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A theoretical and numerical study of the sound propagation in air-saturated porous media with 
straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located 
at “nodes” periodically spaced along each main pore. The effect of periodicity in the distribution of 
the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is 
considered separately. It is shown that the absorption coefficient and transmission loss are influ-

enced by the viscous and thermal losses in the main pores as well as their perforation rate. The pres-

ence of long or short dead-ends significantly alters the acoustical properties of the material and can 
increase significantly the absorption at low frequencies (a few hundred hertz). These depend 
strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on 
the periodicity along the propagation axis. These effects are primarily due to low sound speed in 
the main pores and to thermal losses in the dead-end pores. The model predictions are compared 
with experimental results. Possible designs of materials of a few cm thicknesses displaying 
enhanced low frequency absorption at a few hundred hertz are proposed.

I. INTRODUCTION

Air-saturated porous materials are most efficient for

noise reduction applications if the characteristic sizes of the

pores or of the interparticle spaces are on the order of the

viscous and thermal boundary layer thicknesses. At audible

frequencies, the order of magnitude of the characteristic

sizes ranges from a few hundred micrometers to a few milli-

meters. The pores should also be interconnected and opened

to the surroundings. The models developed over the years

are able to predict accurately the acoustic behavior of highly

porous absorbing materials such as for instance reticulated

polyurethane foams or fibrous materials.1 It was shown more

recently that these models are not accurate enough to prop-

erly describe the acoustic properties of other materials that

can contain partially opened or dead-end pores. Dead-end

pores are closed at one end so that fluid flow does not take

place in all the pores of the medium. A model capable of

accounting for this feature was recently developed and used

to successfully describe the acoustical properties of materials

with lower porosity such as metallic foams and those with

surface dead-end pores.2 It was found that the presence of

dead-ends had the effect of increasing the absorption coeffi-

cient at frequencies controlled by the average length of the

dead-ends. This motivates the present study. Structured

materials with well-controlled microgeometry including

dead-end pores can be designed and fabricated by making

use of recent technologies such as precision machining or

three-dimensional (3D) printing. The designed materials slab

could contain, for example, circular perforations. Some of

the perforations should go in through the thickness of the

layer while others should end inside it to create dead-end

pores.

The present contribution is concerned with the theoreti-

cal and numerical study of a structured perforated material

containing periodically spaced dead-end pores. Waves prop-

agating in periodic structures are known as “Bloch waves.”

Examples of such structures are ducts with periodically dis-

tributed lateral cavities or resonators (see Refs. 3–5, for

example). The periodicity introduces frequency stop bands,

i.e., frequency intervals where no propagating waves are

supported by the structure. Most studies deal with the situa-

tion where the structure period is on the order of the wave-

length to observe the stop bands (example, sonic crystals).

The distances between the perforations and dead-ends con-

sidered in the present study are about 1 cm or less. Therefore

the wavelengths on the order of the period correspond to fre-

quencies above 10 kHz. However, the stop bands due to
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resonances of the lateral dead-ends are also predicted at low

frequencies, typically a few hundred hertz, much lower than

the frequencies corresponding to the period. This constitutes

the central originality of the present contribution. The dead-

end pores considered here are simple closed cavities.

However, the model can account for more complex geome-

tries including Helmholtz resonators. The aim of this work is

to extend the model for the acoustical properties of porous

materials with dead-end porosity developed earlier2 to

account for periodicity in the spatial distribution of dead-

ends within the thickness of the material. The model pre-

sented here provides a simple tool for optimizing the mate-

rial inner structure to achieve the desired acoustical

properties.

The paper is organized as follows: In Sec. II, a disper-

sion relationship for waves propagating in the channel

(called main pore in the following) with periodically distrib-

uted side branches3 is recalled and extended to account for

the multiple side branches (called dead-end pores in the fol-

lowing) at one node. The transfer matrix method (TMM) is

then developed to predict absorption and transmission char-

acteristics of the finite thickness material slab with dead-end

porosity. In Sec. III, the low frequency limit of the model is

investigated when the distance between neighboring dead-

end pores is small compared to the wavelength of sound in

the main pore. Simple expressions for the dynamic density

and compressibility are derived. The limitations of the model

are established by comparing its predictions with the transfer

matrix approach developed in Sec. II. In Sec. IV, the effect

of the dead-ends on the behavior of a single main pore is

investigated and the limitations of the low frequency approx-

imation are discussed by comparing its prediction with those

of the TMM. In Sec. V, the model is validated by comparing

its predictions for the absorption coefficient of the material

slab with FEM simulations. Experimental results on samples

obtained from 3D printing are also presented and compared

with the model. In Sec. VI, possible designs of perforated

materials with lateral dead-ends featuring improved absorp-

tion at low frequencies are suggested. Their absorption prop-

erties are simulated using the models developed. The main

findings are summarized in the final section.

II. SOUND PROPAGATION IN THE MATERIAL
WITH PERIODICALLY DISTRIBUTED DEAD-END
PORES—FULL ANALYTICAL TMM MODEL

In the previous study (Ref. 2), no interactions between

the dead-ends were taken into account either for the metallic

foams with randomly distributed dead-ends or for the struc-

tured material with surface dead-ends (Fig. 9 in Ref. 2).

However, a periodic arrangement with interactions is possi-

ble when the dead-end pores are opened into the main pores

as shown in Fig. 1. In this case, the interaction between the

dead-end and the connected pores occurs in the bulk of the

material slab. Only the straight perforations going through

the thickness of the material layer are visible on the surface.

When the dead-ends are distributed periodically along

the length of the main pores, two distinctive cases can be

identified in the material behavior. If the wavelength of

sound traveling through the main pores is comparable to the

distance between the dead-ends, stop and pass bands may

appear. However, in the small pores on the order of the vis-

cous and thermal boundary layers thicknesses, these effects

will be severely affected by the strong viscous and thermal

losses. In the case where the separation distance between the

dead-ends is much less than the wavelength, the effective

properties of the porous material (i.e., its effective density

and compressibility) are modified by their presence. The va-

lidity of the plane wave approximation is assumed through-

out the paper i.e., the radii of all pores are assumed small

compared to the wavelength of sound.

Following Bradley,3 a pore with cross-sectional area

Amp (the subscript “mp” stands for “main pore”) with peri-

odically distributed identical side branches with cross-

sectional area Ade (the subscript “de” stands for “dead-end”)

and length d is considered. There are N dead-ends per period

h. A configuration with N¼ 2 is shown in Fig. 1. It is

assumed that Reðkmp

ffiffiffiffiffiffiffiffi
Amp

p
Þ � 1;Reðkde

ffiffiffiffiffiffiffi
Ade

p
Þ � 1 so that

the wave inside the pores is plane. Here, kmp and kde are the

wavenumbers in the main pore and in the dead-ends. The pe-

riod h can be comparable to the wavelength. In this case, the

wavenumber q of Bloch waves (i.e., waves that propagate

through a periodic structure) is defined by the following dis-

persion equation, which is equivalent to Eq. (27) in Ref. 3,

cos ðqhÞ ¼ cosðkmphÞ þ iX sinðkmphÞ; (1)

where

X ¼ �N

2

Ade

Amp

1

Zsde
(2)

in which the number of dead-end pores per node N appears

when applying the pressure and volume velocity continuity

at the entrance of the junction Ref. 3 (Appendix), Ref. 6 (p.

290). Zsde is the normalized surface impedance of the dead-

end. In case of a simple dead-end pore,

Zsde ¼ i
Zde

Zmp
cotan kdedð Þ (3)

and

X ¼ i
N

2

Ade

Amp

Zmp

Zde
tan kdedð Þ: (4)

FIG. 1. Main pore (cross-sectional area Amp) with periodically arranged

dead-end pores, N¼ 2 identical dead-end pores with cross-section area Ade

and length d per period h. The dead-ends are located at “nodes.”



Contrary to Ref. 3, the difference between the characteris-

tic impedance of air in the main pore and in the dead-end

pore is accounted for in Eqs. (3) and (4). This difference

may arise due to the difference in shape or in cross-

sectional area of these pores if viscous and thermal losses

are present. The side branches of different nature

(Helmholtz resonators for instance) can be easily accom-

modated by using an appropriate surface impedance

instead of Eq. (3).

Here Zmp and Zde are the characteristic acoustic impe-

dances of air inside the main pore and in the dead-end pores.

A time dependence in the form expð�ixtÞ is assumed. It is

easy to generalize Eq. (2) for the case of N non-identical

dead-end pores per period,

X ¼ � 1

2

Zmp

Amp

XN

k¼1

A kð Þ
de

Z kð Þ
de

tan k kð Þ
de d kð Þ

� �
: (5)

In this case, the characteristics of the individual dead-ends

are denoted by the superscript (k). If we define

y ¼ expðikmphÞ; (6)

then the following matrix:

Tc ¼
1þ Xð Þy X

�X
1� Xð Þ

y

0
@

1
A; (7)

relates forward and backward propagating Bloch waves on

the right and on the left from the period of size h along the

thickness.

If n periods are considered, then forward and backward

propagating Bloch waves on the right and on the left from

this arrangement are related by the matrix M,

M ¼ ðTcÞn ¼
M11 M12

M21 M22

� �
: (8)

Now the equation for pressure reflection rn and transmission

tn coefficients for n periods in an open channel (main pore of

Fig. 1 with infinite length so that no reflection occurs outside

the dead-end arrangement area) is

tn

0

� �
¼M

1

rn

� �
; (9)

which gives

rn ¼ �
M21

M22

; (10a)

tn ¼
1

M22

: (10b)

Here the fact that det M ¼ 1 (product of matrices bearing the

same property) was used. If the reflection coefficient r0n
from a rigidly backed structure containing n unit cells is to

be calculated (main pore of Fig. 1 with hard back after the

last dead-end), it is given by

P
P

� �
¼M

1

r0n

� �
; (11)

where P is the amplitude of the incident and reflected waves

at the rigid surface. Eliminating P from Eq. (11) results in

r0n ¼
M11 �M21

M22 �M12

: (12)

To model the sound interaction with a porous material con-

taining straight pores (of surface perforation rate /) with

dead-ends, each pore is associated with an air channel of

cross-sectional area A so that

/ ¼ Amp

A
(13)

as illustrated in Fig. 2. For the plane wave approximation to

be valid, it is necessary that k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Amp=/

p
� 1; where k ¼ x=c

is wavenumber in air and c is the sound speed in air.

Then the amplitudes of the forward and backward trav-

eling waves in the hypothetical channels and at the entrance

to the main pores, pr
6 and pl

6, are related by

pr
þ

pr
�

� �
¼ T

pl
þ

pl
�

� �
; (14)

where

T ¼

1þ /0

2/
� 1� /0

2/

� 1� /0

2/0
1þ /0

2/0

0
BBB@

1
CCCA; (15)

where /0 ¼ /ðz0=ZmpÞ and z0 the characteristic acoustic im-

pedance of air.

This means that the reflection and transmission coeffi-

cients of an open ended porous material slab, Rn and Tn and

a reflection coefficient R0n of a hard backed porous slab can

be calculated using equations similar to those derived for a

FIG. 2. Modeling transmission and reflection through the material surface.

Each pore is associated with an air channel of cross-sectional area A given

by Eq. (13).



single pore, Eqs. (10a), (10b), and (12). The former can be

calculated by

Rn ¼ �
M021

M022

; (16a)

Tn ¼
1

M022

; (16b)

and the latter by

R0n ¼
M011 �M021

M022 �M012

; (17)

where the elements M0ij of a matrix M0 are used. This matrix

is given by the product of M and T,

M0 ¼M� T; M ¼ T�1 �M0: (18)

The absorption coefficient of a hard backed slab is calculated

by

a ¼ 1� jR0nj
2: (19)

III. LOW FREQUENCY APPROXIMATION

Now it is assumed that the distance h between the

dead-ends is much less than the wavelength of sound in the

main pore, i.e., ReðkmphÞ � 1. In this case, the configura-

tion with dead-end pores can be replaced by the main pore

filled with a fluid described by the effective wavenumber q
and the effective impedance z. To derive the expressions

for q and z, a simple self-consistent model similar to a

coherent potential approximation (CPA) (Ref. 7) is used. In

this method the configuration shown in Fig. 1 is replaced

by a pore filled with a fluid with still unknown effective

properties. Then the following “gedankenexperiment” is

performed: If a unit cell of an original periodic arrangement

is inserted into this pore, it will not disturb the properties of

an effective fluid representing exactly the same periodically

arranged unit cells as the inserted one. This implies that if a

wave travels through the pore filled with effective fluid, its

reflection coefficient from the inserted cell will be 0 and

the transmission coefficient will be equal to expðiqhÞ. In

addition, the implicit assumption that the sample is of infi-

nite length or, at least sufficiently long to include many

wavelengths is made. The period insertion is illustrated in

Fig. 3.

Assuming no reflections at x¼�h/2, the boundary con-

ditions for pressure and particle velocity at this location are

1 ¼ aþeð�ikmphÞ=2 þ a�eðikmphÞ=2; (20)

1

z
¼ 1

Zmp
aþe �ikmphð Þ=2 � a�e ikmphð Þ=2
� �

; (21)

where a6 are the amplitude of the forward and backward

waves propagating between x¼�h/2 and x¼ 0. All quanti-

ties are normalized to the amplitude of the incident wave on

the cell from the effective medium. At x¼ 0, the wave am-

plitude are modified due to the presence of the dead-end

pores. Generalizing the transfer matrix derived in Ref. 3 to

the case of N identical dead-ends, the amplitudes b6 of the

waves propagating between x¼ 0 and x¼ h/2 can be related

to a6 in the following way:

bþ ¼ aþð1þ XÞ þ a�X; (22)

b� ¼ �aþX þ a�ð1� XÞ: (23)

Finally, with the transmission coefficient being equal to

expðiqhÞ, the boundary conditions at x¼ h/2 are

eiqh ¼ bþeðikmphÞ=2 þ b�eð�ikmphÞ=2; (24)

eiqh

z
¼ 1

Zmp
bþe ikmphð Þ=2 � b�e �ikmphð Þ=2
� �

: (25)

Combining Eqs. (20) and (21) provides the ratio a�=aþ as a

function of z, Zmp, and kmph. Combining Eqs. (22) and (23)

provides the ratio b�=bþ as a function of a�=aþ. The ratio

b�=bþ is then replaced in the combined Eqs. (24) and (25)

to provide

Zmp

z

� �2

¼ i sin kmphð Þ þ X cos kmphð Þ þ 1ð Þ
i sin kmphð Þ � X 1� cos kmphð Þð Þ

; (26)

eiqh ¼ cos kmphð Þ þ iX sin kmphð Þð Þ

þ Zmp

z
i sin kmphð Þ � X 1� cos kmphð Þð Þð Þ: (27)

At low frequencies, in a first order expansion over a small

parameter kmph, cosðkmphÞ is approximated by 1 and

sinðkmphÞ is approximated by kmph and the following expres-

sions for the characteristic acoustic impedance are obtained:

z ¼ Zmpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2X

ikmph

s ¼ Zmpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NAde

Amp

Zmp

Zde

tan kdedð Þ
kmph

s : (28)

For the wavenumber q, the low frequency asymptotic behav-

ior can be determined by an expansion to the second order of

FIG. 3. (Color online) A pore filled with effective fluid and a single unit cell

inserted in it. The arrow shows a propagating pressure wave.



Bradley’s dispersion Eq. (1). Alternatively, an expansion of

the dispersion Eq. (27) can be considered. Because eiqh con-

tains cosðqhÞ, the expansion should be done to the second

order to achieve the same precision. The method proposed

here consists in determining first the real part cosðqhÞ and

imaginary part sinðqhÞ of the exponential. Upon inserting

Eq. (26) in Eq. (27), it can easily be shown that

eiqh ¼ ðcosðkmphÞ þ iX sinðkmphÞÞ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcosðkmphÞ þ iX sinðkmphÞÞ2

q
: (29)

And consequently since eiqh ¼ cosðqhÞ þ i sinðqhÞ, the fol-

lowing split is the only solution:

ðcosðkmphÞ þ iX sinðkmphÞÞ ¼ cosðqhÞ; (30)

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos kmphð Þ þ iX sin kmphð Þð Þ2

q
¼ Zmp

z
i sin kmphð Þ � X 1� cos kmphð Þð Þð Þ

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 qhð Þ

q
¼ i sin qhð Þ: (31)

These results show that the present approach

(“gedankenexperiment”) leads to a dispersion relation [Eq.

(27) or (29)] that is equivalent to Eq. (1), and in addition,

Eq. (26) provides an expression of the equivalent character-

istic impedance z as a function of kmp.

At low frequencies, the wavenumber q of the effective

medium can be considered small and is obtained with the

help of an expansion to the second order of Eq. (30) or to the

first order of Eq. (31), which only involves sinðqhÞ. The

same result is obtained in both cases,

q ¼ kmp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2X

ikmph

s
¼ kmp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NAde

Amp

Zmp

Zde

tan kdedð Þ
kmph

s
:

(32)

It is now possible to obtain expressions for the effective

density qe ¼ zq=x and for the effective compressibility

Ce ¼ q=ðzxÞ of the fluid in the pore with dead-ends,

qe ¼ qmp; (33)

Ce ¼ Cmp þ Cde
NAde

Amp

d

h

tan kdedð Þ
kded

� �
; (34)

where qmp ¼ Zmpkmp=x and Cmp ¼ kmp=xZmp are the effec-

tive density and compressibility of the fluid in the main pore

and Cde ¼ kde=xZde is the compressibility of the fluid in the

dead-end pores. It follows from Eq. (33) that the presence of

the dead-end pores does not affect the effective density of

the fluid in the main pore at low frequencies. However, it

could significantly modify its effective compressibility.

Now, Eqs. (28) and (32) are conveniently rewritten as

z ¼
ffiffiffiffiffi
qe

Ce

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmp

Cmp þ Cde
NAde

Amp

d

h

tan kdedð Þ
kded

� �vuuut ; (35)

q ¼ x
ffiffiffiffiffiffiffiffiffiffi
qeCe

p

¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmp Cmp þ Cde

NAde

Amp

d

h

tan kdedð Þ
kded

� � !vuut : (36)

The characteristic impedance zm of the material with perfora-

tion rate / can be calculated from Eq. (35) as

zm ¼
z

/
¼ 1

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmp

Cmp þ Cde
NAde

Amp

d

h

tan kdedð Þ
kded

� �vuuut ; (37)

and the wavenumber is defined by Eq. (36).

The dependence of qmp, qde and Cmp, Cde on frequency

and radius of both types of pores can be described by classi-

cal theories of wave propagation in cylindrical tubes (see

Ref. 1, Chap. 4 for a review and description of these theo-

ries). The cylindrical pores can also be described using gen-

eral models of wave propagation in porous media such as the

Attenborough model8 or the Johnson, Koplik, Dashen

model9 with macroscopic parameters corresponding to cylin-

drical pore structure. These models are generalized by

Champoux and Allard10 to account for thermal effects. To

make our results easy to generalize to other pore geometries,

models of porous materials, the models by Johnson et al. and

by Champoux-Allard (synthesized in the “JCA model”) are

used to describe sound propagation in both main and dead-

end pores. The following expressions are used for the effec-

tive density and compressibility of fluid in the main and

dead-end pores (subscripts “de” and “mp” are omitted in the

following two equations):

q ¼ q0a1 1þ r
�ixa1q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ix

xb

r !
; (38)

C ¼ 1

q0c2
c� c� 1

1þ g
�ix0q0j0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ix0

x0b

s
0
BB@

1
CCA; (39)

with x0 ¼ x
ffiffiffiffiffiffiffi
Npr

p
; xb¼r2K2=ð4a2

1q0gÞ, and x0b
¼ K02=ð4j02q0Þ where Npr is the Prandtl number, r the air-

flow resistivity, K the viscous characteristic length, a1 the

tortuosity, q0 the air density, g the dynamic viscosity, K0 the

thermal characteristic length and j0 the thermal permeability

which is a parameter defined in the model by Lafarge et al.11

Here r and j0 are parameters of a single pore and not of the

bulk material. Different pore geometries can be accounted

for by choosing different sets of parameters in the JCA

model. For circular cross-section uniform cylinder, K and K0

are equal to the pore radius. In the calculations presented in

Sec. IV, the main pore and the dead-ends are supposed to be

straight and cylindrical and so the data displayed in Table I

are used.

If the slab is hard backed and its thickness is L, then its

surface impedance is calculated as



zs ¼ izm cotanðqLÞ; (40)

and the absorption coefficient is

a ¼ 1�
				 zs � z0

zs þ z0

				
2

: (41)

IV. SINGLE MAIN PORE WITH LATERAL DEAD-ENDS:
MODEL PREDICTIONS AND LIMITATIONS OF THE
LOW FREQUENCY APPROXIMATION

In this section, the comparisons between the full analyti-

cal TMM model accounting for periodicity in the arrange-

ment of the dead-ends and the low frequency approximation

are presented. The limitations of the latter are identified.

A. Cylindrical pore with long lateral dead-ends

First, a single cylindrical pore with lateral dead-ends is

considered to study the limitations of the low frequency

approximation. Identical dead-end pores with length

d¼ 3 cm are assumed distributed along the main pore with a

period h¼ 1 cm. The radius of the main pore is amp ¼ 3 mm

and the radius of dead-end pore is ade ¼ 1 mm, N¼ 8 lateral

dead-ends per period are considered. First, real and imagi-

nary parts of the wavenumber q defined by (1) are calculated

and compared to those predicted by a low frequency approx-

imation [Eq. (32)]. The frequency range is chosen so that

ReðkmpÞamp � 0:5 to justify the use of a plane wave

approximation.

Two resonances of dead-ends [ReðkdeÞd ¼ p=2 and

ReðkdeÞd ¼ 3p=2] are observed at frequencies 2709 Hz and

8200 Hz. These resonances are well below the Bragg fre-

quency (17 241 Hz), which is outside the range where the

plane wave approximation is valid. The low frequency

model [Eq. (32)] accurately predicts the frequency of the

first resonance, while overestimating both real and imaginary

parts of the wavenumber at the resonance due to strong dis-

persion. As for the second resonance, the low frequency

model slightly overestimates its frequency (within 2% error)

and lacks accuracy around it. Figure 5 compares the low fre-

quency model predictions for the absorption coefficient pre-

dictions of a single hard backed pore of two different

lengths.

Two lengths of the main pore (L¼ 2 cm and L¼ 5 cm)

are considered. The first length corresponds to two elemen-

tary cells per length, while the second corresponds to five. In

both cases, resonances of the dead-ends correspond to the

maxima in the absorption coefficient dependence on fre-

quency. However, the behavior around the resonances of the

dead-ends is distorted by the quarter-wavelength resonances

of the hard-backed pore. These resonances happen roughly

when ReðqÞL ¼ p=2. Due to strongly dispersive behavior of

the resonance modes as shown in Fig. 4, multiple quarter

wavelength resonances of the structure occur in the fre-

quency range considered. So for L¼ 2 cm [Fig. 5(a)]

ReðqÞL ¼ p=2 at 1820, 4900, and 8360 Hz. Low frequency

model predicts reasonably accurately the absorption coeffi-

cient behavior around the first resonance of the dead-ends,

while it becomes inaccurate and not able to resolve the inter-

action between the resonances of the dead-ends and those of

the hard backed structure at higher frequencies. The absorp-

tion coefficient of the cylindrical main pore without dead-

ends is shown in both Figs. 5(a) and 5(b) to illustrate a sig-

nificant increase in absorption due to the presence of dead-

ends.

B. Main pores with short lateral dead-ends

It follows from the expression for the effective compres-

sibility [Eq. (34)] that if the length of dead-ends is much

shorter than the wavelength ReðkdedÞ� 1, the effective

compressibility is approximated as

Ce ¼ Cmp þ Cde
Vde

Vmp
; (42)

where Vde ¼ NAded and Vmp ¼ Amph are volumes of the

dead-ends and the main pore portion per period h of the

structure. This means that a significant decrease in the phase

velocity of sound through the pore could be achieved if the

total volume of dead-ends per period significantly exceeds

TABLE I. Parameters of Johnson-Champoux-Allard and of Lafarge et al.
model (Ref. 11) for straight cylindrical pores (subscript mp) and dead-ends

(subscript de).

rmp; de j0mp; de a1mp; de
Kmp; de K0mp; de

8g\ a2
mp; de a2

mp; de=8 1 amp; de amp; de

FIG. 4. Comparisons of the real (a) and imaginary (b) parts of the normal-

ized wavenumber in main pore with long lateral dead-ends predicted by the

analytical TMM model and the low frequency approximation. Dashed line,

analytical TMM model (1); solid line, low frequency approximation (32),

N¼ 8 identical lateral dead-ends of length d¼ cm per period h¼ 1 cm,

dead-end radius ade¼ 1 mm, and main pore radius amp ¼ 3 mm.



that of the main pore. Assuming that the radii of the dead-

ends and the main pore are fixed, this could be achieved by

(a) increasing the length d of the dead-ends, (b) increasing

the number of dead-ends N per period, and (c) decreasing

the period h, i.e., spacing the dead-ends closer to each other.

Sound speed in the pore with lateral dead-ends of length

d¼ 3 mm normalized to sound speed in air is shown in Fig.

6(a) for two periods h¼ 1 cm and h¼ 3 mm. Normalized

sound speed in main pore without dead-ends is shown for

comparison. As in the previous calculations, the radius of

the main pore is amp¼ 3 mm and the radius of dead-end pore

is ade¼ 1 mm. Again, N¼ 8 lateral dead-ends per period are

considered. In the frequency range below 9 kHz, no resonan-

ces of the dead-ends are observed. The lowest resonance fre-

quency corresponding to ReðkdeÞd ¼ p=2 is 22 000 Hz. The

lowest Bragg frequency (for h¼ 1 cm) is 17 241 Hz, which is

also outside the frequency range considered. For this value

of the period, the disagreement between the low frequency

and the full analytical TMM model predictions for sound

speed become noticeable at around 4000 Hz, which corre-

sponds to jkmpjh � 0:7. For a shorter period h¼ 3 mm, the

low frequency model predictions remain accurate in the

whole frequency range. Absorption coefficient predictions

for a hard backed pore with length L¼ 5 cm are shown in

Fig. 6(b).

The absorption coefficient of the structure with dead-

ends significantly exceeds that of the cylindrical main pore,

especially when the dead-ends are closely spaced (h¼ 3 mm)

and consequently a significant reduction in sound speed is

achieved. The absorption coefficient dependence in this case

shows multiple peaks due to quarter-wavelength resonances

of the structure.

V. MODEL VALIDATION

A. Comparison between different approaches

Comparisons among the present analytical model, trans-

fer matrix approach (TMM), and virtual measurements

obtained with a 3D acoustical FEM simulations using

COMSOL software have been performed. A three micro-

phones method12 is used to get the virtual FEM measure-

ments. In the FEM model on COMSOL, parabolic tetrahedral

elements were used to mesh the different domains of the

tube and an effective fluid of density and bulk modulus given

by the JCA model9,10 fills the pores.

In the FEM simulations (Fig. 7), several aspects have

been considered to optimize the precision and computation

time: A sufficient number of elements per domain to be

meshed has been chosen in order to ensure a good precision

while keeping the computation time minimum, an adaptive

mesh has been used with increased number of elements in

the vicinity of geometrical discontinuities or in smaller

domains (with respect to other domains), sufficiently smooth

variations were considered in the mesh element sizes in the

vicinity of geometrical discontinuities and domains size var-

iations. In addition, it was made sure that a sufficient spatial

sampling was considered with respect to the domain

discretized. A criterion of one-tenth of the minimum wave-

length corresponding to a maximum frequency of 5 kHz was

used to choose the minimum size of the meshing elements.

In consideration of these requirements, typical values of

20 000 elements per meshed domains were used. The con-

vergence was also verified by varying the meshing

FIG. 6. Normalized sound speed (a) and absorption coefficient (b) of a sin-

gle main pore with short lateral dead-ends as a function of frequency.

Predictions for periods h¼ 3 mm and h¼ 1 cm are shown. Legend as in

Fig. 5. Parameters as in Fig. 4 except that dead-end length is d¼ 3 mm.

Absorption coefficient is calculated for a hard backed pore with length

L¼ 5 cm.

FIG. 5. Absorption coefficient of the single hard backed main pore with

long lateral dead-ends as a function of frequency. (a) Main pore length

L¼ 2 cm, (b) main pore length L¼ 5 cm. Dashed line, analytical TMM

model [Eq. (19)]; solid line, low frequency approximation [Eq. (41)]; and

dashed-dotted line, main pore with no dead-ends. Parameters as in Fig. 4.



parameters and by making sure the chosen convergence cri-

terion was met in each case.

At low frequency, the FEM simulation confirms the pre-

dictions of the analytical TMM model and the low frequency

approximation (see Fig. 8). The small discrepancy between

TMM and FEM observed above 3500 Hz might be due to the

sound radiation end effects at the junctions between main

pores and dead-ends. Another possible reason could be the

breaking of the validity of the plane wave approximation

that requires the distances between the main pores to be

much less than the wavelength to discard sound diffusion

effects.

B. Comparison with experimental results for a sample
obtained from 3D printing

Experimental results on 3D printed materials with dead-

end pores (MP50) studied by Dupont et al.13 were compared

with the model. This sample was built using 3D printing

technology. The sample shown in Fig. 9 has four types of

pores. The pore characteristics are listed in Table II. The

overall perforation rate of the sample is / ¼ 23.4%.

For this sample, the TMM model described in Sec. II

has been modified to account for the three types of dead-end

pores and for pores without dead-ends. Equation (16) has

been used to calculate pressure reflection coefficient in the

channel associated with each pore as shown in Fig. 2. A uni-

form distribution of pores at the material surface was

assumed. Due to this, the overall perforation rate of the sam-

ple was used to calculate the surface area A of the channels

[see Eq. (13)]. After that, the pressure was averaged across

the surface of the sample. The comparison between the

measurements and the model predictions for the absorption

coefficient is shown in Fig. 10(a).

The experimental curve was obtained by averaging three

sets of results obtained from measurements at different times

on three identically designed samples in repeatability experi-

ments. The simulation accounts for the end correction of the

main pores, which corresponds to a tortuosity correction

because the stream lines at the entry face and exit face of the

sample are not straight, especially for low perforation

rates.14 The predicted absorption peak is due to the presence

of dead-ends. The predicted resonance is broader than the

observed one. It is thought that this is due to the fact that the

dead-ends in the fabricated sample are slightly thinner than

expected in the material design. The 3D printing process

uses a powder the particles of which are glued together with

the help of a liquid binder. Successive layer are bound to-

gether to form the 3D structure. The structure is then heated

so that the binder is evaporated, and the particles of the pow-

der sintered. This process leaves a microporosity. To remove

the influence of this microporosity, the sample including the

dead-end pores has been covered by a varnish that may have

reduced the pore diameter. Measuring with precision the

actual diameter of the dead-end pores on the fabricated 3D

sample is currently a difficult task. The error in the 3D print-

ing process is estimated to be 0.01 mm for a sample of a few

centimeter thickness. A simulation using a smaller diameter

for the dead-end pores shows that the absorption peak is nar-

rowed as expected. This provides an indirect confirmation

that the pores are thinner than expected. Because the reduc-

tion in pores diameter is difficult to measure with precision,

only the results with the nominal desired diameter are shown

in Fig. 10.

The discrepancy above 3000 Hz might be due to micro-

porosity of the sample created in the 3D printing process.

However, the low frequency match is fairly good. For the

transmission loss, it is noticed that the presence of the dead-

ends removes the anti resonance (dip) predicted when the

sample thickness (the main pore length) is half the wave-

length. This can be explained by the fact that the dead-ends

render the effective fluid more compressible and slow down

the wave so as to shift the anti resonance to lower frequen-

cies. In addition, the distribution in dead-end lengths will

have the effect of reducing the quality factor of the anti reso-

nance and of making the transmission loss smoother. The

theoretical and experimental results in Fig. 10 seem to con-

firm these remarks.

FIG. 7. (Color online) Configuration

used in the FEM simulation (virtual

FEM measurement). The material pa-

rameters are as follows: L¼ 20 mm;

amp¼0.5mm; ade¼0.5mm, d¼19.5mm,

/¼5%, N¼1, and h¼2mm. The DE

pores are in aligned configuration.

FIG. 8. Absorption coefficient calculated for the configuration shown in

Fig. 7. Dashed line, analytical TMM model [Eq. (19)]; solid line, low fre-

quency approximation [Eq. (41)]; dashed-dotted line, main pore with no

dead-ends (analytical model); and dotted line, FEM simulation.



With the help of the model developed in this work and

with the TMM or FEM simulations, it is now possible to

design structures giving larger shifts of the absorption coeffi-

cient peak toward low frequencies if the Main/DE pores pa-

rameters are properly chosen. This opens up new

experimental possibilities for future work.

VI. POSSIBLE DESIGNS AND NUMERICAL
SIMULATIONS

In this section, materials designs involving periodically

spaced dead-ends in the thickness are proposed. Equation

(42) provides a tool in the first steps toward the design of

high performance materials at low frequencies using peri-

odic dead-end pores. The underlying idea is to increase the

compressibility at low frequency Ce of the equivalent fluid,

which can be rewritten

Ce ¼ Cmp þ Cde
ade

amp

� �2 Nd

h
: (43)

At constant pore radii, the compressibility can be increased

by increasing the number of dead-ends per node N and by

reducing the period h. This last condition is compatible with

small thickness requirements in the material design. Ce can

be increased by increasing the length d. However, d must

remain much smaller than the wavelength for Eq. (43) to

remain valid.

Examples of possible designs are proposed, one with

square perforation design (see Fig. 11) with four dead-ends

per node and one with eight dead-ends per node (Fig. 12).

The length, sizes of the main pores and dead-ends, the perfo-

ration rate can be varied to obtain best performance, espe-

cially at low frequencies. The perforation rate can be

adjusted with the help of additional perforations without

dead-ends. In the following simulations, the frequency range

of calculations is chosen so that Re½k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amp=p/

p
� 0:5 to

justify the use of plane wave models.

In addition to the sizes of the main pores and of the

dead-ends, the criteria for the design are that the material

FIG. 9. A porous sample with dead-

ends (after sealing the circumference)

used in the measurements. The sample

diameter is 44.4 mm, and its thickness

is L¼ 30 mm.

TABLE II. Pore characteristics of the four types of pores of the sample pre-

sented in Fig. 9.

Types of pores

Pore characteristics Units 1 2 3 4

Number of main pores 1 4 8 32

Porosity of main pores % 0.52 2.08 4.16 16.62

amp ðRadius of main pores) mm 1.6 1.6 1.6 1.6

h (DE period) mm 2.3 2.3 2.3 –

N (DE pores per node) 4 1 1 –

ade ðRadius of DE pores) mm 0.65 0.65 0.65 –

d (Length of DE pores) mm 20.4 15.4 11.4 –

FIG. 10. Experimental results (curve averaged over three repeatability

measurements) on (a) the absorption coefficient and (b) on the transmission

loss for the MP50 sample (Fig. 9) and comparison between experimental

results (plain) and TMM predictions (dashed line). The dashed-dotted curve

shows model predictions for the material without dead-ends.



should contain as many dead-ends per nodes as possible

while the perforation rate corresponding to the main pores

should be chosen optimal. The number of nodes is also im-

portant and this parameter indirectly dictates the possible

material thickness. Despite the low perforation rate, both

materials are efficient absorbers of low frequency sound.

Future more refined optimization work could include ade

and amp, i.e., the pore radii as additional design parameters.

However, because ade and amp are related to the viscous length

and thermal characteristic lengths of the dead-ends and of the

main pores, respectively, they also act in Cde and in Cmp and

using them as additional tuning parameters is not as straight

forward as for the other parameters. Their influence could be

studied in an advanced optimization scheme only.

VII. CONCLUSION

A model for the wave propagation in straight pores with

lateral periodically spaced dead-ends is proposed in this

work. A low frequency limit of the model is used to derive

effective properties of the porous material within this micro-

structure. The model predicts the possibility of a strong low

frequency sound absorption achieved by thin (only a few

centimeters) material slabs.

A significant decrease in sound speed in the main pore is

predicted at low frequencies. In turn, this low sound speed is re-

sponsible for the increase in absorption coefficient well below

the frequency predicted by the sole resonance of the dead-ends.

The decrease in sound speed may not only be achieved by

increasing the length of the dead-ends but also by their number

per node or by decreasing the spacing between them [Eq. (43)].

The decrease in sound speed results from the changes in effec-

tive compressibility of the fluid in the pores due to the presence

of dead-ends while the effective density is not affected [Eqs.

(33) and (34)]. This suggests that the mentioned increase in

absorption coefficient at low frequencies is the result of thermal

exchanges between the fluids filling the main pores and the

dead-ends.

The predicted absorption coefficient and transmission

loss are compared to the full transfer matrix model and to

FEM COMSOL simulations. Experimental results on 3D

printed materials are also used to validate the model. Low

frequency absorption peaks were observed for a fairly thin

sample in accordance with the model predictions.

The model reported in this study provides a simple and

efficient tool that can be used in the design of thin low fre-

quency porous absorbers with low surface perforation rate.
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