François Alouges
email: francois.alouges@polytechnique.edu

Matthieu Aussal
email: matthieu.aussal@polytechnique.edu

Aline Lefebvre-Lepot

Franck Pigeonneau
email: franck.pigeonneau@saint-gobain.com

Antoine Sellier
email: sellier@ladhyx.polytechnique.fr

The Sparse Cardinal Sine Decomposition applied to Stokes integral equations

Keywords: Stokes equations, Boundary Element Method, Fast Multipole Method

Numerical simulations of two-phase flows driven by viscosity (e.g. for bubble motions in glass melting process) rely on the ability to efficiently compute the solutions to discretized Stokes equations. When using boundary element methods to track fluid interfaces, one usually faces the problem of solving linear systems with a dense matrix with a size proportional to the system number of degrees of freedom. Acceleration techniques, based on the compression of the underlying matrix and efficient matrix vector products are known (Fast Multipole Method, H-matrices, etc.) but are usually rather cumbersome to develop. More recently, a new method was proposed, called the "Sparse Cardinal Sine Decomposition", in the context of acoustic problems to tackle this kind of problem in some generality (in particular with respect to the Green kernel of the problem). The proposed contribution aims at showing the potential applicability of the method in the context of viscous flows governed by Stokes equations.

Introduction

In this paper, we consider a fluid flow with negligible inertial effects around a possibly moving solid body Ω in the whole space. Such a flow obeys the Stokes equations

-µ∆u + ∇p = 0 in R 3 \ Ω, div(u) = 0 in R 3 \ Ω, (1)
where µ, u, p respectively designate the fluid viscosity, velocity and pressure. Note that, by essence, (1) is restricted to Newtonian fluids for which the stress tensor Cartesian components read

σij = µ ∂ui ∂xj + ∂uj ∂xi -pδij . (2)
Boundary conditions must supplement equations [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF]. We consider in what follows the no-slip boundary condition stating that on the solid body boundary ∂Ω the fluid velocity is equal to the solid velocity.

Solving the problem of computing the velocity of the fluid and the solid at each point can be done using the integral representation of the velocity field u. Namely, if n is the unit normal directed to the liquid, the velocity solution to (1) satisfies, for all x ∈ ∂Ω 1 (see e.g. [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF] formula (2.3.10))

uj(x) = - 1 4πµ ∂Ω i (σ • n)i(y)Gij(x -y)ds(y) + 1 4πµ PV ∂Ω i,k
ui(y)T ijk (x -y)n k (y)ds(y) [START_REF] Dutt | Fast Fourier transforms for nonequispaced data[END_REF] where the so-called Stokeslet Gij and stresslet T ijk tensors Cartesian components are respectively defined by

Gij(x) = δij |x| + xixj |x| 3 , T ijk (x) = -6 xixjx k |x| 5 (4)
where x ∈ R 3 . After discretization of the above-mentionned operators, e.g. by the finite element method through a Galerkin technique, we obtain the so-called BEM (boundary element method) in which a linear system of equations arises with a dense matrix. Storing the matrix induced by this discretization becomes unfeasible on classical computers when the number of degrees of freedom exceeds a few tens of thousands.

In the literature, several alternatives among which the socalled Fast Multipole Method (FMM) [START_REF] Greengard | The Rapid Evaluation of Potential Fields in Three Dimensions[END_REF][START_REF] Greengard | The rapid evaluation of potential fields in particle systems[END_REF] or H-matrices [START_REF] Hackbusch | A sparse matrix arithmetic based on Hmatrices[END_REF][START_REF] Hackbusch | Hierarchische Matrizen[END_REF] permit to store the matrix in a compressed way and to evaluate the matrix-vector product efficiently, with a complexity O(N dof log(N dof)) where N dof stands for the number of degrees of freedom.

More recently, a new accelerating technique [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] has been proposed that takes into account the fact that the kernels are convolutions operators. The method relies on a suitable sparse integration grid in the Fourier space, and a back and forth non uniform Fast Fourier transform [START_REF] Dutt | Fast Fourier transforms for nonequispaced data[END_REF][START_REF] Lee | The type 3 nonuniform fft and its application[END_REF]. Originally developed in the context of integral equations for acoustic problems, we hereafter evaluate its potential in the case of Stokes flows.

The Sparse Cardinal Sine Decomposition (SCSD)

Principle

The aim of the SCSD is to decompose the kernel of the convolution operator in a serie of radial sinc functions. Indeed, computing a convolution with the radial sinc function defined by sinc(r) = sin(r) r

can be efficiently obtained through the Fourier space. This is due to the fact that the Fourier transform of the (3 dimensional) cardinal sine function is given by

F(sinc) = 1 (4π) 2 δ S 2 (6)
where δ S 2 stands for the Dirac mass on the unit sphere S2 of R 3 . Thus, if we consider the function

g(x) = ∂Ω sinc(|x -y|)f (y) dy , (7)
we can evaluate g at each point x ∈ R 3 as follows

g(x) = ξ∈S 2 y∈∂Ω exp(i(x -y) • ξ)f (y) dy dξ = ξ∈S 2 exp(ix • ξ) y∈∂Ω exp(-iy • ξ)f (y) dy dξ . (8
)
After discretization (of both ∂Ω and S 2) the previous integrals become discrete sums and we can evaluate g at the point (x k) by

g(x k) = N ξ l=1 ω ξ k exp(ix k •ξ l)   Ny m=1 exp(-iym • ξ l)ω y m f (ym)   (9)
where Ny and N ξ respectively stand for the number of integration points in the real and Fourier space, while (ω y m , ym) 1≤m≤Ny (resp. (ω ξ l , ξ l) 1≤m≤N ξ) indicate the integration formula on ∂Ω (resp. S 2 in the Fourier space), namely for a smooth enough function h defined on

∂Ω ∂Ω h(y) dy ∼ Ny m=1 ω y m h(ym) . (10)
The implemented algorithm for the convolution appeals to the following steps :

• Evaluate f at the integration points (ym)m, and multiply by the weights (ω y m)m.

• Compute the Fourier transform on the unit sphere at the (integration) points

(ξ l) l fl = m exp(-iym • ξ l)ω y m f (ym). (11)
• Multiply by the weights (ω ξ l) l and proceed to the inverse Fourier transform

g(x k) ∼ l exp(ix k • ξ l)ω ξ l fl . (12)
Formulas (11) and (12) can be efficiently computed using the non-uniform FFT of type 3 [START_REF] Lee | The type 3 nonuniform fft and its application[END_REF] ensuring the global complexity of the algorithm to be O((N ξ + Ny) log(N ξ + Ny)).

Extending the concept to more general kernels K(r) than the sinc is done by decomposing the (assumed to be radial) kernel K as a finite sum of sinc functions as

K(r) = i αi sin(λir) r . (13)
In [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] is proposed a way to effectively compute both (λi)i and the weights (αi)i for classical kernels (e.g. the Laplace kernel 1/4πr or the Helmholtz kernel exp(ikr)/4πr) in order that formula (13) is precise to any given tolerance in a range r ∈ [Rmin, Rmax]. Local interactions (those for which |x -y| < Rmin are taken into account by adding to the discretized operator a local corrective sparse matrix.

It is then shown that the sum (13) can be computed at once by considering a suitable integration grid in the Fourier space which is assembled by collecting the ones of each sinc functions that appear in the formula together. The global convolution obeys the same algorithm than before, except for the Fourier grid which ressorts to more points.

Nevertheless, the Stokes kernels G and T being not radial (see (4)), we need to describe new ideas to come up with a suitable decomposition that would generalize the method. We explain hereafter the strategy that we have used.

Application to Stokes kernels

As shown in (4), we split the Oseen tensor G into two parts as G = G1 + G2, where G1 is radial and corresponds to the vectorial Laplacian, while G2 writes

G2(x) = x ⊗ x |x| 3 . (14)
We first apply the methodology described in [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] to the kernel G1. This provides us with a set of integration weights and points (ω ξ j , ξj) 1≤j≤N ξ and a formula

1 |x| ∼ N ξ j=1 ω ξ j exp(ix • ξj) (15)
which is valid 2 for all x such that |x| ∈ [Rmin, Rmax]. Differentiating (13) leads to

x |x| 3 ∼ N ξ j=1 -iξjω ξ j exp(ix • ξj) . (16)
Thus, if we consider a vector field f defined on ∂Ω and g the convolution of f with G2, we can write componentwise, for i = 1, 2, 3 gi(x) :=

and each term can be computed using the fast algorithm described before together with the decomposition (16). Similarly, as far as the term involving the stress tensor T is concerned, we use the identity

xixjx k n k |x| 5 = 1 3 x k n k ∂ 2 ∂xi∂xj 1 |x| + x k n k δij |x| 3 = 1 3 x k n k ∂ 2 ∂xi∂xj 1 |x| -δijn k ∂ ∂x k 1 |x| (18)
to deduce decomposition of the term appearing in (3) as

vj(x) = ∂Ω i,k T ijk (x -y)n k (y)ui(y) dy = -2 i,k x k ∂Ω ∂ 2 ∂xi∂xj 1 |x| (x -y)n k (y)ui(y) dy +2 i,k ∂Ω ∂ 2 ∂xi∂xj 1 |x| (x -y)n k (y)y k ui(y) dy +2 k ∂Ω ∂ ∂x k 1 |x| (x -y)n k (y)uj(y) dy . (19
)
Each term in the right-hand side is eventually treated separately as before.

Numerical validation

In the following numerical tests, the solid body is an ellipsoid with surface ∂Ω defined by

x 2 1 a 2 1 + x 2 2 a 2 2 + x 2 3 a 2 3 = 1, ∀x ∈ ∂Ω (20)
with a1 = 5, a2 = 3 and a3 = 2. The surface is approximated as ∂Ω h using flat triangular boundary elements. The normal to ∂Ω is approximated by the normal to ∂Ω h . We plot in Figure 1 an example of mesh approximating ∂Ω. We use P 1 boundary elements then, if N is the number of vertex of the mesh, we have N dof = 3N . The computations are run using a parallel MATLAB code. Several tests of the SCSD method were performed. For each test, the convergence of the method as well as the CPU time when the number of degrees of freedom N increases is examined. We compare the results against the ones obtained using a full BEM method. To do so, we introduce the size of the mesh as h := (hmin + hmax)/2 where hmin (resp. hmax) is the length of the smaller (resp. larger) edge of the mesh. Tests are run for N between 200 and 5000 for BEM and between 200 and 50000 for SCSD.

The Stokeslet

We define the vector field Q1 on ∂Ω by, ∀x ∈ ∂Ω The computed error is seen to be of order h (see Figure 2). When the mesh size h goes to zero, a saturation is observed, due to the tolerance used in the SCSD algorithm. The CPU time behaves as O(N) (see Figure 3). We see that when the tolerance is sufficiently small, the SCSD is as precise as the BEM. However, as expected, since BEM has a O(N 2) complexity, computations can not be performed using this method when N becomes too large.

The stresslet

A similar test is run for the stresslet. Let w = e1 × x be the rotation around e1 = (1, 0, 0). We define the vector field Q2 on ∂Ω by, ∀x ∈ ∂Ω, (Q2)j(x) := 1 8π ∂Ω i,k wi(y)(y)T ijk (x -y)n k (y)ds(y).

(

We have (see e.g. [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF] formula (2.1.13)):

∀x ∈ ∂Ω, Q2(x) = - w(x) 2 , (25)
and we look at the corresponding error : N log(N) (--) and N 2 (-) are also displayed.

err2 := ∂Ω Q2(x) + w(x) 2 2 dx. (26
)
Due to the correction for T , err2 is almost constant versus N and is close to the precision chosen for the SCSD method and close to 10 -14 for BEM. Again the CPU time, it is of order O(N log(N)) for SCSD, O(N 2) for BEM (see Figure 4).

Integral representation

Let us now consider the fundamental solution u0 to the Stokes problem in R 3 , with the Dirac source term f = δx 0 e1 where x0 ∈ Ω. We have

u0,j(x) = 1 8π G1j(x -x0) (27)
and

(σ0 • n)j(x) = 1 8π k T 1jk (x -x0)n k (x). (28
)
Since u0 is solution to (1) in R 3 \ Ω, it can also be expressed on ∂Ω using the integral representation [START_REF] Dutt | Fast Fourier transforms for nonequispaced data[END_REF].

We compute this integral representation using SCSD and BEM and compare the convergence of the methods and the corresponding CPU times. To study the convergence, we define err3 as the L 2 (∂Ω) norm between u0 and its integral representation. In order to avoid symmetry effects, we choose x0 = (1, 2, 0.5) which is inside the ellipsoid. The associated plots of err3 and the CPU time are given in Figures 5 and6. Observe for err3 a saturation due to the precision parameter for SCSD while CPU time behaves as N log(N).

The Dirichlet to Neumann problem

Let us now consider the Dirichlet to Neumann problem: we suppose that u0 is known and we compute the corresponding traction σ0 • n by solving (3). From (21), we see that σ0 • n is computed up to a multiple of n. If we denote by (σ0 • n)num the numerical field, we compute the constant λ minimizing the L 2 (∂Ω) norm between σ0 • n and (σ0 • n)num + λn. Then, the numerical error is defined as Again, observe in Figures 7 and8 the convergence of the method, a saturation of the error depending of the parameter chosen for the SCSD algorithm and O(N log N) behavior of CPU time.

Conclusion

The proposed approach has been nicely tested for the case of one solid body (as regards for the error and the CPU time). At the oral presentation, additional results for two interacting particles (spheres or ellipsoids) will be also presented and discussed.

∂Ω 3 j=1 3 j=1(

 33 G2,ij(x -y)fj(y) dy = ∂Ω xi -yi) |x -y| 3 (xj -yj)fj(y) dy yi) |x -y| 3 fj(y) dy -3 j=1 ∂Ω (xi -yi) |x -y| 3 yjfj(y) dy ,

Figure 1 :

 1 Figure 1: Mesh of the ellipsoidal domain Ω for N = 10 3 vertices.

(1 Figure 2 :

 12 Figure 2: Test for the Stokeslet : err1 versus h. BEM (-+-) and SCSD for = 10 -3 (----) and = 10 -4 (-• -•-• -). The unit slope is also given as a straight line (-).

Figure 3 :

 3 Figure 3: Test for the Stokeslet : CPU time versus N . BEM (-+-) and SCSD for = 10 -3 (----) and = 10 -4 (-• -•-• -). N log(N) (--) and N 2 (-) are also displayed.

Figure 4 :

 4 Figure 4: Test for the stresslet : CPU time versus N . BEM (-+-) and SCSD for = 10 -3 (----) and = 10 -4 (-• -•-• -).N log(N) (--) and N 2 (-) are also displayed.

3 Figure 5 :

 35 Figure 5: Test for the integral representation : err3 versus h. BEM (-+-) and SCSD for = 10 -2 (----) and = 10 -4 (-• -•-• -). Lines of slope 1 (-) and 1.5 (-• -) are also displayed.

Figure 6 :

 6 Figure 6: Test for the integral representation : CPU time versus N . BEM (-+-) and SCSD for = 10 -2 (----) and = 10 -4 (-• -•-• -). N log(N) (--) and N 2 (-) are also displayed.

4 Figure 7 :

 47 Figure 7: Test for the Dirichlet to Neumann problem : err4 versus h. BEM (-+-) and SCSD for = 10 -2 (----) and = 10 -4 (-• -•-• -).

Figure 8 :

 8 Figure 8: Test for the Dirichlet to Neumann problem : CPU time versus N . BEM (-+-) and SCSD for = 10 -2 (----) and = 10 -4 (-• -•-• -). N log(N) (--) and N 2 (-) are also displayed.

The choice of Rmin and Rmax is explained in[START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF].

May 22nd -27th 2016, Firenze, Italy

The presented research was funded by Saint-Gobain Recherche. 1 The superscript PV indicates the principal value of Cauchy.