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This paper describes a new reliable numerical method for computing chaotic solutions of dynam-
ical systems and, in special cases, is applied to Chen strange attractor. The numerical precision of
the computation is finely mastered. We introduce a modification of the method of power series for
the construction of approximate solutions of the Chen system together with forward/backward
control of the precision. As a test for the method, we obtained the region of convergence of
series and researched the behavior of the trajectories on this attractor. The results of a numer-
ical experiment are presented.
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1. Introduction

Can we trust numerical computations of chaotic
solutions of dynamical systems? This question has
been nagging mathematicians since the first discov-
ery of the Lorenz strange attractor [Lozi, 2013].
Theoretical proof of the existence of such strange
or hyperbolic attractor is very difficult to handle
and numerical computations are in many cases not
reliable due to the combined effects of rounding
error and sensitive dependence on initial condition
(the butterfly effect). Computer aided proofs are
also complex and require special interval arithmetic
analysis [Tucker, 1999]. Even nowadays, 40 years
after the discovery of the first strange attractor for
a mapping of the plane into itself [Henon, 1976], it is
unclear if this mapping possesses a strange attractor

for every value of the parameter in a small neigh-
borhood of the classical parameter value [Galias &
Tucker, 2015].

Concerning strange attractors of ordinary dif-
ferential equations, the problem seems even more
difficult to deal with, requiring tremendous effort
done only in the Lorenz case [Tucker, 1999].

Among such well known attractors, the Chen
attractor receives considerable attention since its
discovery in 1999 by Chen [Chen & Ueta, 1999;
Ueta & Chen, 2000]. In this article, we describe
a new reliable numerical method for computing
its chaotic solutions. This method combines sev-
eral numerical “ingredients”: power series, com-
putation of accurately jointed parts of trajectory,
forward and backward computation for matching
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the required precision. It can be applied to some
comparable attractors.

Let us consider the Chen system of a differential
equation:

ẋ = a(y − x),

ẏ = (c − a)x − xz + cy,

ż = xy − bz,

(1)

where a, b, and c are some numbers, called parame-
ters of the system. The system (1) is typically ana-
lyzed with a = 35, b = 3, and c = 28 (the classical
values of the parameters).

The divergence of the vector field

f(x, y, z)

= {a(y − x), (c − a)x − xz + cy, xy − bz}
is

div f = −a − b + c < 0.

This means that the system (1) is dissipative
because the volume of the limit set is zero. That
is, there is the compact set MC ⊂ R

3 in which
all trajectories of the system (1) belong when time
t → ∞. Thus, all trajectories of the dynamic sys-
tem (1) are attracted to the limit set, see [Nemyt-
skii & Stepanov, 1989, pp. 338–340]. Hence, the
attractor determines the behavior of the solutions
of system (1) when time goes to infinity.

In paper [Augustova & Beran, 2013] the authors
estimated the shape of MC . Let us surround the set
MC by the closed ball Sr of radius r.

Because of the lack of accurate methods for
solving nonlinear systems of ordinary differential
equations of general form, many researchers use
numerical methods to analyze the structure of the
attractors. Some of the commonly used are a com-
bination of the explicit Euler scheme with the
central-difference scheme [Lorenz, 1963], the Adams
scheme [Yorke & Yorke, 1979], higher derivatives
scheme [Sparrow, 1982], and fourth-order Runge–
Kutta method [Kaloshin, 2001]. For the classical
values of the system parameters, the solutions are
unstable, since the equilibrium points of the sys-
tem are the saddle type. Therefore, the above meth-
ods cannot be used, since the total error increases
with increasing integration interval [Babuska et al.,
1966, Sec. 3.2.3] (it cannot exceed 2r + δ, where δ
is rather small). Most importantly, the result can-
not be improved by decreasing the integration step
∆t, since the integration error has an extremum as a

function of ∆t. This problem can be solved by using
high-accuracy calculations [MPFR Library, 2015].
However, this approach restricts the study: first, the
way to decrease the error is narrow (to change ∆t
and the accuracy of real number representation in
order to control the calculation process). Second,
the number of operations needed for very small ∆t
is large. A new way to solve this problem is using
the method of power series tailored in particular
manner, as it is applied to the Lorenz system in
[Pchelintsev, 2014].

The aim of this paper is to apply this new and
very powerful method to the Chen attractor. In this
scope, it is necessary first to estimate the region of
convergence of the power series.

2. Description of the Numerical
Method

To find approximate solutions of systems of differ-
ential equations, the method of power series (or the
method of Taylor series) is sometimes used. The
integration error of the solution can be changed
by varying the accuracy of estimating the remain-
der term. Nowadays this method is rarely used (for
second-order linear systems [Agarwal & O’Regan,
2009]), because the calculations in the nonlinear
case are cumbersome (it requires symbolic calcu-
lations). However, in some cases [Gibbons, 1960;
Hairer et al., 1993; Butcher, 2003; Pchelintsev,
2014], one can get closed formulas for calculating
the coefficients of expansion.

The Chen system similarly to the Lorenz one,
has a polynomial right-hand side. This makes it
possible to use explicit formulas to calculate the
power series coefficients and estimate the region of
convergence.

Let

x(t) =
∞∑
i=0

αit
i, y(t) =

∞∑
i=0

βit
i,

z(t) =
∞∑
i=0

γit
i,

(2)

where x(0) = α0, y(0) = β0, and z(0) = γ0 are ini-
tial conditions for system (1). Differentiating (2) we
have

ẋ =
∞∑
i=0

(i + 1)αi+1t
i,
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ẏ =
∞∑
i=0

(i + 1)βi+1t
i,

ż =
∞∑
i=0

(i + 1)γi+1t
i.

The multiplications of the power series in the
Cauchy form are

xz =
∞∑
i=0

i∑
j=0

αjγi−jt
i, xy =

∞∑
i=0

i∑
j=0

αjβi−jt
i.

Equating the coefficients at the same powers, we
obtain from system (1) the following recurrence
relations to calculate the power series coefficients
in (2):

αi+1 =
a(βi − αi)

i + 1
,

βi+1 =

(c − a)αi −
i∑

j=0

αjγi−j + cβi

i + 1
,

γi+1 =

i∑
j=0

αjβi−j − bγi

i + 1
.

(3)

Although any trajectory of system (1) is in the
sphere Sr, and the right-hand side of this system
is analytical everywhere, a preliminary numerical
experiment demonstrated that the radius of con-
vergence of series (2) is bounded and dependent
on the initial conditions. Therefore, only a part
of the trajectory can be obtained by the above
method. The procedure we use consists in the con-
struction of areas of trajectory in any time inter-
val where series (2) converge and match those tra-
jectory parts; which give the global desired solu-
tion. The integration error accumulated when pass-
ing from one trajectory part to another (due to an
inevitable error of approximate parts of solutions)
can be controlled by varying the accuracy of power
series expansion. Here highly accurate calculation
is necessary for finding the solution for very large
time intervals, because the accuracy εp of power
series expansion cannot be less than the machine
epsilon εm.

Let us consider in more detail the procedure of
the construction of the arcs of trajectory in time
interval Ω = [0;T ], where the value T is given.

Let tl ∈ Ω, l = 1, N be a number of the time
interval [tl−1; tl], where series (2) converges, N is
the number of such intervals, t0 = 0, tN = T ,

Ω = [t0; t1] ∪ [t1; t2] ∪ · · · ∪ [tN−1; tN ].

We define the values α0, β0, and γ0 of an initial con-
dition for time t0. Then the coefficients αi, βi, and
γi (i = 1, 2, . . .) are calculated using formulas (3)
until the following estimate is valid

√
α2

i + β2
i + γ2

i |∆tl|i < εp, (4)

where ∆tl = tl − tl−1. The module in (4) is pro-
vided for negative values of the step ∆tl (let us
describe this later). Let x1(t), y1(t), and z1(t) be
the n1-power polynomials, which are obtained for
estimation (4) at a first stage (l = 1) of calculation.
In a second stage (l = 2) we set

α0 := xl−1(∆tl−1), β0 := yl−1(∆tl−1),

γ0 := zl−1(∆tl−1)

and translate the initial time t1 to zero for simplify-
ing the calculations (since system (1) is dynamic).
The nl-power polynomials xl(t), yl(t), and zl(t) are
good approximations of the corresponding part of
the arc of trajectory.

Let

nmin = min
l

nl, nmax = max
l

nl,

lmin = indmin
l

nl, lmax = indmax
l

nl,

∆tmin = min
l

∆tl, ∆tmax = max
l

∆tl,

dmin = indmin
l

∆tl, dmax = indmax
l

∆tl.

If τl is the region (radius) of convergence of the
power series (2), then the value ∆tl verifies

0 < ∆tl < τl,

or

−τl < ∆tl < 0.

The algorithm of constructing the arc of tra-
jectory is shown in Fig. 1. The variable way allows
to go back in time when its value is −1 (for going
forward way = 1). For the sake of simplicity, the
algorithm uses the positive values of time in both
directions of movement along a trajectory. Thus, the
algorithm makes it possible to construct an approx-
imate solution of forward and backward time.
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Fig. 1. The algorithm of constructing the arc of trajectory.
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We show below that the value ∆tl is different
for any l because τl depends on α0, β0, and γ0.

3. Estimating the Region of
Convergence of the Power Series

Estimating the region of convergence of series (2)
is important when approximate solutions of sys-
tem (1) are obtained by the method described
above. To do this, we introduce the following
notation:

h1 = max{2|a|, |c − a| + |c| + 2h2, |b| + 2h2},
h2 = max{|α0|, |β0|, |γ0|}.

If h2 ≥ 1, h3 = h1h2. Otherwise, h3 = max{2|a|,
|c − a| + |c| + 1, |b| + 1}.

Let us prove that series (2) converge for t ∈
(−τl; τl), where τl = 1/h3. For this, the number h3

(with h3|t| < 1) should be chosen such that

|αit
i| ≤ (h3|t|)i, |βit

i| ≤ (h3|t|)i,
|γit

i| ≤ (h3|t|)i.
Then series (2) converge absolutely by the direct
comparison test.

Theorem 1. The following inequalities hold

|αi| ≤ hi
3, |βi| ≤ hi

3, |γi| ≤ hi
3 (5)

for any natural number i.

Proof. We use mathematical induction.
Let us consider a case where h2 ≥ 1. Let us

show that (5) is valid for i = 1. From formulas (3),
we have

α1 = a(β0 − α0),

β1 = (c − a)α0 − α0γ0 + cβ0,

γ1 = α0β0 − bγ0.

Then

|α1| ≤ |a|(|β0| + |α0|)
≤ |a| · 2h2 = 2|a|h2 ≤ h1h2 = h1

3,

|β1| ≤ |c − a||α0| + |α0||γ0| + |c||β0|
≤ |c − a|h2 + h2

2 + |c|h2

= (|c − a| + |c| + h2)h2

≤ (|c − a| + |c| + 2h2)h2 ≤ h1h2 = h1
3,

|γ1| ≤ |α0||β0| + |b||γ0|
≤ h2

2 + |b|h2 = (|b| + h2)h2

≤ (|b| + 2h2)h2 ≤ h1
3,

which proves that (5) is valid when i = 1.
Assume that (5) is valid for i = k. Then it is

also valid for any j = 1, k, that is,

|αj | ≤ hj
3, |βj | ≤ hj

3, |γj| ≤ hj
3. (6)

Let us prove that (5) is valid for i = k + 1.
From formulas (3) and inequalities (6) we obtain
the estimate (considering that k ≥ 1 and h2 ≥ 1)

|αk+1| ≤ |a|
k + 1

(|βk| + |αk|) ≤ |a|(hk
3 + hk

3)

= 2|a|hk
3 ≤ h1h

k
3 ≤ h1h2h

k
3 = hk+1

3 .

Given the inequality (6) we have
∣∣∣∣∣∣

k∑
j=0

αjγk−j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
α0γk + αkγ0 +

k−1∑
j=1

αjγk−j

∣∣∣∣∣∣

≤ |α0||γk| + |αk||γ0| +
k−1∑
j=1

|αj ||γk−j|

≤ h2h
k
3 + hk

3h2 +
k−1∑
j=1

hj
3h

k−j
3

= 2h2h
k
3 + (k − 1)hk

3 ,∣∣∣∣∣∣
k∑

j=0

αjβk−j

∣∣∣∣∣∣
≤ 2h2h

k
3 + (k − 1)hk

3 .

We have (considering that k ≥ 1 and h2 ≥ 1)

|βk+1| ≤ 1
k + 1

×

|c − a||αk| +

∣∣∣∣∣∣
k∑

j=0

αjγk−j

∣∣∣∣∣∣
+ |c||βk|




≤ |c − a|hk
3 + 2h2h

k
3 + (k − 1)hk

3 + |c|hk
3

k + 1

=
|c − a|hk

3 + (2h2 − 1)hk
3 + |c|hk

3

k + 1

+
k

k + 1
hk

3
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≤ (|c − a|hk
3 + 2h2h

k
3 − hk

3 + |c|hk
3) + hk

3

= (|c − a| + |c| + 2h2)hk
3 ≤ h1h

k
3 ≤ hk+1

3 ,

|γk+1| ≤ 1
k + 1




∣∣∣∣∣∣
k∑

j=0

αjβk−j

∣∣∣∣∣∣
+ |b||γk|




≤ 2h2h
k
3 + (k − 1)hk

3 + |b|hk
3

k + 1

=
(2h2 − 1)hk

3 + |b|hk
3

k + 1
+

k

k + 1
hk

3

≤ (2h2h
k
3 − hk

3 + |b|hk
3) + hk

3

= (|b| + 2h2)hk
3 ≤ h1h

k
3 ≤ hk+1

3 ,

which proves that (5) is valid for any natural i when
h2 ≥ 1.

Now, let us consider the other case h2 < 1, and
prove by induction that (5) is valid in this case. For
i = 1 we have

|α1| ≤ 2|a| ≤ h1
3,

|β1| ≤ |c − a| · 1 + 1 · 1 + |c| · 1 ≤ h1
3,

|γ1| ≤ 1 · 1 + |b| · 1 ≤ h1
3.

Hence, when i = 1, statement (5) is valid.
Assume that (5) is valid for i = k.
Let us prove that (5) is valid for i = k + 1. It

follows from formulas (3) and the above assumption
that

|αk+1| ≤ 2|a|hk
3 ≤ h3h

k
3 = hk+1

3 ,
∣∣∣∣∣∣

k∑
j=0

αjγk−j

∣∣∣∣∣∣
≤ 1 · |γk| + |αk| · 1 + (k − 1)hk

3

≤ hk
3 + hk

3 + (k − 1)hk
3

= (k + 1)hk
3 ,∣∣∣∣∣∣

k∑
j=0

αjβk−j

∣∣∣∣∣∣
≤ (k + 1)hk

3 ,

|βk+1| ≤ |c − a|hk
3 + (k + 1)hk

3 + |c|hk
3

k + 1

=
|c − a|hk

3 + |c|hk
3

k + 1
+ hk

3

≤ |c − a|hk
3 + |c|hk

3 + hk
3

= (|c − a| + |c| + 1)hk
3

≤ h3h
k
3 = hk+1

3 ,

|γk+1| ≤ (k + 1)hk
3 + |b|hk

3

k + 1

= hk
3 +

|b|hk
3

k + 1

≤ hk
3 + |b|hk

3 = (|b| + 1)hk
3

≤ h3h
k
3 = hk+1

3 ,

which proves that (5) is valid for any natural i when
h2 < 1. �

It should be noted that the above scheme for
obtaining the convergence domain of the power
series can be, by analogy, extended to other
third-order dynamic systems with nonlinearities of
form (1). The paper [Pchelintsev, 2014] is concerned
with the Lorenz system.

4. Numerical Results

In this section, we present the results of computa-
tion based on the above scheme. In this example,
the precision floating-point calculations are imple-
mented on the basis GNU MPFR Library [MPFR
Library, 2015], and to be more precise, the high-
performance C++ interface [Holoborodko, 2015] for
MPFR library is used with arbitrary-precision real
numbers in C++. It is convenient because it has
the class mpreal with the overloaded arithmetic
operations and friendly mathematical functions (for
instance, fabs() and sqrt()). All figures are made
in the program gnuplot [Gnuplot, 2015].

In paper [Tucker, 2002, pp. 90, 91], the Euler
method with a variable integration step ∆t is used
to study the behavior of trajectories on the attrac-
tor. The value of ∆t taken in the calculations is
chosen by error tracing at the current step (that is,
by local control) using interval arithmetic. However,
the total integration error is not verified. In order
to remove this drawback, we use the same method
time reversely from the final point to a neighbor-
hood of the initial one of the arc of trajectory. This
method guarantees that the approximate solution is
constructed correctly. The error with respect to the
step can be decreased by varying the accuracy εp,
which is not allowed in the Euler method. In the
above-considered modification of the power series
method, an advantage over the general scheme of
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Fig. 2. The arc of trajectory constructed in the time interval [0; 15] for x(0) = y(0) = z(0) = 1.

Fig. 3. The arc of trajectory constructed in the time interval [0; 8.411] for x(0) = −10.33913519761, y(0) = −11.10031188035
and z(0) = 23.84877914089.
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the Taylor series method is that the expansion coef-
ficients can be rapidly calculated by formulas (3) in
comparison to the procedure of symbol differentia-
tion of the right-hand sides of the system equations
(in the nonlinear case, much memory is needed to
store the symbol expressions in the calculation of
the higher-order derivatives).

To research the trajectories of the attractor (for
the classical values of the system parameters) we
take an arbitrary starting point and construct the
arc of trajectory for the large time interval [0; 15]:

x(0) = y(0) = z(0) = 1,

we get the result (shown to the 11th decimal place)

x(15) = −10.33913519761,

y(15) = −11.10031188035,

z(15) = 23.84877914089,

(7)

wherein εp = 10−80, εm = 9.81819 ·10−91 (the num-
ber of bits for the mantissa of a real number was
taken as bm = 300). The above-given accuracy in
representing real numbers was taken to go back in
time from the final point to the initial one in the tra-
jectory. As a result, we have values coinciding with

the initial ones to the third decimal place. The arc
of trajectory constructed in the time interval [0; 15]
is presented in Fig. 2.

The choice of such a small value of εp is due
to the fact that when moving along a trajectory
following reverse time, the solutions are strongly
unstable: they immediately go to infinity from the
attractor, since in our calculations we are close to it
but not directly on it. However, we cannot always
go back to the acceptable neighborhood of the start
point. If a value of the accuracy εp is large, then
the point of the trajectory will go to infinity when
going back because there is the strong unstability.
Then, the value ∆tl has to be very small (it follows
from Sec. 3 of this paper). Based on the block dia-
gram in Fig. 1 this fact will cause the significant
deceleration of calculations.

According to Birkhoff’s theorem [Nemytskii &
Stepanov, 1989, Part Two, Sec. 7], the Chen attrac-
tor contains recurrence trajectories, and every such
trajectory is Poisson-stable [Nemytskii & Stepanov,
1989, Part Two, Sec. 4]. This means that there exist
arbitrarily large values of tρ such that a point of
the trajectory belongs to any ρ-neighborhood of its
initial value,

η(tρ) =
√

(x(tρ) − x(0))2 + (y(tρ) − y(0))2 + (z(tρ) − z(0))2 < ρ.

Let us use the coordinates (7) as the coordi-
nates of the starting point because it is near to the
Chen attractor. The arc of trajectory constructed
in the time interval [0; 8.411] is presented in Fig. 3.
The arrow shows the trajectory when it returns to
the ρ-neighborhood of the starting point.

We give the result in Tables 1 and 2 (not all
decimal places are displayed) wherein the distance

Table 1. The values of coordinates.

No. t x(t) y(t) z(t)

1 0 −10.3391 −11.1003 23.8488
2 3.695 −10.4283 −10.7454 23.3929
3 8.411 −10.5177 −10.7434 23.5557

Table 2. The values of derivatives.

No. t ẋ(t) ẏ(t) ż(t)

1 0 −26.6412 8.14097 43.2213
2 3.695 −11.0986 16.0749 41.8775
3 8.411 −7.89935 20.561 42.3287

η(t) is equal

η(3.695) = 0.58, η(8.411) = 0.5.

To go back on time and identify all decimal places
of the starting point coordinates, we must take

Table 3. The results of calculating experiment at
T = 3.695 and T = 8.411 for way = 1.

T 3.695 8.411

N 7549 16869
nmin 18 19
lmin N N
nmax 27 27
lmax 2304 2304
tlmin 3.69487 8.41082
tlmax 1.26107 1.26107
∆tmin 0.000129384 0.000179493
dmin lmin lmin

tdmin tlmin tlmin

∆tmax 0.00124324 0.00124324
dmax 2299 2299
tdmax 1.25485 1.25485
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Table 4. The results of calculating experiment at
T = 3.695 and T = 8.411 for way = −1.

−T −3.695 −8.411

N̂ 7549 16869
n̂min 18 19

l̂min N̂ N̂
n̂max 27 27

l̂max 5206 14526
t
l̂min

−3.69489 −8.41083

t
l̂max

−2.38689 −7.10279

∆tmax −0.000109911 −0.000165672

d̂max l̂min l̂min

t
d̂max

t
l̂min

t
l̂min

∆tmin −0.00124325 −0.00124325

d̂min 5252 14572
t
d̂min

−2.44001 −7.15587

0 < εp ≤ 10−53,

0 < εm ≤ 2.54895 · 10−57 (bm ≥ 189).

This computation also shows the results in
Tables 3 and 4 (t is counted from 0 to −T for
Table 4).

We then get

N = N̂ , tlmax + |tl̂max
| ≈ T,

dmax + d̂min ≈ N, tdmax + |td̂min
| ≈ T,

which also confirms the correctness of the data in
the calculating experiment.

5. Conclusion

The calculations have shown that in the Chen sys-
tem the dynamical behavior of the solutions on the
attractor is rather complicated (see the animation
[YouTube, 2015]), and the recurrence trajectories
in the attractor can, for instance, be described as
almost periodic solutions or have a more compli-
cated structure [Pchelintsev, 2013]. From an analy-
sis of the derivatives in Table 2, we can say that the
trajectory is not closed, wherein the computational
error is much smaller than the radius ρ neighbor-
hood of the starting point we choose.

In the computing experiment, error accumu-
lates at each step. As a result, we get the point
either on another recurrent trajectory, or on a tra-
jectory near the attractor, or on the same trajectory
but to the point corresponding to another moment
of time, due to the Poisson stability.
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