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Abstract

Two-phase flows driven by the interfacial dynamics is studied with a phase-field model to tract implicitly interfaces. The phase field
obeys the Cahn-Hilliard equation. The fluid dynamics is described with the Stokes equations with an additional source term in the
momentum equation taking into account the capillary forces. A discontinuous Galerkin finite element method is used to solve the
coupled Stokes/Cahn-Hilliard equations. The Cahn-Hilliard equation is treated as a system of two coupled equations corresponding to
the advection-diffusion equation for the phase field and a non-linear elliptic equation for the chemical potential. First, the variational
formulation of the Cahn-Hilliard equation is presented. A numerical test is achieved showing the optimal-order in error bounds.
Second, the variational formulation in discontinuous Galerkin finite element approach of the Stokes equations is recalled in which the
same space of approximation is used for the velocity and the pressure with an adequate stabilization technique. Finally, numerical
simulations describing the capillary rising in a tube is presented.
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1. Introduction

The dynamics of two-phase flows driven by the capillary
forces can be adressed by various numerical methods which can
be sorted as a function of the method to track interfaces. A first
class of methods tracks interfaces explicitly using boundary inte-
gral method in the limit of vanishing Reynolds number [13, 12]
or front tracking method [20]. This approach is based on the La-
grangian description of interfaces. Despite of the high level of
accuracy which can be reached by these techniques, the topolog-
ical changes are difficult to take into account. A second class of
methods tracks interfaces implicitly with a volume indicator like
the “Volume of Fluid” technique initially developed by Hirt and
Nichols [8] or by a “level-set” method [15, 16]. They are based on
the Eulerian description and can straightforward describe topo-
logical changes like coalescence or break-up of bubbles or drops.
In the two previous approaches, interfaces are considered as a
sharp-interfaces without volume. An alternative method consid-
ers interface with a small thickness. This technique employs the
concept of “phase-field” introduced initially in statistical physics
to describe phase change or spinodal decomposition [3]. The de-
velopment of the phase-field method in fluid mechanics has been
summarized by Anderson et al. [2]. This technique is particu-
larly well-adapted to study local effects like triple line dynamics
[10] or more recently in [21] or coalescence of drops [22]. De-
spite of many contributions, find a numerical method to solve ef-
ficiently the coupled equations of phase-field model and Navier-
Stokes equations is still a research topic in numerical analysis.

In this present work, and since the phase-field method is de-
voted to study the fluid dynamics at small scale, the fluid inertia
can be neglected. Consequently, we investigate the numerical
method to solve the coupled Stokes/Cahn-Hilliard equations with
a discontinuous Galerkin finite element technique. We start by the
problem statement in section 2 in which the Navier-Stokes/Cahn-

Hilliard equations will be recalled. The numerical method to
solve only the phase-field will be presented in section 3 with a
test to determine the numerical errors. Section 4 is devoted to the
numerical method of the coupled Stokes/Cahn-Hilliard equations
with an example of numerical simulation of a capillary rising.

2. Two-phase flows modelling with a phase-field formula-
tion

We consider a domain Ω ⊂ Rd (with d = 2 or 3) in which
two fluids are present characterized by the density ρ1 and the dy-
namic viscosity η1 for the fluid 1 and by the density ρ2 and the
dynamic viscosity η2 for the fluid 2. The fluid phase at any ma-
terial point with a position x and at each time t is described by
an “order parameter” φ(x, t). By convention, the fluid 1 is given
by the order parameter φ = 1 and the fluid 2 by φ = −1. The
function φ can be seen as a volume fraction.

The phase field method considers that the shift between the
two phases occurs over a thin layer equal to ζ corresponding
to the “diffuse interface” thickness. Under the actions of exter-
nal forces, boundary conditions and interaction between the two
phases, the media changes in space and time requiring balance
equations. Moreover, the dynamics between the two phases has
to be considered by writing an equation on the phase field φ.

The phase-field model applied for binary fluid is designated
as the “model H” by Hohenberg and Halperin [9]. The details of
the derivation of the Navier-Stokes/Cahn-Hilliard equations are
not provided in this article. For more information, reader can read
references [2]. In the following, the Navier-Stokes/Cahn-Hilliard
equations are written under dimensionless form with a character-
istic length L, velocity U , viscosity η1 and density ρ1 which will
be provided in the numerical examples presented in section 4.
In the following, we assume that the fluid is incompressible. The
gravity force is taken into account with a direction given by a unit

mailto:Franck.Pigeonneau@saint-gobain.com
mailto:Pierre.Saramito@imag.fr


ICMF-2016 – 9th International Conference on Multiphase Flow May 22nd – 27th 2016, Firenze, ItalyICMF-2016 – 9th International Conference on Multiphase Flow May 22nd – 27th 2016, Firenze, ItalyICMF-2016 – 9th International Conference on Multiphase Flow May 22nd – 27th 2016, Firenze, Italy

vector g normalized by the magnitude of the gravity acceleration,
g. The coupled system of equations is given by

divu = 0, (1)

Re ρ(φ)
Du

Dt
= −∇P + div [2η(φ)D(u)] +

Bo

Ca
ρ(φ)g +

3

2
√

2 Ca Cn
µ∇φ, (2)

Dφ

Dt
=

1

Pe
∇2µ(φ), (3)

µ(φ) = φ(φ2 − 1)− Cn2 ∇2φ, (4)

in which the two first equations are the Navier-Stokes equa-
tions with D the rate-of-strain tensor and the two lasts are the
Cahn-Hilliard equation. The coupling between the phase-field
is achieved by the capillary force given by the last term of the
right-hand side of the momentum equation, eq. (2) and also by
the chance of the density and viscosity as function of φ. The
Cahn-Hilliard equation has been written in two parts in order to
have two equations at the second order useful for the numerical
methods which are presented below. The last equation defines the
chemical potential in which the first term is the derivative respect
to φ of the double-well potential admitting two local minima in
φ = ±1 and the second term takes into account the energy due
to interface. At the equilibrium, the chemical potential must be
equal to zero. Seven dimensionless numbers arise in the problem
for which the first six numbers are defined by

Re =
ρ1UL

η1
, Bo =

ρ1gL
2

σ
, Ca =

η1U

σ
, (5)

Cn =
ζ

L
, ρ̂ =

ρ2

ρ1
, η̂ =

η2

η1
. (6)

The first one is the so-called Reynolds number which will be as-
sumed much lesser than one in the following in order to neglect
the fluid inertia. The Bond number Bo measures the ratio of grav-
ity to surface tension forces characterized by the surface tension
σ while the capillary number Ca compares the viscosity effect
to the surface tension one. The Cahn number Cn is the ratio of
the diffuse-interface thickness ζ to the length scale. The seventh
dimensionless number Pe given without definition is the Péclet
number comparing the diffusion time scale of the chemical po-
tential to the convective time scale which is always greater than
one. The normalized density and dynamic viscosity are given by
an arithmetic average:

ρ(φ) =
1 + ρ̂

2
+

1− ρ̂
2

φ, (7)

η(φ) =
1 + η̂

2
+

1− η̂
2

φ. (8)

Initial and boundary conditions will be provided in the fol-
lowing when the numerical method will be presented.

3. Numerical resolution of Cahn-Hilliard equation

We start by the presentation of the numerical method to solve
the Cahn-Hilliard equation with a discontinuous Galerkin finite
element method. Clearly, the Cahn-Hilliard equation is a non-
linear fourth-order partial differential equation needing a high
level of regularity. The application of discontinuous Galerkin
method to solve the phase-field model has been initiated by Feng
and Karakashian [7] among others. They established an optimal-
order error bound by solving the fourth-order equation when the
polynomial degree is greater or equal to two. Here, according
the previous work of Kay et al. [11], the problem is set as a sys-
tem of two second-order elliptic equations. In this section, the
solenoidal velocity field u is assumed known.

3.1. Discontinuous Galerkin finite element formulation

The continuous problem is
Problem 1 (Cahn-Hilliard problem) find φ(x, t) and µ(x, t)
defined in Ω× [0, T ] such as

∂φ

∂t
+ u ·∇φ− 1

Pe
∇2µ(φ) = 0, in Ω× [0, T ], (9)

−µ(φ) + φ(φ2 − 1)− Cn2 ∇2φ = 0, in Ω× [0, T ], (10)
φ(x, t = 0) = φ0(x), in Ω, (11)

∂φ

∂n
= f(φ), on ∂Ω, (12)

∂µ

∂n
= 0, on ∂Ω. (13)

Moreover, the normal component of the velocityu·n is equal
to zero on ∂Ω for n the exterior unit normal on ∂Ω. The bound-
ary condition on φ, eq. (12), has been taken in general form be-
cause in applications, the interaction with a wall for instance in-
volves a condition on normal derivative of φ to impose a certain
contact angle [10, 21].

To solve numerically this problem, a discontinuous Galerkin
method initially developed by Kay et al. [11] has been chosen.
The main property of the formulation is the optimal-order in er-
ror bounds as it will be verified below for a polynomial degree
greater or equal to one.

Let Th be a triangulation of the domain Ω formed by finite
elements K with meshsize h = diam(K) such as Th = {K}
and Ω =

⋃
K∈Th

K. Furthermore, we consider a subset of faces
F formed by interfaces between two distint mesh elements K+

and K− such as F = ∂K− ∩ ∂K+ and boundary faces given by
F = ∂K ∩ ∂Ω. For internal face, orientation has to be precised.
The unit normal nF is outward of K− and inward of K+. If F i

h

gathers all interfaces and Fb
h all boundary faces, the set of faces

is Fh = F i
h ∪ Fb

h. Finally, the local length scale at the face F
noted hF is defined according to Di Pietro and Ern [6], chap. 4
page 125.

In the below formulation, some usual notations in the context
of the discontinuous Galerkin method have to be precised. First,
since for all φh ∈ Xh is discontinuous, the broken gradient ∇h

is defined by [6]

(∇hφh)|K = ∇
(
φh|K

)
, ∀K ∈ Th. (14)

Moreover, at each interior face F , let define φ−h = φh|K− the in-
ner value and φ+

h = φh|K+
the outer value. We define the jump

by [[φh]] = φ−h − φ
+
h and the average {{φh}} = (φ−h + φ+

h )/2.
The discontinuous finite element space is defined by

Xh = {vh ∈ L2(Ω); vh|K ∈ Pk, ∀K ∈ Th}, (15)

with k the polynomial degree. This space belongs to the broken
Sobolev space

H1(Th) = {v ∈ L2(Ω); v|K ∈ H1(K), ∀K ∈ Th}. (16)

The variational formulation of the Cahn-Hilliard problem
takes the following form

Problem 2 Find φh, µh ∈ Xh such that
Pe−1 a(wh, µh) + b(wh, φh) = 0, for wh ∈ Xh, (17)

−(qh, µh) + (qh, φ
3
h − φh) + Cn2 a(qh, φh) =

l(qh, φh), for qh ∈ Xh, (18)
in which

a(wh, µh) =

∫
Ω

∇hwh ·∇hφhdV −∑
F∈Fi

h

∫
F

[{{∇µh · nF }}[[wh]] + {{∇wh · nF }}[[µh]]

−cF [[µh]][[wh]]] dS, (19)
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b(wh, φh) =

(
∂φh

∂t
, wh

)
+

∫
Ω

∇hφh · uhwhdV +

∑
F∈Fi

h

∫
F

(
1

2
|uh · nF |[[φh]][[wh]]−

uh · nF [[φh]]{{wh}}) dS, (20)

l(qh, φh) = Cn2
∑

F∈Fb
h

∫
F

fh(φh)qhdS, for qh ∈ Xh. (21)

The details of the derivation of this variational formulation can be
found in [11]. The penalty parameter cF is equal to the product
β$F with β = (k + 1)(k + d)/d (d space dimension) and $F

by [17]

$F =

{ meas(∂K)
meas(K)

for F ∈ K ∩ ∂Ω,

max
(

meas(∂K+

meas(K+)
,

meas(∂K−
meas(K−)

)
for F ∈ K− ∩K+.

(22)

The convective term of the phase-field has been written accord-
ing to the development of Di Pietro and Ern [6] with an upwind-
ing flux approximation. The main feature of the discontinuous
Galerkin method is to have an accurate mass conservation ap-
plied to convective equation. This behavior has been controlled
carefully in the paper [19] presented in this conference and is not
addressed in the present contribution.

For the time discretization, a Backward Differential Formula
(BDF) at order p ≤ 6 is used. If ∆t is the time step, the temporal
derivative at the time t = n∆t of the φn

h at the order p is given
by

∂φn
h

∂t
=

1

∆t

p∑
l=0

αplφ
n−l
h +O(∆tp), (23)

for which coefficients αpl can be found in the book of Süli and
Mayers [18] (chap. 12, page 349).

This time derivative obtained by the previous formula is in-
troduced in bh(wh, φ

n
h) leading to a source term obtained with a

combination of φn−l
h with 1 ≤ l ≤ p following equation (23).

Moreover, the non-linearities of the Cahn-Hilliard problem are
solved using a Newton algorithm.

3.2. Numerical tests

The previous problem has been implemented in the Rheolef
C++ finite element library [14]. To test the numerical solver, the
numerical experiment proposed by Kay et al. [11] is used for
which the Cahn-Hilliard equation is solved with a velocity field
given by

u = f(r)(y,−x)T , ∀(x, y) ∈ [−1; 1]2, (24)

with f(r) =
1 + tanh[β(1− 3r)]

2
, and r =

√
x2 + y2, (25)

in a domain Ω = [−1; 1]2. An exact solution of the phase-field
given by

φe = t cos(πx) cos(πy), ∀(x, y) ∈ [−1; 1]2 and t ∈]0; 1], (26)

is imposed by adding an adequate source term in eq. (9). The
range of time is taken in [0; 1]. The domain has been discretized
with a regular triangular elements with 16, 32 and 64 elements
over each Cartesian coordinate.

We perform the numerical experiment with Cahn number
equal to 10−1 and for a Péclet number equal to 50. The tem-
poral numerical scheme at the second order (BDF-2) has been
used with a time step equal to 10−2. Three polynomial degrees
have been tested with k = 1, 2 and 3. Errors between the numer-
ical solution and the exact solution have been computed with L2

and H1 norms defined as follows

||v||2L2,h =

∫
Ω

v2dV, (27)

||v||2H1,h =

∫
Ω

∇hv ·∇hvdV +
∑

F∈Fh

∫
F

$F [[v]]2dS. (28)

Figures 1 and 2 depict errors integrated over the time range
[0, 1] as a function of the mesh size both for the phase field and
the chemical potential. For each polynomial degree, errors be-
have as O(hn). The exponent n has been provided in Figures 1
and 2 for each polynomial degree. As expected, errors computed
in L2 norm behave approximately asO(hk+1) both for the phase
field φ and for the chemical potential and as O(hk) in H1 norm
showing that the numerical implementation is optimal-order in
error bounds.
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4. Numerical resolution of Cahn-Hilliard and Stokes equa-
tions

We now turn on the numerical resolution of Cahn-Hilliard
and Navier-Stokes equations. Here, the Reynolds number is as-
sumed much lesser than one in order to neglect the inertia of the
fluid. In this limit, the Navier-Stokes equations are reduced to the
Stokes equations. The continuous problem is similar to the set of
equations (1-4) given in § 2 in which the inertia term in the mo-
mentum equation is removed. Initial and boundary conditions for
φ and µ can be written in general form as in equations (11-13).
In order to take into account the boundary conditions for which
velocity or stress are imposed, the frontier of Ω is shared between
∂ΩD for which

u = uD, (29)

and ∂ΩN where

σ · n = tN , (30)

such as ∂ΩD ∩ ∂ΩN = ∅ and ∂Ω = ∂ΩD ∪ ∂ΩN . The stress
tensor is given by −P1 + 2η(φ)D(u) with 1 the unit tensor.
Boundary faces, Fb

h, are now shared in two sub-sets Fb,D
h and

Fb,N
h corresponding to ∂ΩD and ∂ΩN respectively.

A discontinuous Galerkin finite element method is also used
to solve the Stokes equations. As it will be detailed below veloc-
ity and pressure are approximated at the same polynomial degree
m. So, the discontinuous finite element spaces are defined by

V h = {uh ∈ L2(Ω)d;u|K ∈ Pm, ∀K ∈ Th}, (31)

Qh = {qh ∈ L2(Ω); q|K ∈ Pm, ∀K ∈ Th}. (32)

To solve the problem as a function of time, a BDF-p scheme
is used to solve the phase-field equation in which the velocity
field is extrapolated at the same order that the BDF scheme using
the forward difference formula [1]

u∗,nh =

p∑
l=1

(
p

l

)
(−1)l−1un−l

h +O(∆tp). (33)

At the time step n, φn
h and µn

h are determined by solving the
problem 2 in which the convective equation is solved using u∗,nh .
Once the phase-field problem is solved, the Stokes equations have
to be solved taking into account the capillary source term given
by the last term of the right-hand side of (2).

4.1. Discontinuous Galerkin finite element formulation of
Stokes problem

Since the Stokes equations are in quasi-steady state, the refer-
ence of the time is removed in the following in order to simplify

the notation. The variational formulation follows the method ini-
tially introduced by Cockburn et al. [4] which has been stud-
ied theoretically by Di Pietro and Ern [6]. The heterogeneity of
the viscosity needs to generalize the formulation according to the
previous developments achieved in heterogeneous diffusion [6]
(chap. 4). The discrete variational formulation writes:

Problem 3 (Stokes problem) find uh ∈ V h and Ph ∈ Qh such
that
α(uh,vh) + β(vh, Ph) = λ(v), ∀vh ∈ V h, (34)

β(uh, qh)− γ(ph, qh) = 0, ∀qh ∈ Qh, (35)
with

α(uh,vh) =

∫
Ω

2ηDh(uh) : Dh(vh)dV +∑
F∈Fi

h
∪Fb,D

h

∫
F

[cF ηF [[u]] · [[v]]−

{{2ηDh(uh) · nF }}ω[[vh]]−
{{2ηDh(vh) · nF }}ω[[uh]]

]
dS, (36)

β(uh, qh) = −
∫

Ω

qh∇h · uhdV +∑
F∈Fi

h

∫
F

[[u]] · nF {{qh}}dS, (37)

λ(v) =

∫
Ω

[
Bo

Ca
ρhg +

3

2
√

2 Ca Cn

µh∇hφh] · vhdV +∑
F∈Fb,D

h

∫
F

uh,D · [cFvh − 2ηDh(vh) · n] dS +

∑
F∈Fb,N

h

∫
F

th,N · vhdS, (38)

γ(ph, qh) =
∑

F∈Fi
h

∫
F

hF [[ph]][[qh]]dS. (39)

The viscosity at the face F and the weighted average {{·}}ω are
defined by [6]

ηF =
2η+

h η
−
h

η+
h + η−h

, (40)

{{vh}}ω =
η+
h v
−
h + η−h v

+
h

η+
h + η−h

. (41)

Clearly, when the viscosity is constant, the usual arithmetic aver-
age is found.
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4.2. Numerical tests: capillary rising

When a liquid is introduced in a capillary tube with a diame-
ter D, the liquid rises due to the wetting of the liquid on the tube
wall. At the equilibrium, the rising height depends on the wetting
angle θ, the surface tension σ, the liquid density ρ1, the gravity
and the tube diameter. According to de Gennes et al. [5], the
height over which the liquid rises can be written as follows

hcap

D
=

4 cos θ

Bo
, (42)

in which the Bond number is defined with D as a length scale.
When θ < π/2 corresponding to “wetting” condition, hcap is
positif while if θ < π/2 (“non-wetting” condition), hcap is
negatif meaning that the liquid goes down occurring for a liquid
metal like mercury, for instance.

The dynamics of rising can be studied with the Stokes/Cahn-
Hilliard equations for which the wetting condition can be intro-
duced easily. We perform with Rheolef library a numerical sim-
ulation in an axisymmetric geometry depicted in Figure 3 corre-
sponding to the one half of the tube. The problem is normalized
by a length scale equal to the tube diameter. The velocity scale is
taken by writing the balance between gravity and viscous forces
meaning that the capillary and Bond numbers become equivalent.

r

z

0 0.5

−0.5

1
∂ΩN, top

∂ΩN, bottom

∂ΩD

Figure 3: Geometry of a liquid rising in a tube with a radius equal
to 1/2.

In the limit of vanishing Reynolds number, five dimensionless
numbers have to be considered. For the phase-field modelling,
the physical length scale of interface is around few nanometers
meaning that the ratio of this interface thickness and the tube di-
ameter is too small. Fortunately, the “sharp-interface” behavior
is obtained for a larger Cahn number [21]. Consequently, in the
following, the Cahn number is taken equal to 10−2. The Péclet
number has to be taken sufficiently large to limit the diffusion.
Here, Pe is set at 102. Ratios ρ̂ and η̂ are taken respectively at
10−3 and 10−2 which are the typical values for water (fluid 1)
and air (fluid 2).

The boundary conditions on ∂ΩD and ∂ΩN depicted in Fig-
ure 3 are the following

u = 0,
∂φ

∂n
=

(1− φ2)
√

2 cos θ

2 Cn
,
∂µ

∂n
= 0, ∀x ∈ ∂ΩD, (43)

σ · n = 0,
∂φ

∂n
=
∂µ

∂n
= 0, ∀x ∈ ∂ΩN, top, (44)

σ · n = −(ρ̂+
1

2
)n,

∂φ

∂n
=
∂µ

∂n
= 0, ∀x ∈ ∂ΩN, bottom. (45)

On ∂ΩD, the wetting condition has been written according to the
previous works of Jacqmin [10] and Yue et al. [21]. Moreover,
the non-slip condition is applied on ∂ΩD. On the top and the bot-
tom of the tube, we apply a pressure with stress free condition.

At the bottom, the pressure arises from a simple static equilibrium
used as initial condition in order to start from the static condition.
Initially, fluid 1 is located below the plane z = 0 in such of way
that φ is given by the exact solution of the Cahn-Hilliard equation
in one-dimension:

φ0(z, r) = − tanh

(
z√

2 Cn

)
. (46)

Starting with a plane interface, we impose a contact angle
equal to θ = 17π/36. The numerical simulations have been
achieved with BDF-2 and a time step 10−2. Due to the con-
tact angle lesser than π/2, the fluid interface curves close to the
wall leading to a pressure jump. Figure 4 depicts the pressure
field for three times equal to 2, 20 and 60. Clearly, at the begin-
ning, the pressure decreases close to the wall due to the curvature
and Laplace pressure. Consequently, the liquid goes up. At large
time, the pressure obeys at the hydrostatic solution leading to the
immobilization of the liquid column.

Figure 4: Pressure field in the tube at time t = 2, 20 and 60 for a
contact angle equal to 17π/36.

Figure 5 presents the superposition of the phase-field and ve-
locity field at t = 2, 20 and 60. At the beginning of the rising
the velocity is relatively important and decreases when the liquid
goes up. When t = 60, the magnitude of the velocity is one order
of magnitude lesser than the value observed at t = 2.

Figure 5: Phase-field and velocity field in the tube at time t = 2,
20 and 60 for a contact angle equal to 17π/36.

To follow the rising of the interface, we plot in Figure 6 the
position of the triple line zTL as a function of time. An alge-
braic behavior is clearly established with a slope close to 0.83.
The asymptotic hydrostatic equilibrium is very well found nu-
merically since the position of the triple line reaches the level
predicted by equation (42).

Pressure P is plotted as a function of z on the symmetric axis
when t = 100 in Figure 7. The hydrostatic solution in the liquid
is very well found. Pressure in the second phase is quasi-uniform
since the density of fluid 2 is very small. Moreover, at the inter-
face, the pressure jump due to the interface curvature is around
0.3 while a simple hydrostatic computation gives a value equal
to 0.34 on the symmetric axis. Nevertheless, remark that the nu-
merical solution does not reach the asymptotic static state.
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Figure 6: Position of the triple line, zTL as a function of time for
a contact angle equal to 17π/36.
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Figure 7: P vs z on the z-axis at t = 100 for a contact angle
equal to 17π/36.

5. Conclusion

In this contribution, we develop a numerical method to solve
the coupled Stokes/Cahn-Hilliard equations with a discontinuous
Galerkin finite element method. The scheme on the Cahn-Hilliard
is optimal-order in error bounds and this fact has been verified nu-
merically. A numerical method for Stokes/Cahn-Hilliard equa-
tions has been also developed for which the Stokes solver with
heterogeneous viscosity has been established.

In order to study the dynamics of the triple line physics, we
have solved the problem of the capillary rising in a circular tube.
The dynamics is very well reproduced and the asymptotic behav-
ior of the static pressure equilibrium is captured.

This first numerical test prove the relevance of this kind of
model to describe the dynamics of triple line accurately.
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