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Abstract

Over the past ten years, metric learning allowed the im-
provement of numerous machine learning approaches that
manipulate distances or similarities. In this field, local met-
ric learning has been shown to be very efficient, especially
to take into account non linearities in the data and bet-
ter capture the peculiarities of the application of interest.
However, it is well known that local metric learning (i) can
entail overfitting and (ii) face difficulties to compare two
instances that are assigned to two different local models.
In this paper, we address these two issues by introducing a
novel metric learning algorithm that linearly combines lo-
cal models (C2LM). Starting from a partition of the space
in regions and a model (a score function) for each region,
C2LM defines a metric between points as a weighted com-
bination of the models. A weight vector is learned for each
pair of regions, and a spatial regularization ensures that the
weight vectors evolve smoothly and that nearby models are
favored in the combination. The proposed approach has the
particularity of working in a regression setting, of working
implicitly at different scales, and of being generic enough so
that it is applicable to similarities and distances. We prove
theoretical guarantees of the approach using the framework
of algorithmic robustness. We carry out experiments with
datasets using both distances (perceptual color distances,
using Mahalanobis-like distances) and similarities (seman-
tic word similarities, using bilinear forms), showing that
C2LM consistently improves regression accuracy even in
the case where the amount of training data is small.

1. Introduction

In many machine learning tasks, like classification, clus-
tering or ranking, decisions are based on distance or sim-
ilarity functions. In order to capture the peculiarities of
the data of the applications at hand, a lot of work has
gone during the past ten years into automatically optimiz-

Figure 1: Limitation of local metric learning: While two points
belonging to the same region (e.g. in R1) can be managed by
the corresponding locally-learned metric (depicted as an ellipse),
two points from different regions (e.g. in R2 and R4) cannot be
accurately compared using a single local metric.

ing those functions, topic referred to as metric learning
[9, 3, 4]. Most of the time, a unique global metric is learned
over the input space, typically taking the form of a (lin-
ear) geometric transformation. This is the case for most of
the Mahalanobis-like metric learning approaches, such as
LMNN [22] or ITML [5]. However, it turns out that for data
that present multi-modalities and/or non-linearities, local
metric learning has been shown to be very efficient because
of its flexibility to capture well geometric variations of the
input space. On the other hand, a major problem of local
metric learning is that it can entail overfitting. Some recent
solutions have been proposed based on feature space dimen-
sionality reduction [8], manifold regularization [21] or gen-
erative models [15]. However, those approaches mainly fo-
cus on improving the results locally, i.e. while comparing
instances of the “same region” of the input space. There-
fore, they are not suited to compare points far from each
other. This limitation is illustrated in Figure 1.

One of the main objectives of our paper is to address this
pitfall by learning convex combinations of local metrics that
are not only good locally, but also globally relevant. Our
algorithm, called Convex Combinations of Local Models
(C2LM), basically optimizes for any pair of regions a vector
of weights corresponding to the contribution of each local
model while computing the distance or similarity between



two points of those regions (see Figure 2). By means of
manifold and vector similarity regularization, we constrain
the convex combinations to reflect the topological charac-
teristics of the input space and to vary smoothly. Since our
main aim is to learn the influence of each local metric, we
will assume in the rest of this paper that the input space has
been previously partitioned into regions and that on each
region a local metric has been learned to express its under-
lying geometry.

Our approach has another particularity: unlike the cur-
rent trend in metric learning, it lies in a regression set-
ting rather than in a classification framework. Indeed, it
is worth noticing that most metric learning methods use
side information brought by pairs of training examples in
the form of must-link/cannot-link constraints (also called
positive/negative pairs) or relative constraints (also called
training triplets). A metric learning method typically aims
to optimize the parameters of the metric such that it best
agrees with those constraints. It turns out that in some ap-
plications, the side information provided by the problem
of interest simply relies on pairs of examples associated to
a target score of (dis)similarity. This is the case in color
distance perception (that will constitute one of our two se-
ries of experiments), where training data take the form of
pairs of color patches and their reference perceptual dis-
tance ∆E00 [18]. This is also the case for databases made
of pairs of strings and their corresponding semantic distance
(see, e.g., the well known WordSim353 dataset1). A last
example comes from temporal sequence alignments, where
training data can be made of pairs of acoustic signals and
their corresponding optimal alignment (e.g. see [10]). In
such contexts, state of the art metric learning algorithms
face difficulties to accurately capture the idiosyncrasies of
the data. Indeed, the price to pay often implies a dramatic
increase of the number of constraints to satisfy. Here, we
overcome this issue by dealing with metric learning in a
regression setting that allows us to directly fit the target
scores.

When proposing a new algorithm for metric learning, it
is fundamental to prove that it is theoretically well-founded.
In this paper, a lot of work has gone into deriving theoret-
ical guarantees for our method through the algorithmic ro-
bustness framework introduced in [25]. We show that this
setting is particularly adapted to our framework because it
is based on a partition of the input space as we defined it for
our problem (see Section 3).

To recapitulate, our contributions are three fold:

1. We improve local metrics by learning linear combina-
tions of local models that (i) allow one to accurately
compare any pair of points, (ii) guarantees a certain

1http://alfonseca.org/eng/research/wordsim353.
html

Figure 2: Illustration of the influence of the local models based on
region distances: the more influent a local metric for the learned
metric, the lighter the color of the associated region. For example,
the local models of regions R6, R5, R7, R1 and R11 are more
influent than those of the other regions, while computing the dis-
tance between the two points of regions R6 and R5.

continuity of the distances in the entire input space,
and (iii) do not overfit;

2. We develop our metric learning approach in a regres-
sion setting that is not usual in this field;

3. We derive theoretical guarantees for our method
through the algorithmic robustness framework.

The remainder of this paper is organized as follows: in
Section 2, we introduce a short state of the art on metric
learning; Section 3 is devoted to the presentation of our al-
gorithm for which, in Section 4, we derive a generalization
bound based on algorithmic robustness; In order to show
that C2LM is able to deal with not only distance functions
but also similarity functions, we instantiate the local models
as Mahalanobis-like distances and as bilinear similarities;
Lastly, Section 5 is dedicated to the experiments. We con-
duct two series of experiments: a first one in color distance
perception, and a second one in string semantic similarities.

2. Related Work
A classic metric learning approach consists in learning a

unique Mahalanobis-like metric of the form dA(x1, x2) =√
(x1 − x2)TA(x1 − x2), with A positive semi-definite

(A � 0) [4]. If A = I , the metric is an Euclidean dis-
tance. If a Cholesky decomposition is applied to A (then
A = LTL), the distance function corresponds to computing
an Euclidean distance in a new space, where the data are
linearly rescaled. For instance, the authors of [24], using
pair-wise information, learn a metric that minimizes the dis-
tance between similar examples and maximizes the distance
between dissimilar ones and show that it improves results
in clustering tasks. Other common metric learning frame-
works are LMNN (Large-Margin Nearest Neighbors) pro-
posed in [22] for improving k-nearest neighbor (kNN) clas-
sification and ITML (Information-Theoric Metric Learning)
introduced in [5] for handling constraints and prior knowl-
edge on the metric by means of the LogDet regularization.

http://alfonseca.org/eng/research/wordsim353.html
http://alfonseca.org/eng/research/wordsim353.html


On the other hand, a global and linear metric may not
necessarily perform well for all problems, especially for
data that present multimodality and non-linearities. In those
cases, non-linear methods are more suitable, such as kernel
learning and local metric learning approaches. For instance,
in [23], Weinberger et al. have shown that learning simulta-
neously a set of local metrics, one for each region of the in-
put space or class label, improved their LMNN framework.

If local metric learning approaches can adapt well to
variations on the input space, they are also quite sensitive
to overfitting, especially when local metrics are learned in-
dependently from each other. In order to overcome this
problem, linear or non-linear combinations of local met-
rics (instead of only one metric) or kernels (see Multiple
Kernel Learning [1] and [7]) can be used to compare in-
stances and auxiliary information can be taken into account
by means of regularization terms. For instance, the authors
of [21] proposed a regularization based on the geometric
characteristics of the instance space: they learn jointly lin-
ear combinations of basis metrics (one local metric per re-
gion and one linear combination per input instance) and
constrain them to vary smoothly over the instances. The
weight vectors of close instances are then similar and reflect
the geometric characteristics of the input space. However,
the learned metrics are no longer symmetric and they are
accurate only when comparing instances relatively close to
each other. Another example of regularization is proposed
in [8], where the authors control the rank of the matrix of
the learned combinations of metrics, i.e. the total number
of parameters of the problem. Doing so, they penalize too
complex solutions, which are probably too specialized to
the training instances and have lost generalization power on
unseen instances. Their approach is based on the pair-wise
information about the similarity between instances and the
geometric structure of the input space is not taken into ac-
count.

Both frameworks [21, 8] are not suited for regression
tasks and their choice of defining a linear combination of
metrics for each input instance affects the complexity of
their problems: the number of parameters to be learned in-
creases with the size of the dataset. We claim that the po-
tential gained accuracy is not enough to justify the computa-
tional cost and, in any case, it entails some approximations
when testing on unseen data (they both assign the weight
vector of the closest training instance in term of Euclidean
distance).

As we will see, our approach (C2LM) is simple, theo-
retically founded, and accurate: it makes use of the geo-
metric characteristics of the input space and weight vectors
are learned on each pair of regions instead of each input
instance. Moreover, it can be applied for modeling both
distances and similarities; it is theoretically robust and has
good performances in practice.

3. Learning Convex Combinations of Local
Models

In this section, we present our optimization problem for
learning convex combinations of local models which takes
the form of a least absolute errors regression problem. For
the sake of clarity, we first give the few notations we will
employ in the rest of this paper.

3.1. Notations

Let X be the instance-pair space, i.e. the set of pairs
(x1, x2) ∈ U2, and y : X → Y ⊂ R a metric function
(the ground truth metric that can be a distance or a similar-
ity function). We assume that U is a compact [6] convex
metric space w.r.t. a norm ‖.‖ so that U ⊂ Rd. Thus, there
exists a constant R such that ∀x ∈ U, ‖x‖ ≤ R. We will
refer to Z = X × Y as the set of all possible valued pairs
p = (x1, x2, y(x1, x2)), where (x1, x2) ∈ X is a pair of
instances and y(x1, x2) is the associated target value. We
also denote P = {pi}ni=1 ⊂ Z the set of n training pairs.

3.2. Optimization Problem

Let us suppose that the instance space U has been de-
composed in K clusters or regions (one could perform
a Kmeans according to the Euclidean distance), denoted
{Rz}Kz=1 and, on each cluster, a local model sz : X → R
has been defined in order to compare instances belonging
to that specific cluster. Let S = {sz(.)}Kz=1 be the set of
metric functions related to the local models (which can be
distance functions, sz : U2 → R+, or similarity functions,
sz : U2 → R). Our aim is to define on each pair of regions
(Ri, Rj) = Rij a metric function tij : X → R as a convex
combination of S and that is symmetric. The problem we
are trying to solve is how to compare instances potentially
belonging to different clusters. For each pair of regions Rij
we will learn a vector Wij of positive weights represent-
ing the contribution of each local model while estimating
the similarity between an instance x1 ∈ Ri and an instance
x2 ∈ Rj . Therefore, the new metric function tij(x1, x2)
related to that pair of regions can be expressed as follows:

tij(x1, x2) =

K∑
z=1

Wijzsz(x1, x2). (1)

Notice that, as we want the new function to be a metric,
∀i, j = 1, ...,K tij(x1, x2) = tji(x2, x1): the K ×K ma-
trix of vectors W = [W11W12...WKK ] is symmetric, thus
∀i, j = 1...K, Wij = Wji.
We define a loss function l : Z → R over the training set
P , corresponding to the gap between tij and the ground
truth metric valued on each pair p = (x1 ∈ Ri, x2 ∈
Rj , y(x1, x2)):

l(W,p) = l(Wij , (x1 ∈ Ri, x2 ∈ Rj , y(x1, x2)))



= |tij(x1, x2)− y(x1, x2)| . (2)

Among all the possible norms, we choose to define our loss
function as a L1-norm, i.e. the least absolute deviations,
because of its robustness to outliers. This loss is assumed to
be uniformly upper-bounded by a constant B, i.e. for any
pair p ∈ Z the deviation of the predicted value from the
expected one is finite.
We define our optimization problem, called C2LM, as fol-
lows:

arg min
W

FP (W ) = R̂l + λ1D(W ) + λ2S(W )

s.t. ∀i, j = 1, ...,K :

K∑
z=1

Wijz = 1 andWij ≥ 0 (3)

where

R̂l =
1

n

∑
i,j,p∈Rij

l(W,p) =

=
1

n

K∑
i=1

i∑
j=1

∑
p∈Rij

∣∣∣∣∣
K∑
z=1

Wijzsz(x1, x2)− y(x1, x2)

∣∣∣∣∣ (4)

is the mean loss over all training pairs, and

D(W ) =

K∑
i=1

i∑
j=1

∥∥ETijWij

∥∥2
F

(5)

S(W ) =

K∑
i=1

i∑
j=1

K∑
i′=1

i′∑
j′=1

Kiji′j′ ‖Wij −Wi′j′‖22 (6)

are two regularizers used to avoid overfitting and λ1 and λ2
are the corresponding regularization parameters that have to
be tuned by cross-validation.

The first term, D(W ) takes into account the prior influ-
ence of each local model in the computing of a weight vec-
tor. For instance, for a vector Wij related to the pair of re-
gions (Ri, Rj), we penalize a solution that has big weights
associated to the local models that should not be influent in
the computing of the associated metric. As a matter of fact,
Eij is a 1 × K vector whose component Eijz represents
the prior influence of the metric sz . Eijz can be estimated
in different ways. In our work, we base this estimation on
the topological characteristics of the decomposition of the
space U . As we can see in Figure 2, a local model defined
on a region close to the pair of regions is more influent than
one far from it.

The second term, S(W ), expresses the correlations be-
tween different weights’ vectors. Through it, we force the
space of weights’ vectors to be smooth. In other words, we
constrain the vectors defined on close pairs of regions to
be similar. As for the prior influence, we base the estima-
tion of the similarity between two vectors Wij and Wi′,j′ ,

Figure 3: Similarity of a pair of regions: based on proximity, the
vector W56 should be more similar to the vector W11 than to the
vector W49.

Figure 4: Minimum Spanning Tree: the distance between two
regions corresponds to the number of edges of the shortest path
connecting them. E.g., dist(R5, R7) = 1, dist(R56, R4) =
dist(R5, R4) + dist(R6, R4) = 4 and dist(R56, R49) = 5.

expressed by the parameter Kiji′j′ , on the geometric char-
acteristics of the instance space U (see Figure 3).

In order to evaluate the prior influence of local mod-
els and the similarity between vectors of weights, we
need to define a distance function between regions. We
chose to build the Minimum Spanning Tree of the com-
plete graph of region centroids (computed using the Eu-
clidean distance), then to express the distance between
two regions as the number of edges of the shortest path
connecting them (see Figure 4). Therefore, for our ex-
periments, we will consider Eijz directly proportional to
dist(Rij , Rz) = dist(Ri, Rz) + dist(Rj , Rz) and the
similarity Kiji′j′ = exp(−dist(Rij , R′i′j)) exponentially
decreasing with dist(Rij , Ri′j′) = min(dist(Ri, Ri′) +
dist(Rj , Rj′), dist(Ri, Rj′) + dist(Rj , Ri′)).

The learned combinations of local models are convex, as
we fix their weights to be non-negative and to sum up to
1, and the resulting optimization problem is convex. Note
that the number of parameters to learn depends on the num-
ber of regions K defined on the input space and is directly
proportional to K3, then the number of constraints is also
directly proportional to K3. This is a main advantage of
applying C2LM to problems providing pairs of instances
and their target score, if we consider the fact that K � n:
in order to adapt the state of the art approaches (meant for
classification tasks) to this kind of problems, a number of
constraints directly proportional to the number of instances



of the dataset has to be added.

4. Robustness and Generalization Bound
In this section, we study the generalization ability of our

algorithm according to the notion of algorithmic robustness
introduced in [25]. This framework allows us to derive gen-
eralization bounds when the variation in the loss associated
with two nearby training and testing examples is bounded.
The closeness of two examples is based on the notion of
covering number. By making use of the Bretagnolle-Huber-
Carol inequality and proving that the metric functions sz(.)
are lipschitz continuous, we can can derive a PAC general-
ization bound for C2LM.

4.1. Theoretical guarantees

Let us define a partition of the space Z = X × Y of
all possible valued pairs p = (x, x′, y(x, x′)) in order to
establish if two pairs of instances are close. The partition is
based on the notion of covering number.

Definition 1 (Covering Number [20]) For a metric
space (S, ρ), and T ⊂ S, we say that T̂ ⊂ T is a γ-cover of
T if ∀t ∈ T , ∃t̂ ⊂ T̂ such that ρ(t, t′) ≤ γ. The γ-covering
number of T is

N (γ, T, ρ) = min{|T̂ | : T̂ is a γ-covering of T}. (7)

In other words, the γ-covering number of a metric space
corresponds to the minimum number of regions of radius at
most γ > 0 needed to cover it.
In order to define the closeness between instances of
a metric space Z = X × Y , both the input X and
the target Y spaces have to be partitioned. In most
works [2, 13, 12, 14], Y is the finite set of labels, so its
covering number is exactly equal to |Y | and two instances
are considered close if they have the same label. In our
setting, we partition the space X into N (γ1/2, X, ‖.‖2)
subsets and the space Y into N (γ2/2, Y, |.|), so that
any region of X (resp. Y ) has a diameter smaller than
γ1 (resp. γ2). In this way, if p = (x1, x2, y(x1, x2))
and p′ = (x′1, x

′
2, y(x′1, x

′
2)) belong to the same subset

of Z , then ‖x1 − x′1‖2 ≤ γ1, ‖x2 − x′2‖2 ≤ γ1 and
|y(x1, x2) − y(x′1, x

′
2)| ≤ γ2. In the rest of this paper, we

will refer to H = N (γ1/2, X, ‖.‖2)N (γ2/2, Y, |.|) as the
covering number of Z .

Definition 2 (Algorithmic Robustness [25]). An
algorithm A is said (H, ε(.))-robust, for H ∈ N and
ε : Z → R if Z can be partitioned into H disjoint subsets,
denoted by {Ci}Hi=1, such that the following holds for all
samples P ∈ Z:

∀p ∈ P,∀p′ ∈ Z,∀i = 1, ...,H

if p, p′ ∈ Ci then |l(A, p)− l(A, p′)| ≤ ε(P ).
(8)

The following concentration inequality provides a prob-
ability bound on the deviation of a multinomial random
variable from its expected value. We will use it for
obtaining information about the theoretical distribution of
the valued pairs p ∈ Z over the regions of the partition.

Proposition 1([20]) Let (|N1|), ..., |NH |) an IID (In-
dependent and Identically Distributed) multinomial ran-
dom variable with parameters n and (p(C1), ..., p(CH)).
By the Bretagnolle-Huber-Carol inequality we have:
P(
∑H
i=1

∣∣∣ |Ni|
n − p(Ci)

∣∣∣ ≥ λ) ≤ 2H exp −nλ
2

2 , hence with
probability at least 1− δ,

H∑
i=1

∣∣∣∣p(Ci)− |Ni|n
∣∣∣∣ ≤

√
2H ln 2 + 2 ln(1/δ)

n
. (9)

We denote Rl the true loss Rl = Ep∼Z l(W,p) and R̂l

the empirical loss R̂l = Ep∼P l(W,p) .
We can now derive a PAC generalization bound for

C2LM. We first prove that our algorithm is robust that
requires to prove that ∀z = 1, ...,K : sz(.) is θz-lipschitz.
According to the nature of the local metric functions sz(.),
the proof of θz-lipschitzness varies. In Sections 4.2 and 4.3,
we will instantiate sz(.) with Mahalanobis-like distances
and bilinear similarities.

Lemma 1 If ∀z = 1, ...,K, sz(.) is θz-lipschitz
w.r.t. the norm ‖.‖2, the optimization problem (3) is
(H, θ

√
2γ1 + γ2)-robust, with θ = maxz=1..K θz .

Proof. We can partition Z into H =
N (γ1/2, X, ‖.‖2)N (γ2/2, Y, |.|) disjoint subsets, such that
if p = (x1, x2, y(x1, x2)) and p = (x′1, x

′
2, y(x′1, x

′
2))

belong to the same subset Ch, then x1, x
′
1 ∈ Ri so

‖x1 − x′1‖2 ≤ γ1, also x2, x′2 ∈ Rj so ‖x2 − x′2‖2 ≤ γ1
and |y(x1, x2)− y(x′1, x

′
2)| ≤ γ2. We have, then:

|l(Wij , p)− l(Wij , p
′)| = (10)∣∣∣∣∣

∣∣∣∣∣
K∑

z=1

Wijzsz(x1, x2)−y(x1, x2)

∣∣∣∣∣−
∣∣∣∣∣
K∑

z=1

Wijzsz(x
′
1, x

′
2)−y(x′1, x′2)

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
K∑

z=1

Wijzsz(x1, x2)−
K∑

z=1

Wijzsz(x
′
1, x

′
2)−y(x1, x2)+y(x′1, x′2)

∣∣∣∣∣
(11)

≤

∣∣∣∣∣
K∑

z=1

Wijz(sz(x1, x2)−sz(x′1, x′2))

∣∣∣∣∣+∣∣y(x1, x2)−y(x′1, x′2)∣∣
≤

K∑
z=1

|Wijz|
∣∣sz(x1, x2)− sz(x′1, x′2)∣∣+ γ2 (12)

≤
K∑

z=1

|Wijz| θz

∥∥∥∥∥
(
x1
x2

)
−

(
x′1
x′2

)∥∥∥∥∥
2

+ γ2 (13)

≤ θ

∥∥∥∥∥
(
x1
x2

)
−

(
x′1
x′2

)∥∥∥∥∥
2

K∑
z=1

Wijz + γ2 (14)



≤ θ
√
2γ1 + γ2 . (15)

Eq. 11 is due to the reverse triangle inequality. Inequality
13 is valid because sz is multi-variate θz-lipschitz continu-
ous w.r.t. the norm ‖.‖2 (see below). In Eq. 14, we define
θ = max∀z=1..K θz and recall that ∀i, j = 1, ...,K : Wij ≥
0. Eq. 15 is due to

∑K
z=1Wij = 1.

√
2γ1 is the maximum

‖.‖2 distance between the two vectors.

In the previous proof, we made use of the notion of
Multi-variate Lipschitz continuity.
Definition 3 (Multi-variate Lipschitz continuity). A func-
tion f : U2 ⊂ Rd × Rd → R, with U a convex space, is
said θ-lipschitz w.r.t. the norm ‖.‖2 if ∃ θ ∈ R, θ > 0 that
∀x1, x2, x′1, x′2 ∈ U :

‖f(x1, x2)− f(x′1, x
′
2)‖2 ≤ θ

∥∥∥∥(x1x2
)
−
(
x′1
x′2

)∥∥∥∥
2

. (16)

Roughly speaking, a function that is lipschitz continuous
varies slightly within a certain interval. This property is fun-
damental for the robustness of our algorithm: the fact that
the functions S = {sz(.)}Kz=1 are θz-lipschitz continuous
implies that any linear combination of them returns similar
values when evaluated on instances belonging to the same
region of the partition. According to [26], the constant θ
can be estimated considering the fact that

θ = max
∀x1,x2,x′

1,x
′
2∈U

(
‖f(x1, x2)− f(x′1, x

′
2)‖2∥∥∥(x1

x2

)
−
(x′

1

x′
2

)∥∥∥
2

)
=

= max
∀x1,x2∈U

‖∇f(x1, x2)‖2 . (17)

We can now derive the generalization bound of C2LM.

Lemma 2 As FP (W ) is (H, θ
√

2γ1 + γ2)-robust
and the training set P is obtained from n IID draws
according to a multinomial random variable, for any δ > 0
with probability at least 1− δ, we have:

|Rl − R̂l| ≤ θ
√
2γ1 + γ2 +B

√
2H ln 2 + 2 ln 1/δ

n
. (18)

Proof: See Supplementary Material.

It is worth noting that this bound tends to zero as the
covering numberH increases (γ1 → 0 and γ2 → 0) and the
number of samples n → ∞. In the following subsections,
we will instantiate sz(.) with two different metric functions:
first as a Mahalanobis-like distance and then as a bilinear
similarity. For both of them, we will need to prove their θz-
lipschitz continuity and estimate their constant θz as defined
in Def. 3.

4.2. Derivation for Mahalanobis-like Local Models

The Mahalanobis distance of a pair (x1, x2) valued
for a local model z can be written as sz(x1, x2) =
dMz (x1, x2) =

√
(x1 − x2)TMz(x1 − x2) with Mz the

corresponding (learned) PSD matrix. Thus, our objective
function takes the following form:

FP (W ) =
1

n

K∑
i=1

i∑
j=1

∑
p∈Rij

∣∣∣∣∣
K∑
z=1

WijzdMz (x1, x2)− y(x1, x2)

∣∣∣∣∣
+ λ1D(W ) + λ2S(W ) (19)

where M = {M1, ..,MK} is a set of Mahalanobis metrics.

Lemma 3 ∀z = 1, ...,K the Mahalanobis distance
dMz

(x1, x2) is θz-lipschitz w.r.t. the norm ‖.‖2, with
θz =

√
2 ‖Lz‖2.

Proof: See [26].

Lemma 4 FP (W ) is (H, 2γ1 ‖L‖2 + γ2)-robust and for
any δ > 0 with probability at least 1− δ, we have:

|Rl − R̂l| ≤ 2γ1 ‖L‖2 + γ2 +B

√
2H ln 2 + 2 ln 1/δ

n
.

(20)

The constant ‖L‖2 corresponds to max∀z=1..K ‖Lz‖2 so
that θ =

√
2 ‖L‖2, because θz =

√
2 ‖Lz‖2.

4.3. Derivation for Bilinear Similarity Local Models

The bilinear similarity of a pair (x1, x2) can be written
as sz(x1, x2) = xT1Mzx2. Thus, our problem becomes:

FP (W ) =
1

n

K∑
i=1

i∑
j=1

∑
p∈Rij

∣∣∣∣∣
K∑
z=1

Wijzx
T
1Mzx2 − y(x1, x2)

∣∣∣∣∣
+ λ1D(W ) + λ2S(W ) (21)

where M = {M1, ..,MK} is a set of bilinear similari-
ties.

Lemma 5 ∀z = 1, ...,K the bilinear similarity
sz(x1, x2) = xT1Mzx2 is θz-lipschitz w.r.t. the norm ‖.‖2,
with θz =

√
2 ‖Mz‖2R.

Proof: See [26].

Lemma 6 FP (W ) is (H, 2γ1 ‖M‖2R)-robust and
for any δ > 0 with probability at least 1− δ, we have:

|Rl − R̂l| ≤ 2γ1 ‖M‖2R+ γ2 +B

√
2H ln 2 + 2 ln 1/δ

n
(22)

‖M‖2 = max∀z=1..K ‖Mz‖2 so that θ =
√

2 ‖M‖2R,
because θz =

√
2 ‖Mz‖2R.



5. Experiments
In this section, we aim at showing that C2LM is well

suited to deal with both distance and similarity functions.
Therefore, we empirically evaluate our method on two ap-
plications: first on the estimation of perceptual color dis-
tances and then on the estimation of semantic similarities
between words.

5.1. Applications and Datasets

Modeling perceptual color distances It is known
that a human observer cannot distinguish all the shades
corresponding to the different mixtures of light wave-
lengths. He is more sensitive to medium wavelengths (to
green/yellow colors) than to short and large wavelengths
of the visible spectrum. Moreover, human perception
strongly depends on variations of visual conditions, such
as brightness, luminance, background changes, and so
on. The perceived difference between colors cannot be
modeled using an additive color space as the RGB space,
because the corresponding distance is not proportional to
the Euclidean distance on that space.
In the past, several perceptual color spaces have been
proposed to better model the human color perception :
CIELuv and CIELab (see [19]) are two examples of such
efforts to model uniform perceptual spaces. However, these
spaces are still sensitive to some visual variations and can
be used only under standard image acquisition conditions.
This is because the camera configuration, such as white
balance, demosaicing and gamma correction, have a huge
impact on the final perception of the color distances.
We claim that, by means of C2LM, we can model a
perceptual color distance that is invariant to acquisition
conditions. For our experiments, we use the dataset built
by Perrot et al. [17]. We have at our disposal 29580
color patches, expressed in their RGB coordinates and
uniformly distributed in the RGB cube, and 41800 pairs of
color patches, taken under several viewing conditions and
with 4 different cameras, with their reference perceptual
distance ∆E00. Such a target distance corresponds to the
perceptual color distance and has been computed using
the CIEDE2000 color-difference formula [18] based on
CIELab space. However, it is reliable only under standard
viewing conditions (illuminant D65, illuminance of 1000
lx, etc. defined by the International Commission on
Illumination CIE) so it cannot be used in all circumstances.
Our proposal is to approximate the true perceptual distance
between two colors no matter the viewing conditions. For
this aim, the color patches are clustered using k-means
(using the Euclidean distance on the RGB space) and
on each so-found region a local model is learned as a
Mahalanobis-like distance (using the color pairs whose
patches both belong to that region). We then apply our
method for learning linear combinations of those distance

functions with manifold regularization, as detailed in sec-
tion 3. We compare our method to [17], where the authors
learn a set of Mahalanobis-like metrics independently from
each other: they cluster the color patches using k-means
and learn a local metric on each cluster and a global one
with the color pairs whose patches belong to different
clusters; they compute the distance between two colors
using the local distance if they belong to the same cluster
or the global distance if they do not. As [17], we evaluate
our method on two different tasks (testing on unseen colors
and on color pairs from unseen cameras).

Modeling semantic similarities The semantic similar-
ity between words is defined as the measure of closeness
in meaning between two terms. It is a measure defined
by human perception and it cannot be expressed by exact
rules. Nevertheless, it can be estimated by representing the
words as vectors of a continuous space (word embedding)
and computing their distance or similarity, for instance the
Euclidean distance or the cosine similarity. We show how
a word embedding can be enhanced using our method. As
in the previous application, we learn a local model on each
cluster of words (the clustering procedure accomplished us-
ing k-means with the Euclidean distance on the word em-
bedding) and then we apply C2LM on the learned local
models, which, in this case, are bilinear forms (see 4.3)
computed independently using the following optimization
problem:

argmin
Bz

1

n

∑
p∈Rzz

∣∣∣xT1 Bzx2 − y(x1, x2)
∣∣∣+ ‖Bz‖F . (23)

For our experiments, we extracted the word embedding
from the Reuters News stories2 text corpus using the
Hellinger PCA as presented in [11]. We then evaluate dif-
ferent methods on the WordSim353-similarity dataset: it is
composed of 353 pairs of english words and for each pair
we have at our disposal its semantic similarity as estimated
by a human expert. We will compare our method with com-
puting the cosine similarity directly on the embedding and
with learning a set of local bilinear similarities and a global
one. Because the cosine similarity is capable of predicting
scores only in the interval [−1, 1] and the similarity scores
of the dataset are between 0 and 10, we first normalized the
target scores into the interval [−1, 1].

5.2. Implementation and results

We implemented our algorithm using the Cvxpy library3

and its SCS solver (see [16]). For our experiments,
we computed the best values for parameters λ1 and λ2
executing a grid search hyperparameter optimization
by cross-validation: we fixed them to λ1 = 0.01 and

2http://about.reuters.com/researchandstandards/
corpus/

3cvxpy.readthedocs.org/en/latest/

http://about.reuters.com/researchandstandards/corpus/
http://about.reuters.com/researchandstandards/corpus/
cvxpy.readthedocs.org/en/latest/
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Figure 5: Comparison of our method and local metric learning approaches, such as Perrot et al.’s method, for the application on perceptual
color distances (5a and 5b) and for the application on word semantic similarities (5c). The used criterion is the loss over the test instances.

λ2 = 10000 for the first application and to λ1 = 0.0001
and λ2 = 100 for the second one.

For the application on unseen colors, we show the mean
results of a 6-fold cross validation of the color patches set,
iterated five times. In Figure 5a, we represent the varia-
tion of the test loss over the number of clusters. We notice
that as the number of clusters increases the empirical test
loss decreases: a set of local metrics captures much better
the underlying geometry of the color space than a unique
global metric (K = 1). Moreover, with a small number of
clusters, the learned linear combinations are more expres-
sive than the local metrics: thanks to the prior influence
and similarity regularizations, we successfully prevent the
model from overfitting the training instances. This trend is
more and more important as the number of clusters grows.
For the application on unseen cameras, Figure 5b shows the
mean results of a 4-fold cross validation (leave one camera
out) of the color pairs set, iterated 3 times. Once again, our
method outperforms the state of the art. For both tasks, we
can note that with a very limited number of clusters, that is
only 5, our test loss is always smaller than every test loss
the approach of [17] could attain, even with 30 clusters. In
addition, we use the learned color metrics to perform image
segmentation and provide illustrations in the supplementary
material.

Concerning the application on semantic similarity, Fig-
ure 5c presents the mean results of a 6-fold cross validation,
iterated five times. We can note that learning metrics on the
word embedding gives better results than applying directly
the cosine similarity, but also that the local metrics fail to
improve the test error with respect to a global bilinear form.
On the contrary, C2LM converges with a limited number

of clusters to an enhanced test error. We also notice that,
against the trend, the test error increases when passing from
one to two clusters. This can be explained by the fact that
the quality of the local models is so poor that the learned
convex combinations of them cannot be good.

6. Conclusion
In this paper, we proposed a new method for learning

convex combinations of local models given a prior knowl-
edge on their correlations. We proved that our learning al-
gorithm is theoretically founded w.r.t. the algorithmic ro-
bustness framework. Empirically, our approach has better
results than the state of the art to estimate perceptual color
distances and semantic word similarities.
So far, we assumed that the local models were provided. A
possible perspective of this work is to jointly learn the lo-
cal metrics and their linear combinations. The optimization
problem would take the form of a double regression, one
over the points belonging to the same region and one for all
the others. In this way, we could guarantee that the local
models perform well both locally and globally speaking by
means of regularization.
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1. Overview
This supplementary material is organized as follows: in Section 2, we provide the proof of the generalization bound

expressed in Lemma 2 of Section 4.1 of the paper; in Section 3, we present a visual comparison of C2LM and a local
metric learning approach for the perceptual color distance application; Lastly, Section 4 is dedicated to image segmentation,
performed using the color distance learned by means of C2LM.

2. Generalization Guarantees
We recall that Z = X × Y is the set of all possible valued pairs p = (x1, x2, y(x1, x2)), where (x1, x2) ∈ X = U2 is a

pair of instances and y(x1, x2) is the associated target value, and that we also denote P = {pi}ni=1 ⊂ Z the set of n training
pairs. We partitioned the space X into N (γ1/2, X, ‖.‖2) subsets and the space Y into N (γ2/2, Y, |.|), so that any region of
X (resp. Y ) has a diameter smaller than γ1 (resp. γ2).

We also recall the definition of our optimization problem, considering that the space U has been decomposed into K
regions denoted {Rz}Kz=1:

argmin
W

FP (W ) = R̂l + λ1D(W ) + λ2S(W )

s.t. ∀i, j = 1, ...,K :

K∑
z=1

Wijz = 1 andWij ≥ 0 (1)

where Wij is the vector of non-negative weights associated to pair of regions Rij = (Ri, Rj),

R̂l =
1

n

∑
i,j,p∈Rij

l(W,p) =
1

n

K∑
i=1

i∑
j=1

∑
p∈Rij

∣∣∣∣∣
K∑

z=1

Wijzsz(x1, x2)− y(x1, x2)

∣∣∣∣∣ (2)

is the mean loss over all training pairs, with {sz(.)}Kz=1 the set of metric functions related to the local models, and

D(W ) =

K∑
i=1

i∑
j=1

∥∥ET
ijWij

∥∥2
F

(3)

S(W ) =

K∑
i=1

i∑
j=1

K∑
i′=1

i′∑
j′=1

Kiji′j′ ‖Wij −Wi′j′‖22 (4)

1



are the two regularizers used to avoid overfitting, and λ1 and λ2 are the two hyper-parameters.
In our paper, we proved that, supposing sz(.) ∀z = 1, ...,K to be θz-lipschitz w.r.t. the norm ‖.‖2, the previous problem

is (H, θ
√
2γ1 + γ2)-robust, with θ = maxz=1..K θz (see Lemma 1 of Section 4.1 of the paper).

We denote Rl the true loss Rl = Ep∼Z l(W,p) and R̂l the empirical loss R̂l = Ep∼P l(W,p) corresponding to the mean
loss over all the training pairs. We can now derive a PAC generalization bound for our problem, considering the theoretical
distribution of the valued pairs p ∈ Z over the regions of the partition given in the paper (see Prop. 1).

Lemma 2 As FP (W ) is (H, θ
√
2γ1 + γ2)-robust and the training set P is obtained from n IID draws according to a

multinomial random variable, for any δ > 0 with probability at least 1− δ, we have:

|Rl − R̂l| ≤ θ
√
2γ1 + γ2 +B

√
2H ln 2 + 2 ln 1/δ

n
, (5)

with B the upper bound of the loss function l(W,p) = l(Wij , (x1 ∈ Ri, x2 ∈ Rj , y(x1, x2))) = |
∑K

z=1Wijzsz(x1, x2)−
y(x1, x2)|.

Proof.

|Rl − R̂l| =

=

∣∣∣∣∣∣Ep∼Z l(W,p)−
1

n

∑
p′∼P

l(W,p′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E[l(Wij , p ∈ Rij)]p(Rij)−
1

n

K∑
i=1

K∑
j=1

∑
p′∈Rij

l(Wij , p
′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E[l(Wij , p ∈ Rij)]p(Rij)−
K∑
i=1

K∑
j=1

E[l(Wij , p ∈ Rij)]
nij
n

∣∣∣∣∣∣
+

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E[l(Wij , p ∈ Rij)]
nij
n
− 1

n

K∑
i=1

K∑
j=1

∑
p′∈Rij

l(Wij , p
′)

∣∣∣∣∣∣ (6)

≤

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E[l(Wij , p ∈ Rij)](p(Rij)−
nij
n

)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1n

K∑
i=1

K∑
j=1

∑
p,p′∈Rij

E[l(Wij , p))− l(Wij , p
′)]

∣∣∣∣∣∣
≤ max(l(Wij , p ∈ Rij))

K∑
i=1

K∑
j=1

∣∣∣p(Rij)−
nij
n

∣∣∣+ 1

n

K∑
i=1

K∑
j=1

∑
p,p′∈Rij

max(l(Wij , p)− l(Wij , p
′))

≤ B
√

2H ln 2 + 2 ln(1/δ)

n
+ θ
√
2γ1 + γ2. (7)

Eq. 6 is due to the triangle inequality. The first term of Eq. 7 is because B is the upper bound of the loss function and
because of the Bretagnolle-Huber-Carol inequality (see Proposition 1 of the paper), and the latter is due to the robustness of
the problem.

3. Illustration of Learned Combinations
In this section, we illustrate a metric learned using C2LM and compare it with the one learned using a local metric learning

approach.
In the context of the perceptual color distance, Fig.1 shows a 2D projection of the contour lines of our learned combination
of metrics, drawn around an arbitrary point, in the RGB space. While the method from [3] causes a strong discontinuity at
the boundaries of the cluster (because one jumps from a local metric to the global one), we can see that our combination is
smoother. In addition, it is evident that, while comparing points not belonging to the same region, our metric is more accurate
because our method captures better the geometric variations of the space than a global linear metric.
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Figure 1: On the left: illustration of the discontinuity of [3]’s method; on the right: illustration of the smoothness of our learned metrics.

4. Image Segmentation
In this section, we present some examples of images segmented using the perceptual color distance learned in Section 5.1

of the paper.
The task of image segmentation consists in partitioning an image into regions according to a color distance: two adjacent
pixels are assigned to the same region if their color distance is smaller than a given threshold value. It is clear, then, that the
quality of the obtained segmentation relies on the quality of the used distance, this is why the latter should be as close as
possible to the one perceived by a human observer.

For our experiments, among all the possible methods to perform such a task, we make use of the Color Mean-Shift
algorithm presented in [1], which allows one to cluster the pixels of an image using different distance functions between
colors. We compare, then, the Color Mean-Shift method using the Euclidean distance directly on the RGB components
and using the perceptual color distance learned with C2LM in Section 5.1 of the paper. In Fig. 2 we show the results on
some pictures extracted from the Berkeley dataset [2]: for each image, we have at our disposal a ground truth segmentation
computed as the average of the segmentations provided by 30 different human subjects. Notice that, for each result of the
Color Mean-Shift method, we mentioned between brackets first the total number of computed clusters and second the number
of clusters larger than 150 pixels. As a matter of fact, the used method detects several small segments that a human observer
could not even see. For this reason and because we cannot fix the number of segments to find, we rather compare the two
distances on segmentations that have a number of significant clusters (the second value) close to the number of segments of
the ground truth.
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Figure 2: Comparison of the segmentations resulting from the computation of Color Mean-Shift algorithm using the Euclidean distance on
the RGB components and using the perceptual distance learned with C2LM.


