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A theoretical and numerical study of the sound propagation in air-saturated porous media with
straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located
at “nodes” periodically spaced along each main pore. The effect of periodicity in the distribution of
the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is
considered separately. It is shown that the absorption coefficient and transmission loss are influ-
enced by the viscous and thermal losses in the main pores as well as their perforation rate. The pres-
ence of long or short dead-ends significantly alters the acoustical properties of the material and can
increase significantly the absorption at low frequencies (a few hundred hertz). These depend
strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on
the periodicity along the propagation axis. These effects are primarily due to low sound speed in
the main pores and to thermal losses in the dead-end pores. The model predictions are compared
with experimental results. Possible designs of materials of a few cm thicknesses displaying

enhanced low frequency absorption at a few hundred hertz are proposed.

I. INTRODUCTION

Air-saturated porous materials are most efficient for
noise reduction applications if the characteristic sizes of the
pores or of the interparticle spaces are on the order of the
viscous and thermal boundary layer thicknesses. At audible
frequencies, the order of magnitude of the characteristic
sizes ranges from a few hundred micrometers to a few milli-
meters. The pores should also be interconnected and opened
to the surroundings. The models developed over the years
are able to predict accurately the acoustic behavior of highly
porous absorbing materials such as for instance reticulated
polyurethane foams or fibrous materials." It was shown more
recently that these models are not accurate enough to prop-
erly describe the acoustic properties of other materials that
can contain partially opened or dead-end pores. Dead-end
pores are closed at one end so that fluid flow does not take
place in all the pores of the medium. A model capable of
accounting for this feature was recently developed and used
to successfully describe the acoustical properties of materials
with lower porosity such as metallic foams and those with

surface dead-end pores.” It was found that the presence of
dead-ends had the effect of increasing the absorption coeffi-
cient at frequencies controlled by the average length of the
dead-ends. This motivates the present study. Structured
materials with well-controlled microgeometry including
dead-end pores can be designed and fabricated by making
use of recent technologies such as precision machining or
three-dimensional (3D) printing. The designed materials slab
could contain, for example, circular perforations. Some of
the perforations should go in through the thickness of the
layer while others should end inside it to create dead-end
pores.

The present contribution is concerned with the theoreti-
cal and numerical study of a structured perforated material
containing periodically spaced dead-end pores. Waves prop-
agating in periodic structures are known as “Bloch waves.”
Examples of such structures are ducts with periodically dis-
tributed lateral cavities or resonators (see Refs. 3-5, for
example). The periodicity introduces frequency stop bands,
i.e., frequency intervals where no propagating waves are
supported by the structure. Most studies deal with the situa-
tion where the structure period is on the order of the wave-
length to observe the stop bands (example, sonic crystals).
The distances between the perforations and dead-ends con-
sidered in the present study are about 1 cm or less. Therefore
the wavelengths on the order of the period correspond to fre-
quencies above 10 kHz. However, the stop bands due to
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resonances of the lateral dead-ends are also predicted at low
frequencies, typically a few hundred hertz, much lower than
the frequencies corresponding to the period. This constitutes
the central originality of the present contribution. The dead-
end pores considered here are simple closed cavities.
However, the model can account for more complex geome-
tries including Helmholtz resonators. The aim of this work is
to extend the model for the acoustical properties of porous
materials with dead-end porosity developed earlier” to
account for periodicity in the spatial distribution of dead-
ends within the thickness of the material. The model pre-
sented here provides a simple tool for optimizing the mate-
rial inner structure to achieve the desired acoustical
properties.

The paper is organized as follows: In Sec. II, a disper-
sion relationship for waves propagating in the channel
(called main pore in the following) with periodically distrib-
uted side branches® is recalled and extended to account for
the multiple side branches (called dead-end pores in the fol-
lowing) at one node. The transfer matrix method (TMM) is
then developed to predict absorption and transmission char-
acteristics of the finite thickness material slab with dead-end
porosity. In Sec. III, the low frequency limit of the model is
investigated when the distance between neighboring dead-
end pores is small compared to the wavelength of sound in
the main pore. Simple expressions for the dynamic density
and compressibility are derived. The limitations of the model
are established by comparing its predictions with the transfer
matrix approach developed in Sec. II. In Sec. IV, the effect
of the dead-ends on the behavior of a single main pore is
investigated and the limitations of the low frequency approx-
imation are discussed by comparing its prediction with those
of the TMM. In Sec. V, the model is validated by comparing
its predictions for the absorption coefficient of the material
slab with FEM simulations. Experimental results on samples
obtained from 3D printing are also presented and compared
with the model. In Sec. VI, possible designs of perforated
materials with lateral dead-ends featuring improved absorp-
tion at low frequencies are suggested. Their absorption prop-
erties are simulated using the models developed. The main
findings are summarized in the final section.

Il. SOUND PROPAGATION IN THE MATERIAL
WITH PERIODICALLY DISTRIBUTED DEAD-END
PORES—FULL ANALYTICAL TMM MODEL

In the previous study (Ref. 2), no interactions between
the dead-ends were taken into account either for the metallic
foams with randomly distributed dead-ends or for the struc-
tured material with surface dead-ends (Fig. 9 in Ref. 2).
However, a periodic arrangement with interactions is possi-
ble when the dead-end pores are opened into the main pores
as shown in Fig. 1. In this case, the interaction between the
dead-end and the connected pores occurs in the bulk of the
material slab. Only the straight perforations going through
the thickness of the material layer are visible on the surface.

When the dead-ends are distributed periodically along
the length of the main pores, two distinctive cases can be
identified in the material behavior. If the wavelength of

FIG. 1. Main pore (cross-sectional area A,,,) with periodically arranged
dead-end pores, N =2 identical dead-end pores with cross-section area A,
and length d per period /. The dead-ends are located at “nodes.”

sound traveling through the main pores is comparable to the
distance between the dead-ends, stop and pass bands may
appear. However, in the small pores on the order of the vis-
cous and thermal boundary layers thicknesses, these effects
will be severely affected by the strong viscous and thermal
losses. In the case where the separation distance between the
dead-ends is much less than the wavelength, the effective
properties of the porous material (i.e., its effective density
and compressibility) are modified by their presence. The va-
lidity of the plane wave approximation is assumed through-
out the paper i.e., the radii of all pores are assumed small
compared to the wavelength of sound.

Following Bradley,” a pore with cross-sectional area
A, (the subscript “mp” stands for “main pore”) with peri-
odically distributed identical side branches with cross-
sectional area A, (the subscript “de” stands for “dead-end”)
and length d is considered. There are N dead-ends per period
h. A configuration with N=2 is shown in Fig. 1. It is
assumed that Re(kyp+/App) < 1,Re(kger/Age) < 1 so that
the wave inside the pores is plane. Here, k,,, and kg4, are the
wavenumbers in the main pore and in the dead-ends. The pe-
riod & can be comparable to the wavelength. In this case, the
wavenumber ¢ of Bloch waves (i.e., waves that propagate
through a periodic structure) is defined by the following dis-
persion equation, which is equivalent to Eq. (27) in Ref. 3,

cos (qh) = cos(kyph) + iX sin(kyph), (1)
where
NAg, 1
X=-22 @)
2 Amp ste

in which the number of dead-end pores per node N appears
when applying the pressure and volume velocity continuity
at the entrance of the junction Ref. 3 (Appendix), Ref. 6 (p.
290). Zs4, is the normalized surface impedance of the dead-
end. In case of a simple dead-end pore,

Zie
Zsge = i =2 cotan (kyed) 3)
Zonp
and
NAde Zm
X =i~ 2 tan(kyed). 4
lZAmpZde an(kg,d) “4)



Contrary to Ref. 3, the difference between the characteris-
tic impedance of air in the main pore and in the dead-end
pore is accounted for in Egs. (3) and (4). This difference
may arise due to the difference in shape or in cross-
sectional area of these pores if viscous and thermal losses
are present. The side branches of different nature
(Helmholtz resonators for instance) can be easily accom-
modated by using an appropriate surface impedance
instead of Eq. (3).

Here Z,, and Z,, are the characteristic acoustic impe-
dances of air inside the main pore and in the dead-end pores.
A time dependence in the form exp(—iwr) is assumed. It is
easy to generalize Eq. (2) for the case of N non-identical
dead-end pores per period,

IZmpZ detn< K )). (5)

Amp (=7 Zd

In this case, the characteristics of the individual dead-ends
are denoted by the superscript (k). If we define

y = exp(ikmph)a (6)
then the following matrix:

(1+X)y X
(1-X)

y

X : )

relates forward and backward propagating Bloch waves on
the right and on the left from the period of size /& along the
thickness.

If n periods are considered, then forward and backward
propagating Bloch waves on the right and on the left from
this arrangement are related by the matrix M,

_ n_ (M Mp
M= = (). ®)

Now the equation for pressure reflection r,, and transmission
t,, coefficients for n periods in an open channel (main pore of
Fig. 1 with infinite length so that no reflection occurs outside
the dead-end arrangement area) is

(5)-5(.):

which gives

My,
rp=—-—, (10a)
M

1
f = ——. (10b)
My,

Here the fact that det M = 1 (product of matrices bearing the
same property) was used. If the reflection coefficient r/,
from a rigidly backed structure containing n unit cells is to
be calculated (main pore of Fig. 1 with hard back after the
last dead-end), it is given by

P 1
(2)-w(2)

where P is the amplitude of the incident and reflected waves
at the rigid surface. Eliminating P from Eq. (11) results in
My — My

yo= T Mo (12)
" My —Mp

To model the sound interaction with a porous material con-
taining straight pores (of surface perforation rate ¢) with
dead-ends, each pore is associated with an air channel of
cross-sectional area A so that

App
— 13
. (3)

¢ =
as illustrated in Fig. 2. For the plane wave approximation to
be valid, it is necessary that k\/A,,/¢ < 1, where k = w/c
is wavenumber in air and c is the sound speed in air.

Then the amplitudes of the forward and backward trav-
eling waves in the hypothetical channels and at the entrance
to the main pores, p, and p', , are related by

Py _ (P
()

where
14+ ¢ 1= ¢’
_ 2¢ 2¢
T - _1 _ (,b/ 1 _|_ d)/ ) (15)
24/ 29/

where ¢' = ¢(z0/Z,) and z, the characteristic acoustic im-
pedance of air.

This means that the reflection and transmission coeffi-
cients of an open ended porous material slab, R, and T,, and
a reflection coefficient R/, of a hard backed porous slab can
be calculated using equations similar to those derived for a

FIG. 2. Modeling transmission and reflection through the material surface.
Each pore is associated with an air channel of cross-sectional area A given
by Eq. (13).



single pore, Egs. (10a), (10b), and (12). The former can be
calculated by

M/
R = _l7 (16a)
oMy,
1
T, =—, (16b)
M,
and the latter by
M, — M,
Ry = h— a7
My, — M,

where the elements M;; of a matrix M’ are used. This matrix
is given by the product of M and T,

M=MxT, M=T!xM. (18)

The absorption coefficient of a hard backed slab is calculated
by

x=1—R . (19)

lll. LOW FREQUENCY APPROXIMATION

Now it is assumed that the distance & between the
dead-ends is much less than the wavelength of sound in the
main pore, i.e., Re(k,,h) < 1. In this case, the configura-
tion with dead-end pores can be replaced by the main pore
filled with a fluid described by the effective wavenumber ¢
and the effective impedance z. To derive the expressions
for ¢ and z, a simple self-consistent model similar to a
coherent potential approximation (CPA) (Ref. 7) is used. In
this method the configuration shown in Fig. 1 is replaced
by a pore filled with a fluid with still unknown effective
properties. Then the following “gedankenexperiment” is
performed: If a unit cell of an original periodic arrangement
is inserted into this pore, it will not disturb the properties of
an effective fluid representing exactly the same periodically
arranged unit cells as the inserted one. This implies that if a
wave travels through the pore filled with effective fluid, its
reflection coefficient from the inserted cell will be 0 and
the transmission coefficient will be equal to exp(igh). In
addition, the implicit assumption that the sample is of infi-
nite length or, at least sufficiently long to include many
wavelengths is made. The period insertion is illustrated in
Fig. 3.

Assuming no reflections at x = —A/2, the boundary con-
ditions for pressure and particle velocity at this location are

1 — a+e(_ikmph)/2 + a,e(iknlllh)/Z, (20)
1 1

z Ly

(a+e(—ikn,pll>/2 _ aie(l'kmr,]ﬁ/z)7 (21)

where a- are the amplitude of the forward and backward
waves propagating between x = —Ah/2 and x =0. All quanti-
ties are normalized to the amplitude of the incident wave on

p
I

x=+h/2

x=h/2 x=0

FIG. 3. (Color online) A pore filled with effective fluid and a single unit cell
inserted in it. The arrow shows a propagating pressure wave.

the cell from the effective medium. At x =0, the wave am-
plitude are modified due to the presence of the dead-end
pores. Generalizing the transfer matrix derived in Ref. 3 to
the case of N identical dead-ends, the amplitudes b+ of the
waves propagating between x =0 and x = A/2 can be related
to a= in the following way:

by =a.(1+X)+a_X, (22)

bo=—a,X+a_(1-X). (23)

Finally, with the transmission coefficient being equal to
exp(igh), the boundary conditions at x = h/2 are

eiqh _ b+€(ikmph)/2 + b_g(fik”'l’m/z, (24)
iqh 1 X .
eZ _ ~ (b+e(ll(mph)/2 _ bie<_lkmﬂh)/2). (25)
mp

Combining Egs. (20) and (21) provides the ratio a_/a, as a
function of z, Z,,, and k,,,h. Combining Egs. (22) and (23)
provides the ratio b_ /b, as a function of a_/a.. The ratio
b_ /b, is then replaced in the combined Egs. (24) and (25)
to provide

(Zmp)z _isin(kyph) + X(cos(kpph) + 1) 26)

z isin(kpph) — X (1 — cos(knph))’
" = (cos(kpph) + iX sin(kyyh))
Lnp . .
4 (isin(kyph) — X(1 — cos(kmph))). 27
z
At low frequencies, in a first order expansion over a small
parameter k,h, cos(k,,h) is approximated by 1 and

sin(k;,,h) is approximated by k,,h and the following expres-
sions for the characteristic acoustic impedance are obtained:

poLw Zop : (28)

2X
\/1 n \/1 N NAge Zyyp tan(kged)
ikyph

App Zge  kpyph
For the wavenumber ¢, the low frequency asymptotic behav-
ior can be determined by an expansion to the second order of




Bradley’s dispersion Eq. (1). Alternatively, an expansion of
the dispersion Eq. (27) can be considered. Because ¢'¢" con-
tains cos(gh), the expansion should be done to the second
order to achieve the same precision. The method proposed
here consists in determining first the real part cos(gh) and
imaginary part sin(gh) of the exponential. Upon inserting
Eq. (26) in Eq. (27), it can easily be shown that

" = (cos(kyph) + iX sin(ky,yh))
4—1\/1

And consequently since " = cos(gh) + isin(gh), the fol-
lowing split is the only solution:

(cos(kyph) + iX sm(k,,,ph)) (29)

(cos(kmph) + iX sin(ky,h)) = cos(gh), (30)

i1 = (O8(kuph) + X sin(k,h))?

_ ZZ”’ (i sin(kmph) — X(1 — cos(knph)))

1 — cos?(gh) = isin(qh). (31)

These results show that the present approach
(“gedankenexperiment™) leads to a dispersion relation [Eq.
(27) or (29)] that is equivalent to Eq. (1), and in addition,
Eq. (26) provides an expression of the equivalent character-
istic impedance z as a function of k.

At low frequencies, the wavenumber ¢ of the effective
medium can be considered small and is obtained with the
help of an expansion to the second order of Eq. (30) or to the
first order of Eq. (31), which only involves sin(gh). The
same result is obtained in both cases,

- mp mp
mp

It is now possible to obtain expressions for the effective
density p, =zq/w and for the effective compressibility
C. = q/(zw) of the fluid in the pore with dead-ends,

Pe = Pup> (33)

NAg. d tan(kded)
App h kqed ’

NAdg mp tan(kdgd)
Ay Zae gl

(32)

Ce = Cmp + Cde (34)
where Pp = Zppkmp /@ and C,y, = kiyp / WZy, are the effec-
tive density and compressibility of the fluid in the main pore
and Cy, = kgo/®Z4, is the compressibility of the fluid in the
dead-end pores. It follows from Eq. (33) that the presence of
the dead-end pores does not affect the effective density of
the fluid in the main pore at low frequencies. However, it
could significantly modify its effective compressibility.
Now, Egs. (28) and (32) are conveniently rewritten as

& _ Pmp
C, NA,. d tan(kded) ’
Cpp+C d
p ey h( fnd

(35)

zZ =

q = wy/p.Ce

NA
=0y Pup (Cmp 4 0y VA d (tan(k"ed))) (36)

Amp h kded

The characteristic impedance z,, of the material with perfora-
tion rate ¢ can be calculated from Eq. (35) as

Z 1 Pmp
m = — = — Pl 37
m=e T e e NAwd (tan(kded)> 37
mp de Amp h kded

and the wavenumber is defined by Eq. (36).

The dependence of p,,,, p,e and Cyy, Cg, on frequency
and radius of both types of pores can be described by classi-
cal theories of wave propagation in cylindrical tubes (see
Ref. 1, Chap. 4 for a review and description of these theo-
ries). The cylindrical pores can also be described using gen-
eral models of wave propagation in porous media such as the
Attenborough model® or the Johnson, Koplik, Dashen
model” with macroscopic parameters corresponding to cylin-
drical pore structure. These models are generalized by
Champoux and Allard'’ to account for thermal effects. To
make our results easy to generalize to other pore geometries,
models of porous materials, the models by Johnson ez al. and
by Champoux-Allard (synthesized in the “JCA model”) are
used to describe sound propagation in both main and dead-
end pores. The following expressions are used for the effec-
tive density and compressibility of fluid in the main and
dead-end pores (subscripts “de” and “mp” are omitted in the
following two equations):

—iw
= 1+——— /1 +— 38
p pOOCOO ( + —lCUCXOOpO + wp > ) ( )
1 y—1
C= 2 Y= ’ (39)
PoC n —ie
l+—F ;
—ia' poK w),

with o = o\/N,,, ©,=c*A*/(402 pyn), and o)
=A?/ (4x”p,) where N, is the Prandtl number, ¢ the air-
flow resistivity, A the viscous characteristic length, o, the
tortuosity, p, the air density, 1 the dynamic viscosity, A’ the
thermal characteristic length and «’ the thermal permeability
which is a parameter defined in the model by Lafarge ef al.''
Here ¢ and k' are parameters of a single pore and not of the
bulk material. Different pore geometries can be accounted
for by choosing different sets of parameters in the JCA
model. For circular cross-section uniform cylinder, A and A’
are equal to the pore radius. In the calculations presented in
Sec. IV, the main pore and the dead-ends are supposed to be
straight and cylindrical and so the data displayed in Table I
are used.

If the slab is hard backed and its thickness is L, then its
surface impedance is calculated as



zy = izy cotan(qL), (40)
and the absorption coefficient is

2
Zs — 2o
Zg + 2o

a=1-— 1)

IV. SINGLE MAIN PORE WITH LATERAL DEAD-ENDS:
MODEL PREDICTIONS AND LIMITATIONS OF THE
LOW FREQUENCY APPROXIMATION

In this section, the comparisons between the full analyti-
cal TMM model accounting for periodicity in the arrange-
ment of the dead-ends and the low frequency approximation
are presented. The limitations of the latter are identified.

A. Cylindrical pore with long lateral dead-ends

First, a single cylindrical pore with lateral dead-ends is
considered to study the limitations of the low frequency
approximation. Identical dead-end pores with length
d=3cm are assumed distributed along the main pore with a
period & =1 cm. The radius of the main pore is a,, = 3 mm
and the radius of dead-end pore is az, = 1 mm, N =§ lateral
dead-ends per period are considered. First, real and imagi-
nary parts of the wavenumber ¢ defined by (1) are calculated
and compared to those predicted by a low frequency approx-
imation [Eq. (32)]. The frequency range is chosen so that
Re(kpp)amp < 0.5 to justify the use of a plane wave
approximation.

Two resonances of dead-ends [Re(ky)d = m/2 and
Re(kge)d = 3m/2] are observed at frequencies 2709 Hz and
8200 Hz. These resonances are well below the Bragg fre-
quency (17241Hz), which is outside the range where the
plane wave approximation is valid. The low frequency
model [Eq. (32)] accurately predicts the frequency of the
first resonance, while overestimating both real and imaginary
parts of the wavenumber at the resonance due to strong dis-
persion. As for the second resonance, the low frequency
model slightly overestimates its frequency (within 2% error)
and lacks accuracy around it. Figure 5 compares the low fre-
quency model predictions for the absorption coefficient pre-
dictions of a single hard backed pore of two different
lengths.

Two lengths of the main pore (L=2cm and L=5cm)
are considered. The first length corresponds to two elemen-
tary cells per length, while the second corresponds to five. In
both cases, resonances of the dead-ends correspond to the
maxima in the absorption coefficient dependence on fre-
quency. However, the behavior around the resonances of the
dead-ends is distorted by the quarter-wavelength resonances

TABLE I. Parameters of Johnson-Champoux-Allard and of Lafarge et al.
model (Ref. 11) for straight cylindrical pores (subscript mp) and dead-ends
(subscript de).

/
Amp, de A

/
Tmp, de Kmp, de o0, de mp, de

2 2
81]\(1,",,' de Dy, de/g 1 Amp, de Amp, de

of the hard-backed pore. These resonances happen roughly
when Re(¢)L = m/2. Due to strongly dispersive behavior of
the resonance modes as shown in Fig. 4, multiple quarter
wavelength resonances of the structure occur in the fre-
quency range considered. So for L=2cm [Fig. 5(a)]
Re(g)L = /2 at 1820, 4900, and 8360 Hz. Low frequency
model predicts reasonably accurately the absorption coeffi-
cient behavior around the first resonance of the dead-ends,
while it becomes inaccurate and not able to resolve the inter-
action between the resonances of the dead-ends and those of
the hard backed structure at higher frequencies. The absorp-
tion coefficient of the cylindrical main pore without dead-
ends is shown in both Figs. 5(a) and 5(b) to illustrate a sig-
nificant increase in absorption due to the presence of dead-
ends.

B. Main pores with short lateral dead-ends

It follows from the expression for the effective compres-
sibility [Eq. (34)] that if the length of dead-ends is much
shorter than the wavelength Re(ksd) < 1, the effective
compressibility is approximated as

Vd e

C.=0Cy, Cae s
P+ d. Vmp

(42)

where V4, = NAg.d and V,y, = A,,,h are volumes of the
dead-ends and the main pore portion per period i of the
structure. This means that a significant decrease in the phase
velocity of sound through the pore could be achieved if the
total volume of dead-ends per period significantly exceeds

9
8t
Tk
I
x 6r
& 5+
i 3
2+
1-
L 4
a)
9
a-
?_
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-4
5
f -
|
2
2
1
o 05 1 15 2 25 3 35 4
Im(g)h b)

FIG. 4. Comparisons of the real (a) and imaginary (b) parts of the normal-
ized wavenumber in main pore with long lateral dead-ends predicted by the
analytical TMM model and the low frequency approximation. Dashed line,
analytical TMM model (1); solid line, low frequency approximation (32),
N =38 identical lateral dead-ends of length d=cm per period i#=1cm,
dead-end radius a4, = 1 mm, and main pore radius a,,, =3 mm.



Absorption coefficlent

Absorption coefficlent

FIG. 5. Absorption coefficient of the single hard backed main pore with
long lateral dead-ends as a function of frequency. (a) Main pore length
L=2cm, (b) main pore length L=35cm. Dashed line, analytical TMM
model [Eq. (19)]; solid line, low frequency approximation [Eq. (41)]; and
dashed-dotted line, main pore with no dead-ends. Parameters as in Fig. 4.

that of the main pore. Assuming that the radii of the dead-
ends and the main pore are fixed, this could be achieved by
(a) increasing the length d of the dead-ends, (b) increasing
the number of dead-ends N per period, and (c) decreasing
the period £, i.e., spacing the dead-ends closer to each other.
Sound speed in the pore with lateral dead-ends of length
d =3 mm normalized to sound speed in air is shown in Fig.
6(a) for two periods #=1cm and #=3 mm. Normalized
sound speed in main pore without dead-ends is shown for
comparison. As in the previous calculations, the radius of
the main pore is a,,, =3 mm and the radius of dead-end pore
is @z = 1 mm. Again, N = 8 lateral dead-ends per period are
considered. In the frequency range below 9 kHz, no resonan-
ces of the dead-ends are observed. The lowest resonance fre-
quency corresponding to Re(ks.)d = m/2 is 22000 Hz. The
lowest Bragg frequency (for 2= 1cm) is 17 241 Hz, which is
also outside the frequency range considered. For this value
of the period, the disagreement between the low frequency
and the full analytical TMM model predictions for sound
speed become noticeable at around 4000 Hz, which corre-
sponds to |ky,|h =~ 0.7. For a shorter period & =3 mm, the
low frequency model predictions remain accurate in the
whole frequency range. Absorption coefficient predictions
for a hard backed pore with length L =5cm are shown in
Fig. 6(b).

The absorption coefficient of the structure with dead-
ends significantly exceeds that of the cylindrical main pore,
especially when the dead-ends are closely spaced (2 =3 mm)
and consequently a significant reduction in sound speed is
achieved. The absorption coefficient dependence in this case
shows multiple peaks due to quarter-wavelength resonances
of the structure.
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FIG. 6. Normalized sound speed (a) and absorption coefficient (b) of a sin-
gle main pore with short lateral dead-ends as a function of frequency.
Predictions for periods #=3mm and #=1cm are shown. Legend as in
Fig. 5. Parameters as in Fig. 4 except that dead-end length is d =3 mm.
Absorption coefficient is calculated for a hard backed pore with length
L=5cm.

V. MODEL VALIDATION
A. Comparison between different approaches

Comparisons among the present analytical model, trans-
fer matrix approach (TMM), and virtual measurements
obtained with a 3D acoustical FEM simulations using
COMSOL software have been performed. A three micro-
phones method'? is used to get the virtual FEM measure-
ments. In the FEM model on comsoL, parabolic tetrahedral
elements were used to mesh the different domains of the
tube and an effective fluid of density and bulk modulus given
by the JCA model”'’ fills the pores.

In the FEM simulations (Fig. 7), several aspects have
been considered to optimize the precision and computation
time: A sufficient number of elements per domain to be
meshed has been chosen in order to ensure a good precision
while keeping the computation time minimum, an adaptive
mesh has been used with increased number of elements in
the vicinity of geometrical discontinuities or in smaller
domains (with respect to other domains), sufficiently smooth
variations were considered in the mesh element sizes in the
vicinity of geometrical discontinuities and domains size var-
iations. In addition, it was made sure that a sufficient spatial
sampling was considered with respect to the domain
discretized. A criterion of one-tenth of the minimum wave-
length corresponding to a maximum frequency of 5 kHz was
used to choose the minimum size of the meshing elements.
In consideration of these requirements, typical values of
20000 elements per meshed domains were used. The con-
vergence was also verified by varying the meshing
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parameters and by making sure the chosen convergence cri-
terion was met in each case.

At low frequency, the FEM simulation confirms the pre-
dictions of the analytical TMM model and the low frequency
approximation (see Fig. 8). The small discrepancy between
TMM and FEM observed above 3500 Hz might be due to the
sound radiation end effects at the junctions between main
pores and dead-ends. Another possible reason could be the
breaking of the validity of the plane wave approximation
that requires the distances between the main pores to be
much less than the wavelength to discard sound diffusion
effects.

B. Comparison with experimental results for a sample
obtained from 3D printing

Experimental results on 3D printed materials with dead-
end pores (MP50) studied by Dupont et al.'? were compared
with the model. This sample was built using 3D printing
technology. The sample shown in Fig. 9 has four types of
pores. The pore characteristics are listed in Table II. The
overall perforation rate of the sample is ¢ = 23.4%.

For this sample, the TMM model described in Sec. II
has been modified to account for the three types of dead-end
pores and for pores with