 on 256 processors to 512 on 4096.
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 8 Figure 8: Speedups for the Chebyshev and LOBPCG method, Ti 512 .

Figure 9 :

 9 Figure 9: Breakdown of one step of the Chebyshev method, Ti 512 .
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