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Abstract
Purpose – The purpose of this paper is to present the optimization of the power flows inside a microgrid
with renewable sources and two kinds of storage. The considered microgrid consists in commercial
buildings with maximum daily peak value of 50 kW, photovoltaic arrays with total capacity of 175 kW,
a 50 kW/50 kWh high speed flywheel storage and a 50 kW/50 kWh set of Li-ion accumulators.
Design/methodology/approach – The power flows in the microgrid are optimized the day ahead at
one hour discretization in order to minimize the electric bill. Several scheduling strategies are proposed
for solving the corresponding optimization problem including standard deterministic methods, stochastic
algorithms and hybrid heuristics.
Findings – All scheduling strategies investigated in the paper are compared with regard to their
accuracy and computational time.
Originality/value – Beyond the comparison of different algorithms devoted to the power flow
optimization problem, the authors approach also addresses the integration of battery ageing in the
scheduling strategy.
Keywords Battery ageing, Mixed integer linear programming, Niching evolutionary algorithms,
Power flow optimization, Smart grid

1. Introduction
With the growing number of renewable energy sources, major changes have occurred in
electrical grid architecture in the past ten years. In the near future, the grid could be
described as an aggregation of several microgrids both consumer and producer (Celli
et al., 2004). A microgrid is a portion of the electrical distribution system, containing
distributed generation (DG) and local electrical loads, which can exchange power with the
main electrical network through a point of delivery. The management of the microgrid
requires choosing the most appropriate mix of power production and power purchase
from the grid in order to minimize the overall energy cost fulfilling both user needs and
technical constraints at the same time. This optimal scheduling is often performed



considering price policy and forecasts for both consumption and production. If DG is
controllable, as in the case of internal combustion engines gen-sets, it can be a variable of
the optimization. On the contrary, if it is based on a renewable energy source like
photovoltaics (PV), it is taken as an assigned power production profile. If energy storage
is present, another degree of freedom is available and allows decoupling the time instant
of power production to make it comply with the peak consumption hours. In this paper,
the power flow optimization in a microgrid with PV production and two kinds of energy
storage (i.e. Li-ion accumulators and flywheel units) is studied. All power flows in the
microgrid are determined the day ahead from PV production and load consumption
forecasts in order to minimize the electric bill. Several scheduling strategies are
investigated and compared in terms of accuracy and computational time.

The remainder of the paper is organized as follows. In Section 2, the microgrid
topology and the models of its components are presented. Section 3 is devoted to the
formulation of the power flow optimization problem. Section 4 introduces several
optimization approaches for solving the scheduling problem. Those approaches are
tested on a typical test day and are discussed in Section 5. A particular attention is paid
to the integration of battery ageing in the power flow optimization. Finally, conclusions
are drawn in Section 6.

2. Model of the microgrid
2.1 Microgrid topology
The microgrid considered in the paper is composed of industrial buildings with a
subscribed power 156 kW and a PV generator with peak power of 175 kW. Two kinds
of storage including a 50 kW/50 kWh flywheel storage (FW) and a 50 kW/50 kWh
battery (BT) set of Li-ion accumulators. The power flow model of the microgrid is given
in Figure 1. All the microgrid components are connected though a common DC bus.
Voltages and currents are not represented and only active power flows are considered.
In the rest of the paper the instantaneous values are denoted as pi (t) while the profiles
over the periods of simulation are written in vectors pi. Due to the grid policy, three
constraints have to be fulfilled at each time step t:

(1) p1 (t)⩾ 0: the power flowing through the consumption meter is strictly
mono-directional.
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(2) p13 (t)⩾ 0: the power flowing through the production meter is strictly
mono-directional.

(3) p8 (t)⩾ 0: in order to avoid illegal use of the storage. FW and BT accumulators
cannot be discharged through the production meter.

The equations between all power flows are generated using the graph theory and the
incidence matrix similarly to Bolognani et al. (2011). As illustrated in Figure 1, four
degrees of freedom are required to manage the whole system from the power
production PPV (t) and load consumption Pload (t):

(1) p5 (t): the power flowing from/to the FW storage (defined as positive for
discharge power).

(2) p7 (t): the power flowing from/to the BT storage (defined as positive for
discharge power).

(3) p8 (t): the power flowing from the PV arrays to the common DC bus.

(4) p11 (t)¼ΔPPV (t) denotes the possibility to decrease the PV production (MPPT
degradation) in order to fulfill grid constraints. In particular when the power
supplier does not allow (or limits) the injection of the PV production into the
main grid while the consumption remains low and the storage fully loaded the
production would have to be reduced.

2.2 Models of the microgrid components
In this load flow model, all components are described by their efficiency which
expresses the different power losses:

• Power converters. The converter efficiencies are supposed to be constant
(typically ηCVS¼ 98 percent).

• FW model. The losses in the high speed FW are computed from the FW state of
charge (SOCFW in percent) and the FW power using a function Ploss (SOCFW) and
calculating the efficiency with a fourth degree polynomial ηFW (PFW). Both Ploss
and ηFW functions are extracted from measurements provided by the
manufacturer. Another coefficient KFW (in kW) is also introduced to estimate
the self-discharge of the flywheel (see (2) ). Once the overall efficiency is
computed, the true power PFW associated with the FW is calculated as well as the
SOCFW evolution using the maximum stored energy EFW (here 50 kWh), the time
step Δt (i.e. the scheduling period of one hour) and the control reference p5:

p5 tð Þo0-PFW tð Þ ¼ Ploss SOCFW tð Þð Þþp5 tð Þ � ZFW �p5 tð Þð Þ
p5 tð Þ40-PFW tð Þ ¼ Ploss SOCFW tð Þð Þþp5 tð Þ=ZFW p5 tð Þð Þ

(
(1)

p5 tð Þa0-SOCFW tþDtð Þ ¼ SOCFW tð Þ�PFW tð Þ�Dt
EFW

� 100

p5 tð Þ ¼ 0-SOCFW tþDtð Þ ¼ SOCFW tð Þ�KFW�Dt
EFW

� 100

8<
: (2)



The FW storage is supposed to ensure a significant number of cycles (typically
up to 100,000 cycles). Therefore, the ageing effects are neglected.

• BT model. The Li-ion accumulator is represented by the Shepherd model
(Tremblay and Dessaint, 2009) which predicts the voltage of the storage element
V (see Figure 2) as follows:

I40-V ¼ E0�R:I�K Qþ I :Dtð Þ Qnom
Qnom�QþAe�BQ

Io0-V ¼ E0�R:I�K:Q Qnom
Qnom�Q�K:I :Dt: Qnom

Qnom�0:1QþAe�BQ

8<
: (3)

where I denotes the BT current; E0 the open circuit voltage (or nominal voltage);
R the internal resistance; K the polarization voltage; Q the BT capacity; Qnom the
nominal BT capacity; A the exponential zone amplitude; and B the inverse time
constant of the exponential zone. The values of the main BT parameters are
determined by fitting the data provided by the manufacturer data in the case of a
saft 48 V Intensium-3.

The BT capacity Q is obtained from the BT current integration including the Faraday
efficiency ηF typically defined as:

I40-ZF ¼ 1
99:7%

Io0-ZF ¼ 99:7%

(
(4)

Self-discharge and memory phenomena are neglected in our model but ageing effects
are considered through the analysis of BT SOC cycles during the microgrid
exploitation with regard to the BT number of cycles to failure curve (see Figure 3(a)).
In practice, the cycle counting method known as “rainflow” based on Downing’s
algorithm (Downing and Socie, 1982) is applied for determining the number of cycles
Ncycle corresponding to different intervals of depth of discharge (DOD). Typically, the
whole DOD range is divided into 100 equally spaced intervals. Finally, the “equivalent”
number of full cycles oNcycleW is calculated as follows:

oNcycle4 ¼
X
DOD

ocycle DODð Þ � Ncycle DODð Þ (5)
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where the weight ωcycle evaluates the effect of a cycle at a given DOD with regard to a
cycle at full DOD, i.e.:

ocycle DODð Þ ¼ cF 100%ð Þ
cF DODð Þ (6)

The number of expected battery replacementNrep in the system over a given period can
be deduced from the corresponding equivalent number of full cycles:

Nrep ¼
oNcycle4
cF 100%ð Þ (7)

3. The power flow optimization in the microgrid
The power dispatching strategy aims at minimizing the electrical bill for the day ahead.
Prices of purchased and sold electricity are assumed to be time dependent with
instantaneous values, respectively denoted as Cp (t) and Cs (t). The time scheduling period
is one day discretized on a one hour basis within which the variables are considered to be
constant. References of the power flows associated with the degrees of freedom over this
period are computed in a vectorPref¼ [p5 p7 p8 p11] of 96 elements (i.e. the total number
of unknowns in the corresponding optimization problem). Once Pref is determined, all the
other power flows in the microgrid can be computed from the PV production and load
consumption. Then, p1 and p13 are known allowing the computation of the balance
between the purchased and sold energy expressed by the following cost function C (Pref):

C Prefð Þ ¼
X24 h

t¼0

Cp tð Þ � p1 tð Þ�Cs tð Þ � p13 tð Þ (8)

Three constraints are included into the power flow optimization problem in order to
ensure the unidirectional flows outlined in Section 2, i.e.:

gi pið Þ ¼
X24 h

t¼0

max 0;�pi tð Þð Þ2 ¼ 0 i ¼ 1; 8; 13 (9)

The limits for the SOC levels (between 0 and 100 percent) are also introduced with
adapted constraints. At last two additional constraints are considered with the aim of
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ensuring for both storage devices a SOC level of 50 percent at the beginning and at the
end of the scheduling period.

4. Optimal scheduling strategies of power flows in the microgrid
Due the non-linear relations in the microgrid model and the presence of constraints in the
power flow scheduling problem, non-linear and constrained optimizationmethods should be
preferred. In particular, several approaches have been used for solving that kind of problem:

• Classical non-linear programming methods, especially gradient-based algorithms
such as SQP (Whitefoot et al., 2011). Those deterministic methods quickly
provide a feasible solution to the scheduling problem but its quality usually
depends on the starting point (i.e. initial values of the Pref vector).

• Stochastic optimization methods such as genetic algorithms (Lai et al., 1997) or
particle swarm optimization algorithms (Abido, 2002). Such approaches are well
suited in the case of multimodal problems but are more expensive than
deterministic techniques in terms of CPU time.

Several approaches have been investigated in our work in order to perform the power
flow scheduling in the considered microgrid:

• The trust-region-reflective (TRR) algorithm (Coleman and Li, 1996) with multiple
starting points randomly sampled in the decision variable space.

• Two niching evolutionary algorithms: the clearing (CL) algorithm (Pétrowski,
1996) and the dynamic archive niching differential evolution (DANDE)
(Epitropakis et al., 2013).

• Two hybrid heuristics combining advantages of deterministic and stochastic
approaches. The first named as CL-TRR couples CL with TRR as follows: after each
generation, TRR is applied with a probability pl to an individual randomly chosen
in the population. This probability controls the balance between CL and TRR (i.e.
between exploration and exploitation of the search space solutions). The second
hybrid method uses a mixed integer linear programming (MILP) approach with the
CL. MILP has been already used for the power flow optimization of electrical
networks and small microgrids (Canova et al., 2009; Warkozek et al., 2012; Trodden
et al., 2012). It has been shown (Rigo-Mariani et al., 2013) in a similar study case with
a single FW storage that linear programming can be applied on a simplified linear
model of the microgrid by neglecting the “non-linear” features (i.e. FW efficiency and
self-discharge). MILP provides the optimal solution of the linear problem in a
significantly reduced computational time but the obtained solution has to be repaired
with a correction procedure in order to take the non-linear phenomena into account.
In the considered microgrid with two storage devices and higher level of non-
linearity resulting from the battery model characteristics, the MILP solution of the
simplified linear problem is introduced in the initial population of the CLwith the aim
of boosting the convergence speed. This second hybrid algorithm is called MILP-CL.

5. Test case, results and discussion
5.1 Typical test day
The scheduling methods presented in the previous section are evaluated on a particular
day whose characteristics are given in Figure 4. The consumption profile is extracted
from data provided by the microgrid owner while the production estimation is based on



solar radiation forecasts computed with a model of PV arrays (Darras et al., 2010).
Energy prices result from one of the fares proposed by the French main power supplier
increased by 30 percent. Thus, the purchase cost Cp has night and daily values with
0.10€/kWh from 10 p.m. to 6 a.m. and 0.17€/kWh otherwise. Cs is set to 0.1€/kWh which
corresponds to the price for such PV plants. In a situation with no storage device, all the
production is sold (66.0€) while all loads are supplied through the consumption meter
(94.5€). In that case, this leads to an overall cost equal to 28.5€ for the considered day.
It should also be noted that no grid constraints are introduced in the investigated tests.

5.2 Power flow optimization without taking the battery ageing into account
Power flows in the considered microgrid are optimized with the scheduling algorithms
introduced in Section 4 for the particular test day and with respect of the electricity cost
minimization presented in section. The TRR algorithm is applied with 100 independent
starting points randomly sampled in the decision variable space. CL and DANDE niching
evolutionary algorithms are used with a population of 100 individuals and a number of
generations of 50,000. The first hybrid heuristic CL-TRR is run on 500 generations only and
with a probability associated with TRR of pl¼ 5 percent. Finally, the second hybrid
heuristic MILP-CL is also tested with a reduced number of generations set to 500.
Ten runs are performed for all evolutionary-based approaches in order to take the
stochastic features into account. Table I provides the optimal electricity cost of the test day
obtained with the different scheduling algorithms. Best, worst and mean results are
underlined. Best values are indicated in italic type. It should be noted that negative values
indicate a benefit of the scheduling strategy on the particular day. All data should be
compared with the reference and non-optimized cost of 28.5€ which corresponds to the
electricity cost of the day for the microgrid without storage.
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Scheduling algorithm Best value Mean value Worst value SD CPU time

TRR −2.6€ 4.5€ 57€ 15€ 3min
DANDE −2.7€ 4.9€ 6.8€ 1.2€ 14.7 h
CL −2.6€ 0.6€ 2€ 1.2€ 11.9 h
CL-TRR −3.2€ −2.3€ −0.3€ 0.8€ 2.1 h
MILP-CL 0.9€ 4.8€ 9.8€ 3.8€ 13.8 min

Table I.
Results of the
scheduling
algorithms on the
particular test day
(energy cost
optimization)



It can be seen from this table that TRR significantly outperform all other scheduling
methods with regard to the CPU time leading to a benefit of 2.6€. This solution is quite
good compared to those obtained with the other algorithms. As expected CL and
DANDE niching evolutionary algorithms require a higher CPU time to find a good
solution but there are less sensitive to initial conditions. Best results are obtained with
the hybrid heuristic CA-TRR which can be considered as the most robust (due to the
minimum standard deviation) and accurate. In addition, the convergence speed is better
than DANDE and CL. The introduction of MILP solution in the CL algorithm does not
improve the convergence speed as indicated by the poor performance of MILP-CL with
a reduced number of generations.

5.3 Power flow optimization taking the battery ageing into account
The second power flow optimization approach consists in taking the BT ageing into
account. For that purpose, a battery cost CBT is added into the electricity cost balance. CBT is
considered as the cost of ownership for one day if the profile is run for the whole lifetime of
the system (typically 20 years). The required number of batteries Nbat is determined by
considering the ageing on 20 years. Then CBT is computed with a cost per kilowatt-hour
CkWh (typically 1,000€/kWh) and the nominal energyEBT in kWh in the following equations:

Nbat ¼ 1þNrep � 20� 365 (10)

CBT ¼ Nbat � CkWh � EBT

20� 365
(11)

With this new formulation of the cost, the optimal solution found in the previous
section leads to an overall cost of 45.3€ which is higher than the reference solution
(without storage). All scheduling algorithms are applied to this formulation including
the battery costs. The control parameters and the number of runs are identical to those
defined in the previous section. Results are given in Table II.

Unlike the previous case, TRR algorithm was unable to converge with this
formulation. This is not surprising if we consider the non-linear and multimodal
features of the BT cost related to the number of cycles to failure. Indeed, equivalent
values of this ageing indicator can be found for different shapes of SOC. This can also
explain the low efficiency of CL-TRR compared with the previous case. Nevertheless,
all stochastic approaches succeeded in finding a better cost value than the reference
solution. It should also be noted that the CPU time is increased for all algorithms due to
the use of the rainflow counting method.

Finally, Figure 5 illustrates the main power flows in the microgrid and the FW and BT
SOC’s corresponding to the optimal solutions found with both formulations (i.e. with and

Scheduling algorithm Best value Mean value Worst value SD CPU time

TRR 43.7€ 72.3€ 156€ 25.7€ 12min
DANDE 13.3€ 15.5€ 17.1€ 1.4€ 19.7 h
CL 9.2€ 9.7€ 10.6€ 0.5€ 17.2 h
CL-TRR 12.0€ 15.0€ 21.1€ 2.4€ 10.5 h
MILP-CL 10.7€ 14.2€ 20.4€ 3.5€ 34 min
Note: Results of the scheduling algorithms on the particular test day (electricity cost optimization
including battery ageing cost)

Table II.
Results of the

scheduling
algorithms

integrating battery
ageing
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without taking the BT ageing into account). It can be seen from this figure that the
number and deepness of the BT cycles are strongly reduced with the second formulation
including the BT ageing cost. Conversely, the FW storage is more exploited while the
power exchanged with the grid remains quite similar for both formulations.

6. Conclusions
In this paper, several scheduling algorithms have been applied in order to solve the
optimal day ahead scheduling of power flows in a microgrid with two storage devices
including Li-ion BT accumulators and a high speed FW. Two formulations of the
power flow optimization problem have been investigated based on the electricity cost
and on the BT ageing cost. Results show that the accuracy of the scheduling algorithms
and the optimal solutions found strongly depend on the problem formulation,
especially when the BT ageing cost is included in the cost balance. This can be easily
justified by the nature of the rainflow counting algorithm combined with the number of
cycles to failure curve used to estimate the BT lifetime from SOC variations. Such
criterion makes the scheduling problem more difficult by increasing the multimodality
features. All stochastic algorithms investigated in the paper were able to provide a
good solution in a few hours of CPU time consistent with a day ahead scheduling.
However, this CPU time should be further reduced in the context of the power flow
optimization with smaller time scheduling periods or if the optimal sizing of the
microgrid components is investigated over long periods of time (typically one year of
simulation) similarly to Rigo-Mariani et al. (2014). Such context will certainly require
the use of a MILP approach combined with a linear mircogrid model and a simpler and
linearizable BT lifetime criterion in order to reach convergence speeds of a few seconds.
This will be investigated in the perspectives of this work.
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