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Abstract

Numerical simulations of two-phase flows driven by viscosity (e.g. for bubble motions in glass melting process) rely on the ability to
efficiently compute the solutions to discretized Stokes equations. When using boundary element methods to track fluid interfaces, one
usually faces the problem of solving linear systems with a dense matrix with a size proportional to the system number of degrees of
freedom. Acceleration techniques, based on the compression of the underlying matrix and efficient matrix vector products are known
(Fast Multipole Method,H-matrices, etc.) but are usually rather cumbersome to develop. More recently, a new method was proposed,
called the “Sparse Cardinal Sine Decomposition”, in the context of acoustic problems to tackle this kind of problem in some generality
(in particular with respect to the Green kernel of the problem). The proposed contribution aims at showing the potential applicability
of the method in the context of viscous flows governed by Stokes equations.

Keywords: Stokes equations, Boundary Element Method, Fast Multipole Method

1. Introduction

In this paper, we consider a fluid flow with negligible iner-
tial effects around a possibly moving solid body Ω in the whole
space. Such a flow obeys the Stokes equations{
−µ∆u +∇p = 0 in R3 \ Ω,
div(u) = 0 in R3 \ Ω,

(1)

where µ, u, p respectively designate the fluid viscosity, velocity
and pressure. Note that, by essence, (1) is restricted to Newtonian
fluids for which the stress tensor Cartesian components read

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδij . (2)

Boundary conditions must supplement equations (1). We con-
sider in what follows the no-slip boundary condition stating that
on the solid body boundary ∂Ω the fluid velocity is equal to the
solid velocity.

Solving the problem of computing the velocity of the fluid
and the solid at each point can be done using the integral repre-
sentation of the velocity field u. Namely, if n is the unit normal
directed to the liquid, the velocity solution to (1) satisfies, for all
x ∈ ∂Ω 1 (see e.g. [9] formula (2.3.10))

uj(x) = − 1

4πµ

∫
∂Ω

∑
i

(σ · n)i(y)Gij(x− y)ds(y)

+
1

4πµ

∫ PV
∂Ω

∑
i,k

ui(y)Tijk(x− y)nk(y)ds(y) (3)

where the so-called Stokeslet Gij and stresslet Tijk tensors
Cartesian components are respectively defined by

Gij(x) =
δij
|x| +

xixj
|x|3 , Tijk(x) = −6

xixjxk
|x|5 (4)

where x ∈ R3.
After discretization of the above-mentionned operators, e.g.

by the finite element method through a Galerkin technique, we
obtain the so-called BEM (boundary element method) in which a
linear system of equations arises with a dense matrix. Storing the
matrix induced by this discretization becomes unfeasible on clas-
sical computers when the number of degrees of freedom exceeds
a few tens of thousands.

In the literature, several alternatives among which the so-
called Fast Multipole Method (FMM) [4, 6] orH-matrices [7, 8]
permit to store the matrix in a compressed way and to eval-
uate the matrix-vector product efficiently, with a complexity
O(Ndof log(Ndof )) where Ndof stands for the number of de-
grees of freedom.

More recently, a new accelerating technique [1] has been pro-
posed that takes into account the fact that the kernels are convolu-
tions operators. The method relies on a suitable sparse integration
grid in the Fourier space, and a back and forth non uniform Fast
Fourier transform [3, 5]. Originally developed in the context of
integral equations for acoustic problems, we hereafter evaluate its
potential in the case of Stokes flows.

∗The presented research was funded by Saint-Gobain Recherche.
1The superscript PV indicates the principal value of Cauchy.
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2. The Sparse Cardinal Sine Decomposition (SCSD)

2.1. Principle

The aim of the SCSD is to decompose the kernel of the con-
volution operator in a serie of radial sinc functions. Indeed, com-
puting a convolution with the radial sinc function defined by

sinc(r) =
sin(r)

r
(5)

can be efficiently obtained through the Fourier space. This is due
to the fact that the Fourier transform of the (3 dimensional) car-
dinal sine function is given by

F(sinc) =
1

(4π)2
δS2 (6)

where δS2 stands for the Dirac mass on the unit sphere S2 of R3.
Thus, if we consider the function

g(x) =

∫
∂Ω

sinc(|x− y|)f(y) dy , (7)

we can evaluate g at each point x ∈ R3 as follows

g(x) =

∫
ξ∈S2

∫
y∈∂Ω

exp(i(x− y) · ξ)f(y) dy dξ

=

∫
ξ∈S2

exp(ix · ξ)
(∫

y∈∂Ω

exp(−iy · ξ)f(y) dy

)
dξ . (8)

After discretization (of both ∂Ω and S2) the previous integrals
become discrete sums and we can evaluate g at the point (xk) by

g(xk) =

Nξ∑
l=1

ωξk exp(ixk·ξl)

 Ny∑
m=1

exp(−iym · ξl)ωy
mf(ym)


(9)

where Ny and Nξ respectively stand for the number of
integration points in the real and Fourier space, while
(ωy
m,ym)1≤m≤Ny (resp. (ωξl , ξl)1≤m≤Nξ

) indicate the integra-
tion formula on ∂Ω (resp. S2 in the Fourier space), namely for a
smooth enough function h defined on ∂Ω∫
∂Ω

h(y) dy ∼
Ny∑
m=1

ωy
mh(ym) . (10)

The implemented algorithm for the convolution appeals to the
following steps :

• Evaluate f at the integration points (ym)m, and multiply
by the weights (ωy

m)m.

• Compute the Fourier transform on the unit sphere at the
(integration) points (ξl)l

f̂l =
∑
m

exp(−iym · ξl)ωy
mf(ym). (11)

• Multiply by the weights (ωξl )l and proceed to the inverse
Fourier transform

g(xk) ∼
∑
l

exp(ixk · ξl)ωξl f̂l . (12)

Formulas (11) and (12) can be efficiently computed using the
non-uniform FFT of type 3 [5] ensuring the global complexity
of the algorithm to be O((Nξ +Ny) log(Nξ +Ny)).

Extending the concept to more general kernelsK(r) than the
sinc is done by decomposing the (assumed to be radial) kernel K
as a finite sum of sinc functions as

K(r) =
∑
i

αi
sin(λir)

r
. (13)

In [1] is proposed a way to effectively compute both (λi)i and
the weights (αi)i for classical kernels (e.g. the Laplace kernel
1/4πr or the Helmholtz kernel exp(ikr)/4πr) in order that for-
mula (13) is precise to any given tolerance ε in a range r ∈
[Rmin, Rmax]. Local interactions (those for which |x − y| <
Rmin are taken into account by adding to the discretized operator
a local corrective sparse matrix.

It is then shown that the sum (13) can be computed at once by
considering a suitable integration grid in the Fourier space which
is assembled by collecting the ones of each sinc functions that
appear in the formula together. The global convolution obeys the
same algorithm than before, except for the Fourier grid which
ressorts to more points.

Nevertheless, the Stokes kernels G and T being not radial
(see (4)), we need to describe new ideas to come up with a suit-
able decomposition that would generalize the method. We ex-
plain hereafter the strategy that we have used.

2.2. Application to Stokes kernels

As shown in (4), we split the Oseen tensor G into two parts
as G = G1 + G2, where G1 is radial and corresponds to the
vectorial Laplacian, while G2 writes

G2(x) =
x⊗ x

|x|3 . (14)

We first apply the methodology described in [1] to the kernel
G1. This provides us with a set of integration weights and points
(ωξj , ξj)1≤j≤Nξ

and a formula

1

|x| ∼
Nξ∑
j=1

ωξj exp(ix · ξj) (15)

which is valid2 for all x such that |x| ∈ [Rmin, Rmax]. Differen-
tiating (13) leads to

x

|x|3 ∼
Nξ∑
j=1

−iξjωξj exp(ix · ξj) . (16)

Thus, if we consider a vector field f defined on ∂Ω and g the
convolution of f with G2, we can write componentwise, for
i = 1, 2, 3

gi(x) :=

∫
∂Ω

3∑
j=1

G2,ij(x− y)fj(y) dy

=

∫
∂Ω

3∑
j=1

(xi − yi)
|x− y|3 (xj − yj)fj(y) dy

=

3∑
j=1

xj

∫
∂Ω

(xi − yi)
|x− y|3 fj(y) dy

−
3∑
j=1

∫
∂Ω

(xi − yi)
|x− y|3 yjfj(y) dy , (17)

2The choice of Rmin and Rmax is explained in [1].
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and each term can be computed using the fast algorithm described
before together with the decomposition (16).

Similarly, as far as the term involving the stress tensor T is
concerned, we use the identity

xixjxknk
|x|5 =

1

3

(
xknk

∂2

∂xi∂xj

1

|x| + xknk
δij
|x|3

)
=

1

3

(
xknk

∂2

∂xi∂xj

1

|x| − δijnk
∂

∂xk

1

|x|

)
(18)

to deduce decomposition of the term appearing in (3) as

vj(x) =

∫
∂Ω

∑
i,k

Tijk(x− y)nk(y)ui(y) dy

= −2
∑
i,k

xk

∫
∂Ω

(
∂2

∂xi∂xj

1

|x|

)
(x− y)nk(y)ui(y) dy

+2
∑
i,k

∫
∂Ω

(
∂2

∂xi∂xj

1

|x|

)
(x− y)nk(y)ykui(y) dy

+2
∑
k

∫
∂Ω

(
∂

∂xk

1

|x|

)
(x− y)nk(y)uj(y) dy . (19)

Each term in the right-hand side is eventually treated separately
as before.

3. Numerical validation

In the following numerical tests, the solid body is an ellipsoid
with surface ∂Ω defined by

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

= 1, ∀x ∈ ∂Ω (20)

with a1 = 5, a2 = 3 and a3 = 2. The surface is approximated
as ∂Ωh using flat triangular boundary elements. The normal to
∂Ω is approximated by the normal to ∂Ωh. We plot in Figure 1
an example of mesh approximating ∂Ω. We use P 1 boundary el-
ements then, if N is the number of vertex of the mesh, we have
Ndof = 3N . The computations are run using a parallel MATLAB
code.

e
2

e
1

e
3

Figure 1: Mesh of the ellipsoidal domain Ω forN = 103 vertices.

Several tests of the SCSD method were performed. For each
test, the convergence of the method as well as the CPU time

when the number of degrees of freedom N increases is exam-
ined. We compare the results against the ones obtained using a
full BEM method. To do so, we introduce the size of the mesh as
h := (hmin + hmax)/2 where hmin (resp. hmax) is the length of
the smaller (resp. larger) edge of the mesh. Tests are run for N
between 200 and 5000 for BEM and between 200 and 50000 for
SCSD.

3.1. The Stokeslet

We define the vector field Q1 on ∂Ω by, ∀x ∈ ∂Ω

(Q1)j(x) :=

∫
∂Ω

∑
i

Gij(x− y)ni(y)dy (21)

where n(y) is the outer normal to ∂Ω at point y. It is known that
(see e.g. [9] formula (2.1.4)):

∀x ∈ ∂Ω, Q1 = 0. (22)

Then, we examine the behavior whenN increases of the L2(∂Ω)
numerical error

err1 :=

√∫
∂Ω

|Q1(x)|2dx. (23)
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10
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10
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e
rr
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Figure 2: Test for the Stokeslet : err1 versus h. BEM (–+–) and
SCSD for ε = 10−3 (– –�– –) and ε = 10−4 (– · –◦– · –). The
unit slope is also given as a straight line (—).
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Figure 3: Test for the Stokeslet : CPU time versus N . BEM (–
+–) and SCSD for ε = 10−3 (– –�– –) and ε = 10−4 (– · –◦– ·
–). N log(N) (– –) and N2 (—) are also displayed.

The computed error is seen to be of order h (see Figure 2).
When the mesh size h goes to zero, a saturation is observed, due
to the tolerance ε used in the SCSD algorithm. The CPU time be-
haves as O(N) (see Figure 3). We see that when the tolerance is
sufficiently small, the SCSD is as precise as the BEM. However,
as expected, since BEM has a O(N2) complexity, computations
can not be performed using this method when N becomes too
large.

3.2. The stresslet

A similar test is run for the stresslet. Let w = e1 × x be the
rotation around e1 = (1, 0, 0). We define the vector field Q2 on
∂Ω by, ∀x ∈ ∂Ω,

(Q2)j(x) :=
1

8π

∫
∂Ω

∑
i,k

wi(y)(y)Tijk(x− y)nk(y)ds(y).

(24)

We have (see e.g. [9] formula (2.1.13)):

∀x ∈ ∂Ω, Q2(x) = −w(x)

2
, (25)

and we look at the corresponding error :

err2 :=

√∫
∂Ω

∣∣∣∣Q2(x) +
w(x)

2

∣∣∣∣2 dx. (26)
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Figure 4: Test for the stresslet : CPU time versusN . BEM (–+–)
and SCSD for ε = 10−3 (– –�– –) and ε = 10−4 (– · –◦– · –).
N log(N) (– –) and N2 (—) are also displayed.

Due to the correction for T , err2 is almost constant versus
N and is close to the precision ε chosen for the SCSD method
and close to 10−14 for BEM. Again the CPU time, it is of order
O(N log(N)) for SCSD, O(N2) for BEM (see Figure 4).

3.3. Integral representation

Let us now consider the fundamental solution u0 to the
Stokes problem in R3, with the Dirac source term f = δx0e1

where x0 ∈ Ω. We have

u0,j(x) =
1

8π
G1j(x− x0) (27)

and

(σ0 · n)j(x) =
1

8π

∑
k

T1jk(x− x0)nk(x). (28)

Since u0 is solution to (1) in R3 \Ω, it can also be expressed
on ∂Ω using the integral representation (3).

We compute this integral representation using SCSD and
BEM and compare the convergence of the methods and the corre-
sponding CPU times. To study the convergence, we define err3

as the L2(∂Ω) norm between u0 and its integral representation.
In order to avoid symmetry effects, we choose x0 = (1, 2, 0.5)
which is inside the ellipsoid.
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Figure 5: Test for the integral representation : err3 versus h.
BEM (–+–) and SCSD for ε = 10−2 (– –�– –) and ε = 10−4 (–
· –◦– · –). Lines of slope 1 (—) and 1.5 (– · –) are also displayed.
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Figure 6: Test for the integral representation : CPU time versus
N . BEM (–+–) and SCSD for ε = 10−2 (– –�– –) and ε = 10−4

(– · –◦– · –). N log(N) (– –) and N2 (—) are also displayed.

The associated plots of err3 and the CPU time are given in
Figures 5 and 6. Observe for err3 a saturation due to the preci-
sion parameter for SCSD while CPU time behaves as N log(N).

3.4. The Dirichlet to Neumann problem

Let us now consider the Dirichlet to Neumann problem: we
suppose that u0 is known and we compute the corresponding
traction σ0 · n by solving (3). From (21), we see that σ0 · n
is computed up to a multiple of n. If we denote by (σ0 · n)num
the numerical field, we compute the constant λ minimizing the
L2(∂Ω) norm between σ0 · n and (σ0 · n)num + λn. Then, the
numerical error is defined as

err4 =

√∫
∂Ω

|(σ0 · n)(x)− ((σ0 · n)num(x) + λn(x)) |2dx
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Figure 7: Test for the Dirichlet to Neumann problem : err4 ver-
sus h. BEM (–+–) and SCSD for ε = 10−2 (– –�– –) and
ε = 10−4 (– · –◦– · –).
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Figure 8: Test for the Dirichlet to Neumann problem : CPU time
versus N . BEM (–+–) and SCSD for ε = 10−2 (– –�– –) and
ε = 10−4 (– · –◦– · –). N log(N) (– –) and N2 (—) are also
displayed.

Again, observe in Figures 7 and 8 the convergence of the
method, a saturation of the error depending of the parameter cho-
sen for the SCSD algorithm and O(N logN) behavior of CPU
time.

4. Conclusion

The proposed approach has been nicely tested for the case of
one solid body (as regards for the error and the CPU time). At
the oral presentation, additional results for two interacting parti-
cles (spheres or ellipsoids) will be also presented and discussed.
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