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Wave propagation in macroscopically inhomogeneous porous materials has received much atten-tion in recent years. The wave

equation, derived from the alternative formulation of Biot’s theory of 1962, was reduced and solved recently in the case of rigid

frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and

the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional

macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-

called Stroh) formalism and Peano series. This coeffi-cient can then be used to straightforwardly calculate the scattered field.

To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical

transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a
known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption

coefficient for various inhomogeneity profiles gives further perspectives.

I. INTRODUCTION

The study of wave propagation in macroscopically inho-

mogeneous porous media was initially motivated by (1) the

design of sound absorbing porous materials with optimal ma-

terial and geometrical property profiles1 and (2) the retrieval

of the spatially varying material parameters of industrial

foams.2 These, and other inverse problems, are of great im-

portance in connection with the characterization of the me-

chanical properties of naturally occurring macroscopically

inhomogeneous porous materials, such as bones. The litera-

ture on inhomogeneous media is extensive in several fields

of physics, from optics and electromagnetism,3,4 to acous-

tics,5,6 and geophysics7 and granular media.8 Many natural

and man-made materials are porous, and therefore heteroge-

neous at a microscopic scale. The wave equation in macro-

scopically inhomogeneous porous media was derived from

the alternative formulation of Biot’s theory9 in Ref. 10 and

solved in the case of rigid frame inhomogeneous porous

materials via the Wave Splitting method and “transmission”

Green’s functions approach or via an iterative Born approxi-

mation procedure based on the specific Green’s function of

the configuration.11 The recovery of several profiles of spa-

tially varying material parameters by means of an optimiza-

tion approach, was then achieved in Ref. 2 still in the rigid

frame approximation.

When saturated by a light fluid such as air, the frame

is moving below the solid/fluid decoupling frequency.

Moreover, in many applications porous materials are satu-

rated by a heavy fluid such as water or bone marrow. They

can also be excited mechanically. In these cases, the rigid

frame approximation is not valid and the full macroscopi-

cally inhomogeneous poroelastic model should be used

and solved.

It is assumed that the wavelengths are larger than the

average heterogeneity size at the pore scale so that the physi-

cal properties are homogenized. However, these properties

can vary with the observation point within the material at the

macroscopic scale of the specimen. Macroscopically inho-

mogeneous poroelastic materials imply that both acoustic

and elastic properties are space-dependent at the macro-

scopic scale.

First, the constitutive linear stress-strain relations and

the momentum conservation law in the absence of body

forces are recalled for an inhomogeneous poroelastic mate-

rial. These equations are then solved for a one-dimensional

macroscopically inhomogeneous poroelastic material via the
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state vector formalism or the so-called Stroh formalism12 to-

gether with Peano series.13,14 The Stroh formalism is largely

used to model acoustic wave propagation in stratified aniso-

tropic elastic materials.15,16 Similar methods (transmission

matrix method) are used in electromagnetism to model the

propagation of electromagnetic waves in anisotropic or

gyrotropic stratified materials.17,18 In the frequency domain,

it consists in the rewriting of the constitutive linear stress-

strain relations and the momentum conservation law in

terms of the state vector, whose components can be chosen

arbitrarily as long as they are continuous along the inhomo-

geneity of the material. This leads after spatial Fourier trans-

form to a first-order ordinary differential system of

equations whose unknown is the state vector. The spatial

dependence of the materials properties are accounted for

through the spatially dependent matrix components. The

solution of the system appears in terms of Peano series,

which are well fitted for wave propagation problems in func-

tionally graded materials.19 These series apply to continu-

ously varying poroelastic properties and avoids problems

related to a lack of discretization when the materials are

approximated by stratified ones. Numerical results obtained

with this method are compared to calculations of the classi-

cal transfer matrix method performed with the validated

MAINE3A code20 for a known two-layers porous material,

considered as a single inhomogeneous layer. The transfer

matrix method is particularly suitable to solve problems

involving a layered configuration.

Numerical results are also compared to experimental

measurements at normal incidence. The experiment consists

in recording waves reflected by the chosen two-layered

porous medium laid on the floor of a semi-anechoic room

when excited at normal incidence by a dipolar source.

Finally, applications in material design for engineering

applications are treated, by comparing the absorption coeffi-

cient of a macroscopically inhomogeneous porous plate with

various inhomogeneity profiles that are either continuous or

discontinuous.

II. EQUATIONS OF MACROSCOPICALLY
INHOMOGENEOUS POROUS MATERIALS

As pointed out by several authors,9,21,22 the generalized

formulation of the Biot theory9 is suitable to macroscopi-

cally inhomogeneous porous media and also to take into

account anisotropy and viscoelastic frames. Recently,

another formulation was proposed in Ref. 23 that is also suit-

able to macroscopically inhomogeneous porous media. The

article focuses on the alternative Biot’s formulation, which

is largely employed in acoustics and geophysics.

Rather than dealing directly with the arbitrary field �sðx; tÞ
[with x¼ (x1,x2)], we prefer to deal with the s(x,x), related to

�sðx; tÞ by the Fourier transform �sðx; tÞ ¼
Ð1
�1 sðx;xÞeixtdx,

wherein x ¼ 2p� is the angular frequency, with v the fre-

quency. Henceforth, we drop the x in s(x,x) so that it is writ-

ten s(x).

From the alternative formulation of Biot,9 the stress

strain relations in an initially stress free, statistically iso-

tropic poroelastic material take the form

rij ¼ 2Neij þ kch� aMfð Þdij;
p ¼ M f� ahð Þ;

�
(1)

where in dij denotes the Kronecker symbol. The components

of the total stress tensor are rij, the fluid pressure in the

pores is p, and the components of the strain tensor are

eij¼ 1/2(ui,jþ uji), with the solid displacement u, h¼ ui,i,

and f¼—wi,i with the fluid/solid relative displacement

w¼/ (U — u) (U being the fluid displacement and / the

porosity). The Einstein summation notation is implicit in the

expressions of h and f. The material properties24 are the bulk

modulus of the closed porosity system, i.e., in which the

pore volume is sealed, kc ¼ kþ a2M, the Lamé coefficients

of the elastic frame k and N, an additional elastic parameter

M, and an elastic coupling coefficient a.

These mechanical coefficients are related to the more

commonly used in acoustics P, Q, and R coefficients from

the original formulation25 through

a ¼ / Qþ Rð Þ=R; M ¼ R=/2;

kc ¼ P� Q2=R� 2N þ a2M: (2)

The expressions of P, Q, and R, in case of air saturated mate-

rials, reduce to26

R ¼ / ~Kf ;Q ¼ ~Kf ð1� /Þ;
P ¼ Kb þ 4N=3þ 1� /ð Þ2 ~Kf =/; (3)

wherein the bulk modulus of the skeleton is Kb¼ 2N (1þ v)/

3 (1 – 2v), the Poisson coefficient (of the skeleton) is v, and

~Kf ¼
cP0

c� c� 1ð Þ 1þ i
x0c
xPr

GðxPrÞ
� ��1

: (4)

The correction function G(xPr), introduced in Ref. 27 to

account for the thermal losses, is

GðxPrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� igqf xPr

2s1
R0t/K0

� �2
s

; (5)

whith x0c ¼ R0t/=qf s1; c the specific heat ratio, Pr the Prandtl

number, s1 the tortuosity, R0t the “thermal resistivity,” and K0

the thermal characteristic length. The thermal resistivity

is related to the thermal characteristic length27 through

R0t ¼ 8s1g=/K02.

In the absence of body forces, the conservation of mo-

mentum and the generalized Darcy’s law lead to the follow-

ing equations in the frequency domain:

x2qf wi þ x2qui ¼ �rij;j;

x2qf ui þ x2 ~qeqwi ¼ p;i;

�
(6)

wherein the bulk density of the porous medium is q, such

that q ¼ ð1� /Þqs þ /qf with qs the density of the solid
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and qf the density of the saturating fluid, and the mass pa-

rameter ~qeq (Refs. 9 and 28) is

~qeq ¼
qf s1

/
1þ i

xc

x
FðxÞ

h i
: (7)

The correction function F(x), introduced in Ref. 28 and

which accounts for the viscous losses, is given by

FðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� igqf x

2s1
Rf /K

� �2
s

; (8)

with the Biot frequency xc ¼ Rf /=qf s1, the flow resistivity

Rf and the viscous characteristic length K. The mass parame-

ter ~qeq is the complex frequency dependent equivalent density

used in the rigid frame approximation, while the complex fre-

quency dependent equivalent bulk modulus ~Keq used in this

approximation is related to ~Kf through ~Kf ¼ / ~Keq. For most

foams, the elastic coupling coefficient a reduces to 1,

M ¼ ~Keq and kc reduces to kc ¼ Kb � 2=3N þ a2M.

In the previous equations, N, k (and v), kc, a, M, /, s1,

K, K0, R0t, Rf are x dependent.

III. NUMERICAL EVALUATION OF THE PRESSURE
FIELD

A. Description of the configuration

Both the incident plane acoustic wave and the plate are

assumed to be invariant with respect to the Cartesian coordi-

nate x3. A cross-sectional x1-x2 plane view of the 2D scatter-

ing problem is shown in Fig. 1.

The upper and lower boundaries of the layer are flat and

parallel. They are designated by CL and C0 and their x2 coor-

dinates are L and 0. The porous material M[1] occupies the

domain X[1]. The inhomogeneity of the plate occurs along

the x2 direction, i.e., N, k (and v), kc, a, M, /,s1, K, K0, R0t,
Rf are x2-dependent. An isotropic macroscopically inhomo-

geneous porous material is considered. The material can be

viewed as a functionally graded material. The surrounding

and saturating fluid is the air medium (density qf¼ 1.213 kg

m�3, atmospheric pressure P0¼ 1.01325� 105 Pa, and vis-

cosity g¼ 1.839� 105 kg m�1 s�1). The inhomogeneous po-

rous layer is backed by a rigid plate at C0.

We denote the total pressure, wavevector and density,

respectively, with p[0], k[0] and q[0] in X[0] and the total stress

tensor, the fluid pressure in the pores, the solid displacement,

and solid/fluid relative displacement respectively with r[1],

p[1], u[1] and w[1] in X[1].

The wavevector k
i of the incident plane wave lies in the

sagittal plane and the angle of incidence is hi measured

counterclockwise from the positive x1 axis. The incident

wave, initially propagating in X[0], is expressed by piðxÞ
¼ Aiei k1x1�k

½0�
2

x2�Lð Þð Þ, wherein k1 ¼ �k½0� cos hi, k
½0�
2 ¼ k½0�

sin hi and Ai¼Ai(x) is the signal spectrum.

The uniqueness of the solution to the forward-scattering

problem is ensured by the radiation condition:

p½0�ðxÞ�piðxÞ� outgoing waves; xj j!1; x2 >L: (9)

B. The state vector formalism and Peano series

The spatial Fourier transform of the Eqs. (1) and (6) is first

performed. The transform ŝðx2; k1Þ of s(x) is also introduced

and can be written in the form sðxÞ ¼ ŝðx2; k1Þeik1x1 because

of the plane wave nature of the excitation. Henceforth, we

drop the k1 in ŝðx2; k1Þ so that it is written ŝðx2Þ. The geome-

try of the configuration being planar and infinite along the

x2-axis, the fields components that are continuous along the

inhomogeneity and the boundary conditions apply either to

s(x) or to ŝðx2Þ.
Inside the domain X[1] the normal components of the

total stress tensor,r 1½ �
12 and r 1½ �

22, the pressure p[1], the solid

displacements, u
1½ �

1 and u
1½ �

2 , and the normal component of

the solid/fluid relative displacement w
1½ �

2 are continuous

along the x2-axis. It seems natural to choose these 6 parame-

ters as components of the state vector. Nevertheless,

it seems better to adapt these components to the considered

boundary problem. On one hand, at the interface CL,

the normal components of the stress tensor

ðr½1�12 ¼ 0; r½1�22 ¼ �p½0�Þ, the pressure (p[1]¼ p[0]), and normal

component of the velocity �ixðw½1�2 þ u
½1�
2 Þ ¼ V

½0�
2 with V

½0�
2

the normal component of the velocity in X[0]) are continu-

ous. On the other hand, the solid displacement and the

normal component of the solid/fluid relative velocity

vanish at the interface C0, i.e., u
½1�
1 ¼ 0; u

½1�
2 ¼ 0 and

�ixðw½1�2 þ u
½1�
2 Þ ¼ 0. Because u

½1�
2 and w

½1�
2 are continuous at

any x2 in X[1], the normal component of the velocity

�ixðw½1�2 þ u
½1�
2 Þ is also continuous. The normal component

of the solid/fluid relative displacement w2 is also replaced

by V
½1�
2 ¼ �ixðw½1�2 þ u

½1�
2 Þ in Eqs. (1) and (6). This parame-

ter is preferred to w
½1�
2 to define the wave vector.

After spatial transform, the Eqs. (1) and (6) split into

two systems of equations (see the Appendix): one set of six

first order differential equations only depending on the

components of the column state vector Ŵ ¼< r̂½1�12 ; r̂
½1�
22 ; p̂

½1�;

û
½1�
1 ; û

½1�
2 ; V̂

½1�
2 > , and one set of two equations that linked the

two last unknows, br 1½ �
11 and bw 1½ �

11, to the components of the

state vector. The problem also reduces to the solution of

the first order differential matrix system composed of the

first six first order differential equations:

@

@x2

bW � A bW ¼ 0; (10)

with A¼— B21D, wherein

B ¼

1 0 0 0 ik1 kc � aMð Þ �k1aM

x
0 1 0 0 0 0

0 0 �1 0 0 0

0 0 0 N 0 0

0 0 0 0 kc þ 2N � aM i
aM

x

0 0 0 0 a� 1ð ÞM i
M

x

26666666666664

37777777777775
; (11)
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and

D ¼

0 0 ik1

qf

~qeq

� k2
1aM

~qeqx2

!
qx2 �

q2
f

~qeq

x2 � k2
1 kc þ 2N �

qf

~qeq

aM

!
0 0

ik1 0 0 0 q� qf

� 	
x2 iqf x

0 0 0 0 qf � ~qeq

� 	
x2 i~qeqx

�1 0 0 0 ik1N 0

0 �1 �k2
1aM

~qeqx2
ik1 kc �

qf

~qeq

aM

!
0 0

0 0 1� k2
1M

~qeqx2
ik1M a�

qf

~qeq

!
0 0

26666666666666664

37777777777777775
: (12)

The matrices B and D are x2-dependent, because kc(x2),
a(x2), M(x2), N(x2),~qeq x2ð Þ, and q(x2) are x2-dependent. This

dependence has not been detailed in (11) and (12) for

conciseness.

The solution of system (10) takes the form

ŴðLÞ ¼ MŴð0Þ; (13)

wherein M is the so-called matricant,14 which relates the

value of the state vector Ŵð0Þ, at x2¼ 0, to the value of the

state vector ŴðLÞ, at x2¼L. Since A is x2 dependent (i.e., the

plate is not homogeneous or piecewise constant) and A does

not commute for different values of x2, i.e., ½Aðx2Þ;Aðx02Þ�
¼ Aðx2ÞAðx02Þ � Aðx02ÞAðx2Þ 6¼ 0, 8 x2; x

0
2

� 	
2 0; L½ �2; x2 6¼ x02,

the matricant M does not contain matrix exponentials or mul-

tiplications of matrix exponentials. The matricant is rather

defined by the so-called multiplicative integral satisfying the

Peano expansion.13,14,19,29 This avoids any problem related to

lack of discretization when the continuously varying material

is approximated by a piecewise constant material. The Peano

series reads as

M¼ Iþ
ðL

0

Aðx2Þdx2þ
ðL

0

Aðx2Þ
ðx2

0

AðfÞdf

� �
dx2þ��� (14)

and the evaluation of M is performed via the iterative

scheme

Mf0g ¼ I;

Mfng ¼ Iþ
ðL

0

Aðx2ÞMfn�1gðx2Þdx2;

8<: (15)

such that limn!1Mn ¼ M.

C. The boundary problem

The application of the boundary conditions at both inter-

faces CL ½r̂½1�12 ¼ 0; r̂½1�22 ¼ �p̂½0�; p̂½1� ¼ p̂½0�; V̂
½1�
2 ¼ V̂

½0�
2 ¼ �i=

xq@p̂½0�

@x2
� and C0 û1 ¼ 0; û2 ¼ 0; V̂

½1�
2 ¼ 0


 �
yields the state

vectors ŴðLÞ and Ŵð0Þ, which are required to solve the

problem. From the separation of variables, the radiation con-

ditions, and the spatial Fourier transform, the pressure field

in X[0] can be written as

bp½0� ¼ Aie�ik
½0�
2

x2�Lð Þ þ AiReik
½0�
2

x2�Lð Þ; (16)

where R is the reflection coefficient. The state vectors become

cWðLÞ ¼
br½1�12ðLÞbr½1�22ðLÞbp½1�ðLÞbu½1�1 ðLÞbu½1�2 ðLÞbu½1�2 ðLÞ

266666666664

377777777775
¼

0

�bp½0�ðLÞbp½0�ðLÞbu½1�1 ðLÞbu½1�2 ðLÞ

� i
xq
@bp½0�
@x2

����
x2¼L

2666666666664

3777777777775
¼ SþLL �

AiRbu½1�1 ðLÞbu½1�2 ðLÞ

264
375;

(17)

and

cWð0Þ¼
br½1�12ð0Þbr½1�22ð0Þbp½1�ð0Þbu½1�1 ð0Þbu½1�2 ð0ÞbV½1�2 ð0Þ

266666666664

377777777775
¼

br½1�12ð0Þbr½1�22ð0Þbp½1�ð0Þ
0

0

0

26666666664

37777777775
¼L0 �

br½1�12ð0Þbr½1�22ð0Þbp½1�ð0Þ
264

375; (18)

FIG. 1. Cross-sectional plane view of the configuration.
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wherein S accounts for the excitation of the system by the

plane incident wave, LL relates the unknowns R; û
½1�
1 (L) and

û
½1�
2 (L) to the state vector cWðLÞ, and L

0 relates the unknowns

r̂½1�12ð0Þ, r̂½1�22ð0Þ and p̂½1�ð0Þ to the state vector cWð0Þ. Their

expressions are

S ¼

0

�Ai

Ai

0

0

�Aik
½0�
2 =xq½0�

266666664

377777775 ; L0 ¼

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

266666664

377777775; and

LL ¼

0 0 0

�1 0 0

1 0 0

0 1 0

0 0 1

k
½0�
2 =xq½0� 0 0

266666664

377777775:
(19)

Finally, the introduction of (17) and (18) in (13) gives rise to

the final system of equations, whose solution contain the

reflection coefficient R

LL
 �

�M � L0
 � �

�

AiRbu½1�1 ðLÞbu½1�2 ðLÞbr½1�12ð0Þbr½1�22ð0Þbp½1�ð0Þ

266666666664

377777777775
¼ �S: (20)

This system is solved for each frequency and directly pro-

vide the reflection coefficient associated with the plane inci-

dent wave. The pressure field in X[0] can then be calculated

through p½0� ¼ p̂½0�eik1x1 . A similar system can be cast when

the inhomogeneous porous plate is not backed and radiate in

the air medium. In this case, a transmitted field is required

and the transmission coefficient is also calculated.

IV. VALIDATION ON A MULTILAYERED POROUS
MEDIUM

In order to validate the present method, calculations are

performed for a known two-layers poroelastic medium con-

figuration considered as a single poroelastic plate. Each layer

of the plate is a porous foam saturated by air. The character-

istic properties of each layer have been determined by classi-

cal methods26 and are given in Table I. The layer 1 is a

Eurocell foam while layer 2 is a Fireflex (Recticel, Wette-

ren/East-Flanders, Belgium) foam.

The choice of this configuration is motivated by the fact

that the results of the present method can be compared with

known results from the classical Transfer Matrix Method

(TMM) provided by MAINE3A20 and with experimental

measurements.

To consider the slab as a single inhomogeneous mate-

rial, the jump discontinuities in the two-layered system are

smoothed by using the following analytical continuous and

continuously differentiable function:

Iðx2Þ ¼ 1þ C

2
1þ erf

x2 � x0
2

r

� �� �
; (21)

wherein C is the step value, which is different for each

parameter in Table I, erf is the error function, x0
2 is the position

of the jump, and r corresponds to the steepness of the continu-

ous jump such that the smaller r is, the steeper is the jump.

The number of iterations required for the correct evalua-

tion of the matricant increases with frequency. A change of

variable like that proposed in Refs. 30 and 31 seems inaccu-

rate, because the characteristic parameters are frequency de-

pendent for porous materials. Moreover, a large number of

iterations is required for the correct evaluation, because

poroelastic materials are highly dissipative.

The configuration is discretized in with 1000 points

and the number of iterations for the evaluation of the Peano

series is 250. The jump position and its slope are fixed to

x0
2 ¼ 50 mm and r¼ 10�6, while the total thickness is

L¼ 69.8 mm.

A. Numerical validation

The results calculated with the present method are first

compared with those from the classical TMM provided by

MAINE3A at normal and oblique incidences. Figure 2 depicts

the real and imaginary parts of the reflection coefficient at

normal and oblique incidences by the two-layers medium

studied. The curves cannot be distinguished one from another.

This provides a validation of the model and of the solv-

ing method.

The real and imaginary part of the reflection coefficient

calculated with MAINE3A under the rigid frame approxima-

tion (�) and with the Limp model32 (h) are also plotted Fig.

2. Below 4000 Hz the rigid frame approximation is not valid

at the Biot resonances. This test emphasizes the added value

of the new method modeling the wave propagation in macro-

scopically inhomogeneous poroelastic foams at low frequen-

cies, and validates the method in the high frequency range.

The peaks at low frequencies are also attributed to Biot and

not to Limp effects. The method is also stable and robust.

B. Experimental validation

The principle of the experiment is shown in Fig. 3. A

1.58 m� 1.06 m plate of Eurocell of 5 cm thick is laid on

the floor of the semi-anechoic room available in ATF,

TABLE I. Properties of the two-layer medium studied.

/ s1 K lmð Þ K0 lmð Þ Rf (N s m�4) q (kg m�3) N (Pa) � Thickness (mm)

Layer 1 0.95 1.1 15 45 42000 126 280000 (1-0.05i) 0.24 50

Layer 2 0.96 2.2 110 352 9000 37 60000 (1-0.05i) 0.21 19.8
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KULeuven. A 1.5 m� 2 m plate of Fireflex of 1.98 cm thick

was then laid above of the Eurocell foam. The two foams are

in contact and not glued. The floor is supposed to be rigid.

A dipolar source, radiating a sweep from 100 Hz to 5000

Hz, is placed at the center of the Eurocell foam at

xs
2 ¼ 83 cm above the ground. A microphone is placed suc-

cessively at x
ð1Þ
2 ¼ 8:5 cm and x

ð2Þ
2 ¼ 9:5 cm above the

ground at the center of the source. The source center was

determined by recording the sweep signal with the micro-

phone at various positions along the x1 and x3 axis. The

source center corresponds to the maximum of amplitude

recorded by the microphone. This guaranties that the record-

ings are performed at normal incidence. The x2 position of

both the source and of the microphone ensure that, locally,

the field can be approximated by a plane wave. The recorded

signals are averaged over 30 waveforms. The pressures

recorded at both positions take the form pðjÞ ¼ Aie�ik½0�x
ðjÞ
2

þAiReik½0�x
ðjÞ
2 , j¼ 1, 2 at normal incidence. It directly equals

the spatial Fourier transform p̂ðjÞ ¼ pðjÞ, because the pressure

is recorded at normal incidence. From these two measure-

ments, the reflection coefficient at normal incidence can be

determined through

R ¼ pð1Þe�ik½0�x
ð2Þ
2 � pð2Þe�ik½0�x

ð1Þ
2

pð2Þeik½0�x
ð1Þ
2 � pð1Þeik½0�x

ð2Þ
2

: (22)

This formula is commonly used when the measuring tech-

nique, sometimes referred to as the Tamura method33 or

sometimes referred to as PP-method,34 is used. Figure 4

depicts the absolute value of the experimental reflection

coefficient calculated with the present method and measured

between 500 Hz to 5000 Hz. This frequency bandwidth is

usually considered as being the one over which the reflection

methods give accurate results. A fairly good match is found

between the curves. In particular, the peak around 800 Hz,

which corresponds to a modified Biot resonance of the Euro-

cell, is well recovered. The discrepancies between the two

curves can be explained by the fact that (1) a plane incident

wave is assumed, (2) the foams are of finite size, (3) the

boundary conditions between the rigid backing and the Euro-

cell foam does not correspond to perfectly rigid, (4) the two

foams are not perfectly in contact, and by (5) the spacing

between the two positions of the microphone. In order to

emphasize the pertinence of a macroscopically inhomogene-

ous porous material approach, the absolute value of the

reflection coefficient calculated for an homogeneous plate of

thickness L¼ 6.98 cm of Eurocell and of Fireflex is also

FIG. 2. Real and imaginary part of the reflection coefficient at normal incidence (a) and (b) and at hi¼p/6 (c) and (d) calculated with the present method (—),

with MAINE3A (—), with MAINE3A under the approximation of the equivalent fluid model (�), and with MAINE3A with the Limp model (h).

FIG. 3. Experimental setup.

6



plotted Fig. 4. Both results are quite far from the experimen-

tal curve and from the numerical calculation when the

two-layers configuration is modeled as a macroscopically

inhomogeneous material.

V. ASSUMPTION ON OTHER PROPERTY PROFILES

Macroscopically inhomogeneous porous materials offer

the possibility of wider applications in sound absorbing

material design than their macroscopically homogeneous

counterparts. In the following, examples of absorbing mate-

rial design are presented.

First, the acoustical properties of the previously studied

two-layered plate see (Table I) are considered but the jump

occurs at x0
2 ¼ L=2, i.e., the thickness of both foams is

equal to 3.49 cm. The slope is then varied from r¼ 10�6 to

r¼ 10�2. Then, a Hanning profile is considered by using the

following analytical continuous and continuously differen-

tiable function:

HðxÞ ¼ 1þ C

2
1� cos

x

L


 �h i
; (23)

wherein C is the relative difference in amplitude between the

value at both sides and the value in the middle of the slab.

Figure 5 depicts the profile generated for Rf as an exam-

ple (the other parameters also vary with an identical profile)

for r¼ 10�6, r¼ 10�2 and a Hanning profile, together with

the corresponding absorption coefficient A¼ 1� |R|2. The

absorption coefficient is one of the most important parame-

ters when designing a foam. These last years, this coefficient

has received a large attention, particularly the attempt of

increasing its value at low frequencies. Porous foams suffer

from a weak absorption at low frequency when compared to

their efficiency at higher frequencies. While a modification

of the slope only induces a frequency shift at higher frequen-

cies, the use of the Hanning profile enables to increase the

absorption coefficient at low frequency. When the foam

stack is reversed, the absorption coefficient differs in case of

single slope profiles, while it remains the same with symmet-

rical profiles as Hanning profile.

VI. CONCLUSION

A model of the acoustic response of macroscopically in-

homogeneous elastic frame porous materials derived from

the alternative Biot’s theory of 1962 was solved. A fast and

stable numerical method, derived from the state vector for-

malism together with Peano series was developed to solve

the macroscopically inhomogeneous poroelastic wave equa-

tions. To our knowledge, these equations are solved and

these methods are derived for the first time for poroelastic

materials. A validation of this method was made on the

example of a two-layers medium, by comparison to the exact

solution obtained by the transfer matrix method (MAINE3A)

at both normal and oblique incidence and by comparison to

experimental results at normal incidence. In the numerical

procedure, the jump of properties between the layers was

accounted for in the form of a single continuous function.

This result validates the present procedure. Finally, exam-

ples of the absorption coefficient are given for various prop-

erty profiles. These examples illustrate the possibility of

designing acoustically absorbing materials by controlling the

gradient of parameters. This last point requires further inves-

tigation, in particular, how the properties vary when the

foam is compressed. Another possible application of the

equations and method of solution derived here is the devel-

opment of an optimized inversion procedure to characterize

macroscopically inhomogeneous porous materials.

FIG. 4. Comparison between Rj j calculated with the present method (—)

and recovered with the measurement (�) and Rj j for a L-thick homogene-

ous plate of Fireflex (	 	 	) and of Eurocell (—).

FIG. 5. Example of the a profile considered (a) and the corresponding absorption coefficient (b): slope profiles with r¼ 10�6 (—) and r¼ 10�2 (- - -) and Han-

ning profile (	 	 	).
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APPENDIX: DERIVATION OF THE FIRST-ORDER
LINEAR ORDINARY DIFFERENTIAL SYSTEM

The expanded form of the spatial Fourier transform of

(1) and (6) is

r̂½1�11 ¼ ik1 kc þ 2Nð Þû½1�1 þ kc
@û
½1�
2

@x2

þ ik1aMbw1 þ aM
@ bw½1�2

@x2

;

r̂½1�12 ¼ ik1Nû
½1�
2 þ N

@û
½1�
1

@x2

;

r̂½1�22 ¼ ðkc þ 2NÞ@û
½1�
2

@x2

þ ik1kcû
½1�
1 þ ik1aMbw1 þ aM

@ bw½1�2

@x2

;

p̂½1� ¼ �aMik1û
½1�
1 � aM

@û
½1�
2

@x2

� ik1Mbw1 �M
@ bw½1�2

@x2

;

qx2û
½1�
1 þ qf x

2 bw1 ¼ �ik1r̂
½1�
11 �

@r̂½1�12

@x2

;

qx2û
½1�
2 þ qf x

2 bw½1�2 ¼ �ik1r̂
½1�
12 �

@r̂½1�22

@x2

;

qf x
2û
½1�
1 þ ~qeqx

2 bw1 ¼ ik1 ~p½1�;

qf x
2û
½1�
2 þ ~qeqx

2 bw½1�2 ¼
@~p½1�
@x2

: (A1)

The solid/fluid relative displacement ŵ
½1�
2 is then replaced by

V̂
½1�
2 ¼ �ixðŵ½1�2 þ û

½1�
2 Þ. From the first and seventh equations

of (A1), ŵ
½1�
1 and r̂½1�11 can be expressed in terms of p̂½1�, û

½1�
1 ,

û
½1�
2 , V̂

½1�
2

ŵ
½1�
1 ¼

1

~qeqx2
ik1p̂½1��qf x

2û
½1�
1


 �
;r̂½1�11¼ik1ðkcþ2NÞû½1�1

þðkc�aMÞ@û
½1�
2

@x2

þi
aM

x
@V̂
½1�
2

@x2

þik1aMŵ1¼ ik1ðkcþ2N�aM
qf

q̂eq

Þû½1�1

þðkc�aMÞ@û
½1�
2

@x2

þaM

x
@V̂
½1�
2

@x2

� k2
1

q̂eqx2
aMp̂½1�: (A2)

The introduction of (A2) in the six other equations of the

system (A1) leads to six first-order linear differential equa-

tions in terms of r̂½1�12, r̂½1�22, p̂½1�, û
½1�
1 , û

½1�
2 , and V̂

½1�
2 :

@r̂½1�12

@x2

þ ik1 kc � aMð Þ@û
½1�
2

@x2

� k1aM

x
@V̂
½1�
2

@x2

þ ik1

qf

~qeq

� k2
1

~qeqx2
aM

!
p̂½1� þ qx2 �

q2
f

~qeq

x� k2
1 kc þ 2N � aM

qf

~qeq

!!
û
½1�
1 ¼ 0 ;

@r̂½1�22

@x2

þ ik1r̂
½1�
12 þx2 q� qf

� 	
û
½1�
2 þ iqf xV̂

½1�
2 ¼ 0 ; � @p̂½1�

@x2

þx2 qf � ~qeq

� 	
û
½1�
2 þ i~qeqxV̂

½1�
2 ¼ 0 ;

N
@û
½1�
1

@x2

� r̂½1�12 þ ik1Nû
½1�
2 ¼ 0 ;

kc þ 2N � aMð Þ @û
½1�
2

@x2

þ i
aM

x
@V̂
½1�
2

@x2

� r̂½1�22 þ ik1 kc �
qf

~qeq

aM

!
û
½1�
1 �

k2
1aM

~qeqx2
p̂½1� ¼ 0 ;

M a� 1ð Þ @û
½1�
2

@x2

þ i
M

x
@V̂
½1�
2

@x2

þ 1� k2
1

~qeqx2
M

!
p̂½1� þ ik1M a�

qf

~qeq

!
û
½1�
1 ¼ 0 : (A3)

Introducing the state vector Ŵ ¼ hr̂½1�12 ; r̂
½1�
22 ; p̂

½1�; û
½1�
1 ;

û
½1�
2 ; V̂

½1�
2 i, the first-order linear ordinary differential system

can be written in the form

B
@

@x2

Ŵþ DŴ ¼ 0; (A4)

wherein B and D are defined in Eqs. (11) and (12).
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