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This work considers a nearly-spherical bubble and a nearly-flat free surface interacting

under buoyancy at vanishing Bond number Bo. For each perturbed surface, the

deviation from the unperturbed shape is asymptotically obtained at leading order

on Bo. The task appeals to the normal traction exerted on the unperturbed surface

by the Stokes flow due to a spherical bubble translating toward a flat free surface.

The free surface problem is then found to be well-posed and to admit a solution in

closed form when gravity is still present in the linear differential equation governing

the perturbed profile through a term proportional to Bo. In contrast, the bubble

problem amazingly turns out to be over-determined. It however becomes well-posed

if the requirement of horizontal tangent planes at the perturbed bubble north and

south poles is discarded or if the term proportional to Bo is omitted. Both previous

approaches turn out to predict for small Bond number quite close solutions except

in the very vicinity of the bubble poles. The numerical solution of the proposed

asymptotic analysis shows, in the overlapping range Bo = O(0.1) and for both the

bubble and the free surface perturbed shapes, a good agreement with a quite different

boundary element approach developed in [Phys. Fluids 23, 092102 (2011)]. It also

provides approximated bubble and free surface shapes whose sensitivity to the bubble

location is examined.
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I. INTRODUCTION

The motion of particles (solid bodies, bubbles or drops) rising toward a free surface or

a liquid-liquid interface is encountered in many industrial applications such as flotation,

distillation, liquid-liquid extraction. For close boundaries (particle surface, free surface or

interface) strong interactions arise which not only dictate the non-solid particle(s) and in-

terface shapes but also the liquid flow pattern. Hence, for most of the applications it is

necessary to adequately handle such particle-boundary and/or particle-particle interactions.

For instance, this is the case when estimating the lifetime of a bubble at a free surface, which

is a key parameter to adequately predict the occurrence of foam in glass melting process1.

Once a particle (solid, drop, bubble) is finally stuck to an interface or a free surface (due

to buoyancy) it lasts a long time before the rupture of the liquid film squeezed between

the particle and this close surface. During this stage, the lubrication controls the film

drainage. Actually, for small enough particles the liquid flows at low velocity not only during

and but also before the drainage so that one can resort to the creeping flow assumption.

Within this Low-Reynolds-Number flow simplified framework, Lee and Leal2 numerically

investigated the axisymmetric slow rise of a solid sphere toward a liquid-liquid interface

using a suitable boundary integral formulation. Simultaneously, Berdan and Leal3 addressed

the same problem but for a sufficiently distant sphere and a weakly perturbed interface by

working out an asymptotic analysis. Yiantsios and David4 later investigated the case of a

solid sphere or drop approaching a deformable interface.

As already illustrated in the seminal contribution of Youngren and Acrivos5 for a solid

body, the boundary element method (BEM) is a powerful technique to deal with steady

Stokes flows. This well-established method (see textbooks such as6,7 and also for the numer-

ical implementation8) is also quite efficient to track interacting non-rigid boundaries (free

surface, interface) even for the case of fully three-dimensional liquid domains.

As experimentally evidenced for one bubble9, the free surface and bubble deformations

play a key role on the drainage dynamics. Therefore, it is necessary to accurately compute

the shape of each encountered time-dependent interface. Unfortunately, this issue has been

found by Pigeonneau and Sellier10 to be very challenging when the surface tension γ becomes

in a sense too large compared with the magnitude g > 0 of the imposed uniform gravity

field g. More precisely, if the bubble(s) with a typical length a are immersed in a liquid
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with uniform density ρl and viscosity µ, the numerical accuracy deteriorates as the Bond

number Bo = ρlga
2/(3γ) vanishes. In practice, it is required to drastically refine the mesh

on each interface and to decrease the time step as soon as Bo ≤ 0.2 while for Bo ≤ 0.05

numerical computations finally exhibit unphysical free surface and bubble shapes close the

problem axis of revolution. Actually, this has to do with the accuracy level at which one

approximates on the entire liquid boundary S both the unit normal n and the curvature

given by the surface divergence of n: ∇S · n. Indeed, if the computational error made on

a∇S · n is order εa > 0 the resulting numerical error for the capillary force is order εa/Bo

and thus becomes too large when Bo vanishes. This error then worsens the determination

of the flow velocity u on the entire surface S and therefore the liquid domain boundary S

time-dependent location10. However, at small Bo each bubble and the free surface remain

nearly-spherical and nearly-flat, respectively and this suggests gaining the weakly perturbed

shapes by developing an asymptotic analysis in terms of the small Bond number Bo.

The aim of the present work is to asymptotically approximate at leading order in small

Bond number the shapes of two interacting and gravity-driven bubble and free surface

(i.e. to treat for only one bubble the problem encountered by Pigeonneau and Sellier10 for

vanishing Bo). Similar issues have been actually addressed in the literature but for different

circumstances. One can first cite the case of a bubble or droplet with large uniform surface

tension γ and subject (in absence of gravity) to an arbitrary ambient steady Stokes flow

with velocity magnitude V . This problem has been nicely handled by Hetsroni and Haber11

in which the nearly-spherical particle shape is approximated at the first order in Capillary

number Ca = µV/γ whatever the ambient Stokes flow. As earlier mentioned, Berdan and

Leal3 later asymptotically obtained the nearly-flat shape of a fluid-fluid interface interacting

with a solid and not-necessarily force-free sphere with radius a as both capillary number Ca

and Bond number Bo vanish. Finally, one should mention two additional papers dealing

with two nearly spherical and weakly interacting drops moving either in the same liquid

in absence of gravity12 or in two different liquids due to the gravity13 (with in this latter

case also the approximation of the nearly-flat liquid-liquid interface). One should note that

the results obtained by Chervenivanova and Zapryanov13 amazingly predict, a non-smooth

perturbed interface and are therefore questionable. In addition, there is to the authors very

best knowledge no work dealing with the case of a bubble interacting with a free surface at

small Bond number.
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FIG. 1: A nearly-spherical bubble B1 ascending, under the uniform gravity field g = −gez,
toward a weakly perturbed free surface S0.

The paper is organized as follows. The governing Stokes problem and its associated

zeroth-order flow are presented in §II. The free-surface location first-order approximation

in small capillary number is obtained in § III while § IV is devoted to the estimate, at the

same order, of the weakly non-spherical bubble shape. The proposed asymptotic theory

is compared in § V with the BEM predictions provided by Pigeonneau and Sellier10 while

concluding remarks close the paper in § VI.

II. GOVERNING PROBLEM AND ZEROTH-ORDER FLOW SOLUTION

This section presents the governing axisymmetric Stokes problem and the flow asymptotic

expansion at relevant vanishing Bond and capillary numbers.

A. Axisymmetric Stokes problem

As sketched in FIG. 1, we consider a bubble ascending, in a Newtonian liquid with a

uniform density ρl, toward a free surface under a uniform gravity field g = −gez. For

distant bubble and free surface this bubble is spherical with a radius a while the free surface

is the z = 0 plane. Otherwise, at time t the non-spherical bubble center-of-volume O′ is

located at a distance l from the z = 0 plane. In the liquid domain D(t) the fluid has a

velocity field u, with a magnitude U, and a pressure field p+ρlg ·x+pa where x = OM and

pa designates the uniform ambient pressure above the free surface. Assuming a vanishing

Reynolds number, i.e. Re = ρlUa/µ� 1, and a flow quiescent far from the bubble it follows

4



that (u, p) obeys

µ∇2u = ∇p and ∇ · u = 0 in D(t), (1)

(u, p)→ (0, 0) as |x| → ∞. (2)

We supplement (1)-(2) with boundary conditions on the free surface S0 and the bubble

boundary S1 having a unit outward normal n and a local average curvature H = ∇S · n/2
with ∇S the surface divergence14. Assuming the same uniform surface tension γ on each

surface and denoting by pb the bubble uniform pressure and by σ the flow (u, p) stress tensor

yields15

n · σ · n = ρlg · x+ γ∇S · n on S0, (3)

n · σ · n = ρlg · x+ pa − pb + γ∇S · n on S1, (4)

(σ · n) ∧ n = 0 on S0, S1. (5)

There is no mass transfer across S0 ∪S1 and the bubble has a constant volume Vb. Thus,∫
S1

u · ndS = 0. (6)

At each time t one gains (u, p) by solving the well-posed problem (1)-(6). Note that:

(i) The bubble is force free since integrating (4) over S1 with pa− pb uniform gives a zero

contribution16.

(ii) To track in time the liquid boundary S0 ∪ S1, with the material velocity U , it is

sufficient to first get there the velocity u and then to exploit the no-mass transfer condition

U · n = u · n on S0 ∪ S1. (7)

B. Dimensionless numbers and flow expansion at vanishing Bond number

In (3)-(4) the terms n ·σ ·n, ρlg ·x and γ∇S ·n are of flow, gravity and capillary natures.

Taking U as typical velocity magnitude and the bubble initial radius a as length scale give

γ∇S · n ∼ γ/a, n · σ · n ∼ µU/a, ρlg · x ∼ ρlga on S0 ∪ S1. (8)

Comparing either in (3) or in (4) the gravity term and the flow term with the capillary term

then introduces two dimensionless numbers: the Bond number Bo and the capillary number

Ca here defined as

Bo =
ρlga

2

3γ
, Ca =

µU

γ
. (9)
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FIG. 2: Zeroth-order axisymmetric problem of a spherical bubble with radius a, center O′

and surface S ′1 translating at the velocity Uez toward the z = 0 flat free surface S ′0.

For the present problem Ca = O(Bo) since, due to the cancellation of the integral of (4),

µUa ∼ ρlga
3.

Henceforth, it is assumed that Bo � 1 and therefore also that Ca � 1. In that case

the bubble and the free surface remain nearly spherical and flat, respectively while the flow

(u, p) is expanded as follows

u = u0 + Ca u1 +O(Ca2), p = p0 + Ca p1 +O(Ca2). (10)

The zeroth-order flow (u0, p0), with stress tensor σ0, is handled in § II C while (u1, p1) is

discarded because, as shown in sections § III and § IV, determining the first-order O(Ca)

weakly perturbed free surface and bubble shapes solely appeals to the normal stress n0·σ0·n0

on the unperturbed spherical bubble surface and flat free surface with the unit normal n0.

C. Zeroth-order flow problem and solution

1. Zeroth-order flow and drag coefficient

As illustrated in FIG. 2, (u0, p0) is the flow about a spherical bubble with a radius a and

surface S ′1 translating at the velocity u0 = Uez toward (U > 0) the motionless z = 0 plane

S ′0. The liquid domain is D0 and (u0, p0) obeys, using (7),
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µ∇2u0 = ∇p0 and ∇ · u0 = 0 in D0, (u0, p0)→ (0, 0) as |x| → ∞, (11)

u0 · n0 = 0 on S ′0, u0 · n0 = Uez · n0 on S ′1, (σ0 · n0) ∧ n0 = 0 on S ′0 ∪ S ′1. (12)

For symmetry reasons, (u0, p0) exerts on the bubble a zero torque and a force F 0 given by

F 0 =

∫
S′
1

σ0 · n dS = −4πµUaλ0 ez (13)

with drag coefficient λ0 > 1 (see Table I in § II C 2) solely depending upon the bubble

normalized l/a. For the freely-suspended bubble, expanding (B5) at the leading order in

small Bo yields

U =
ρlga

2

3µλ0
, λ0 = Bo /Ca = O(1). (14)

2. Solution in bipolar coordinates and comparisons

As in17,18, the axisymmetric problem (11)-(12) is solved using the usual bipolar coordi-

nates (ζ, η, φ) here related to the cylindrical coordinates (ρ, z, φ) as follows19

z =
c sinh ζ

cosh ζ − cos η
, ρ =

c sin η

cosh ζ − cos η
, c =

√
l2 − a2. (15)

Surfaces ζ = 0 and ζ = −ζp for sinh ζp = c/a are the boundaries S ′0 and S ′1, respectively.

Local unit normal vectors eζ , eη, eφ = eη ∧ eζ are introduced at each point x(ζ, η, φ) in the

liquid domain −ζp ≤ ζ ≤ 0, η ∈ [0, π] and φ ∈ [0, 2π] (see FIG. 2). Setting χ = cos η, one

gets u0(x) = u0ζeζ + u0ηeη with

u0ζ(ζ, χ) = −(cosh(ζ)− χ)2

c2
∂ψ

∂χ
, u0η(ζ, χ) = −(cosh(ζ)− χ)2

c2 sin(η)

∂ψ

∂ζ
(16)

and a stream function ψ(ζ, χ) recalled20 in Appendix A. On S ′0 and S ′1 the required normal

stress reads n0 · σ0 · n0 = σ0ζζ = −p0 + τ0ζζ with p0 the pressure obtained as detailed in21

and τ0ζζ the normal viscous stress given by19

τ0ζζ(ζ, χ) = −2
µU(cosh ζ − χ)

c3

{
∂

∂ζ

[
(cosh ζ − χ)2

∂ψ

∂χ

]
− (cosh ζ − χ)

∂ψ

∂ζ

}
. (17)

The resulting values of σ0ζζ on both S ′0(ζ = 0) and S ′1(ζ = −ζp), available in22, are here

tested in TABLE I by integrating σ0ζζ (as detailed in Appendix A) on those surfaces to

calculate the drag coefficient λ0 introduced by (13). Clearly, there is an excellent agreement

between the different approaches.
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(ζp, Nt) l/a λ0,a
17 λ0,a λ0,1 λ0,0

(0.5, 35) ∼ 1.13 2.049981 2.04998112191844 2.04998112191524 2.04998112205233

(0.5, 50) ∼ 1.13 2.049981 2.04998112191844 2.04998112191845 2.04998112192156

(1, 18) ∼ 1.54 1.509456 1.50945547483087 1.50945547482972 1.50945547488896

(1, 25) ∼ 1.54 1.509456 1.50945547483087 1.50945547483086 1.50945547483031

(1.5, 15) ∼ 2.35 1.273450 1.27344998699464 1.27344998699464 1.27344998699378

TABLE I: Computed drag coefficients versus the bubble location ζp and the truncation

number Nt (see Appendix A) by analytical evaluation (λ0,a), integration over S ′1(λ0,1) or

integration over S ′0(λ0,0). The 6-digit value of λ0,a obtained by Bart17 is given for

comparison.

III. FIRST-ORDER WEAKLY PERTURBED FREE SURFACE SHAPE

A. Governing problem for the free surface shape

The free surface shape location is obtained from (3) which gives the normal traction

n ·σ ·n on the perturbed free surface S0. Setting d = 2a, we adopt dimensionless quantities

z = z/d, ρ = ρ/d,∇S ·n = d∇S ·n and σ = dσ/(µU). The perturbed free surface S0 admits

equation z = Ca f(ρ) with f = O(1) the unknown shape function. Moreover, it has unit

normal n ∼ −ez + Ca n1 with3

[∇S · n1](f) =
d2f

dρ2
+

1

ρ

df

dρ
. (18)

Recalling that g = −gez, substituting n and z in (3) and retaining the leading order terms

yields, in conjunction with (18), the governing equation for the shape function

ρ
d2f

dρ2
+
df

dρ
− tfρf = ρ [n0 · σ0 · n0] (z = 0) with tf = 12 Bo . (19)

The free surface is unperturbed far from the (z′Oz) axis and exhibits (axisymmetric problem)

an horizontal tangent on the (z′Oz) axis. Therefore, we supplement (19) with the conditions

df

dρ
= 0 for ρ = 0, f(ρ) = 0 as ρ→∞. (20)
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B. Basic property and analytical solution

In solving (19)-(20), one may think about neglecting the term tfρf in (19) because

Bo = O(Ca) for the freely suspended bubble. Doing so, and taking into account of the first

condition (20) would give

df

dρ
=
g(ρ)

ρ
, f(ρ) =

∫ ρ

∞

g(s)

s
ds, g(s) =

∫ s

0

u[n0 · σ0 · n0](u)du. (21)

But from (A6) one gains g(s) → −λ0 6= 0 as s becomes large and thus f given by (21) is

not bounded! Thus, one must keep the term tfρf in (19). Moreover, for a freely-suspended

bubble the volume of liquid above the z = 0 plane does not depend upon (l/a,Bo) and is

equal to the bubble volume. Indeed, when normalized by 8a3, this volume V l satisfies

V l = 2π

∫ ∞
0

Ca f(ρ)ρdρ = − π

6λ0

∫ ∞
0

σ0ζζ(u)u du =
π

6
. (22)

This is due to (19) which with λ0 = Bo /Ca for the freely-suspended bubble becomes

d

dρ

(
ρ
df

dρ

)
= 12λ0 Ca ρf(ρ) + ρ σ0ζζ . (23)

Anticipating on (24) it is possible to show that ρdf/dρ→ 0 as ρ→∞. This latter property

and the boundary condition df/dρ = 0 at ρ = 0 (see (20)) then provide (22) by integrating

(23) over [0,∞[.

Using the so-called method of Wronskian as done by Berdan and Leal3 for a distant solid

sphere, provides the following analytical solution to (19)-(20)

f(ρ) = I0(
√
tfρ)

∫ ∞
ρ

K0(
√
tfu), u σ0ζζ(u)du−K0(

√
tfρ)

∫ ρ

0

I0(
√
tfu)uσ0ζζ(u)du (24)

where σ0ζζ = n0 · σ0 · n0 = 2aσ0ζζ/(µU) and I0 or K0 denotes the usual modified Bessel

functions of the first or second kind, respectively23. From (24) and I0(0) = 1 it appears that

the free surface shape function on the (z′Oz) takes the value

f(0) =

∫ ∞
0

K0(
√
tfu)uσ0ζζ(u)du. (25)

C. Numerical results and discussion

The shape function f is computed from (24) with a Fortran routine using the Netlib

Library for the modified Bessel functions I0 and K0.
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To our very best knowledge no asymptotic result for a bubble is available in the literature

and we thus first compare our results with the predictions of Berdan and Leal3 for a distant

solid sphere. For a distant particle (solid sphere or bubble) translating at the velocity Uez

the free surface is, at the leading order, pushed by the flow produced by a point force located

at the particle center of volume. This point force has strength F 0 = −4πµU aλ0ez for the

bubble and strength F 0,s = −6πµU aλ0,sez for the solid sphere with drag coefficient λ0,s

given in Bart17 using bipolar coordinates. For prescribed (l/a,Bo,Ca) the free surface shapes

f and fs obtained for distant bubble and solid sphere then obey fs/f = ||F 0,s||/||F 0|| =

3λ0,s/(2λ0). This relation is tested for l/a = 6,Bo = 1/3 and Ca = 0.2 by plotting in

FIG. 3 the free surface locations z/a obtained for shape functions fb given by (24), fs =

3λ0,sfb/(2λ0) ∼ 1.570fb
24 , fbel given for a solid sphere in3 and finally fsbip or fsa obtained

by using in (24) the normal stress σ0ζζ(u) for a solid sphere either calculated in bipolar

coordinates as in Bart17 for fsbip or asymptotically evaluated as in Berdan and Leal3 for

fsa. Clearly, the results for the distant solid sphere using fs, fbel, fsbip and fsa are consistent

and predict a more deformed free surface than for the case of a bubble (using fb) because

of different (no-slip or no tangential stress) boundary conditions on the particle (sphere,

bubble) surface.

We now examine the free surface deformation due to the freely-suspended bubble by

prescribing the Bond number Bo and taking Ca = Bo /λ0 with λ0 given by (A4). In FIG.

4 we plot z/a = 2 Ca f versus ρ/a still for l/a = 6 but at different Bo . Since λ0 ∼ 1.091

for l = 6a one has Ca ∼ 0.3055 at Bo = 1/3 in FIG. 4. From z/a = 2 Ca f(ρ/a; l/a,Bo)

one gets (z/a)FIG.4 ∼ 1.528(z/a)FIG.3 while for FIG. 3 recall that fs ∼ 1.570fb. This explains

why curves for z/a in FIG. 3 for the solid sphere and in FIG. 4 at Bo = 1/3 are very close.

As seen in FIG. 4, increasing Bo (by dropping the free surface tension at prescribed gravity)

increases the free surface deformation near the (z′Oz) axis. As shown in FIG. 5(a), this

trend holds whatever the bubble location l/a. In contrast, the free surface sensitivity to

(l/a,Bo) far away from the (z′Oz) axis is less intuitive. This is already seen for l/a = 6 in

FIG. 4 when ρ/a ≥ 5.5, and confirmed by plotting in FIG. 5(b) the free surface deformation

z/a at ρ/a = 10 versus (l/a,Bo). At given l/a this deformation increases as Bo drops from

1/3 to 0.05 while it increases with Bo in the range [0.005, 0.01]. Moreover, depending on

l/a, the value of z/a at Bo = 0.05 is either larger or smaller than its value at Bo = 0.005. At

ρ/a = 10 this free surface deformation z/a amazing sensitivity to Bo is due to the volume
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FIG. 3: Free surface shape locations z/a = 2 Ca f versus ρ/a induced by distant bubble

and solid sphere located at l = 6a for Bo = 1/3 and Ca = 0.2. fb(◦), fs (dashed line),

fbel(∗), fsbip (solid curve) and fsa(N).

conservation (22). Finally, FIG. 5 also shows that when l/a drops at given Bo then z/a

increases at ρ = 0 but, depending on Bo, either increases or decreases at ρ = 10a. The

computed free surface locations for l/a = 4, 2 are displayed in FIG. 6 and exhibit the same

trend as the ones discussed for FIG. 4. The developed first-order asymptotic analysis writes

the free surface location as z = 2aCa f with f = O(1). This latter assumption is satisfied

as shown by plotting in FIG. 7(a) the normalized free surface location z/(aCa) at ρ = 0

(i.e. where f reaches its largest value) versus l/a for several values of Bo . Not surprisingly,

as the bubble approaches 2f(0) increases but remains of order unity. The ratio z/(aBo),

plotted in FIG. 7(b), exhibits the same behaviour as the one observed in FIG. 7(a).
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FIG. 4: Free surface shapes at different Bond numbers Bo for a bubble location l = 6a.

Bo = 1/3 (+); Bo = 0.1 (◦); Bo = 0.05 (−); Bo = 0.01 (4); Bo = 0.005 (�).
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FIG. 5: Free surface deformation z/a versus l/a on the ρ = 0 axis (a) and at ρ = 10a (b)

for Bo = 1/3 (+); Bo = 0.1 (◦); Bo = 0.05 (−); Bo = 0.01 (4); Bo = 0.005 (�).

12



0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

(a)

z/a

ρ/a
0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

(b)

z/a

ρ/a

FIG. 6: Free surface shapes at different Bond numbers: Bo = 1/3 (+); Bo = 0.1 (◦);
Bo = 0.05 (−); Bo = 0.01 (4); Bo = 0.005 (�). (a) l = 4a and (b) l = 2a.
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FIG. 7: (a) ratio z/(aCa) = 2f(ρ/a) and (b) ratio z/(aBo) = 2f(ρ/a)/λ on the ρ = 0 axis

for Bo = 0.1 (◦); Bo = 0.05 (−); Bo = 0.01 (4) and Bo = 0.005 (�).

IV. FIRST-ORDER BUBBLE SHAPE

A. Governing problem for the bubble shape

Mimicking section § III A we need to asymptotically enforce at small Ca = O(Bo) the

relation (4) on the perturbed bubble surface S1. Employing bipolar coordinates (recall (15)),

as done by Chervenivanova and Zapryanov13 for a droplet, is not convenient. As depicted in

FIG. 2 and according to Hetsroni and Haber11, we instead use spherical coordinates (r′, θ, φ),

centered at the bubble center-of-volume O′ such that OO′ = −lez, with φ ∈ [0, 2π], θ ∈ [0, π]

and r′ = |x′| for x′ = O′M. For small Ca = O(Bo) the nearly-spherical bubble uniform
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pressure pb and axisymmetric surface S ′1 then admit the expansion and equation

pb ∼ p0b + Ca p1b , r
′ ∼ a[1 + Ca ξ(θ)] on S ′1 (26)

with p0b = pa+ρlgl+2γ/a prevailing at Bo = 0 and unknown uniform pressure p1b and bubble

shape function ξ(θ) = O(1). Requiring conservation of the bubble volume and center-of-

volume O′ location and the bubble surface to be smooth, bounded and to exhibit horizontal

tangent planes at its two θ = 0 and θ = π poles25 provides, at order O(Ca), the conditions∫ π

0

ξ(θ) sin θdθ = 0,

∫ π

0

ξ(θ) sin θ cos θdθ = 0, (27)

ξ and dξ
dθ

bounded in [0, π]; dξ
dθ

= 0 for θ = 0, π. (28)

As for the free surface, we set ∇S ·n = d∇S ·n and σ = dσ/(µU) when imposing (4) while

this time the second approximation (26) yields (see11,26)

∇S · n ∼ 4− 2 Ca L(ξ), L(ξ) = 2ξ +
1

sin θ

d

dθ

(
sin θ

dξ

dθ

)
. (29)

As shown in Appendix B, enforcing (4) up to order O(1) then gives the pressure p1b (see

Appendix B) and for the bubble shape function ξ the linear second-order differential equation

tbξ sin θ cos θ + 2ξ sin θ +
d

dθ

[
sin θ

dξ

dθ

]
= R(θ) sin θ, tb = 3 Bo, (30)

R(θ) =
1

2

{
1

2

∫ π

0

[n0 · σ0 · n0](α) sinαdα− 6λ0 cos θ − [n0 · σ0 · n0](θ)

}
. (31)

In (31) we calculate λ0 from (A4) and the occurring normalized zeroth-order normal traction

is given by [n0 · σ0 · n0](θ) = d[σ0ζζ(−ζp, η)]/(µU) with, see (A5), cos η = (cos θ cosh ζp −
1)/(cos θ − cosh ζp). Accordingly, R and ξ solely depend on l/a and (l/a,Bo), respectively.

In summary, ξ is obtained by solving (30) and (27)-(28) for R given by (31).

B. Approximated well-posed and ill-posed problems

Setting x = cos θ, we seek the bubble shape function f(x) = ξ(θ) for x in [−1, 1]. Using

the prime symbol for differentiation with respect to x and the relations

f(x) = ξ(θ),
dξ

dθ
= −
√

1− x2f ′(x), (32)
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makes it possible to recast the determination of ξ into the following equivalent problem

(1− x2)f ′′ − 2xf ′ + (2 + tbx)f = R(x) for −1 < x < 1, (33)∫ 1

−1
f(x)dx = 0,

∫ 1

−1
xf(x)dx = 0, (34)

f and
√

1− x2f ′(x) are bounded in [−1, 1], (35)

lim
x→−1

√
1− x2f ′(x) = 0, lim

x→1

√
1− x2f ′(x) = 0. (36)

As will be shown in § IV B 2, such a problem turns out to be ill-posed for tb > 0.

1. Approximated well-posed problem for tb = 0

For tb = 0 it is possible to solve (33)-(36) by expanding f in Legendre polynomials Pn
23, as

done by Hetsroni and Haber11 when dealing with the weakly deformation of a bubble freely-

suspended in a prescribed arbitrary ambiant Stokes flow in an unbounded liquid. Exploiting

the differential equation satisfied by each Legendre polynomial and the properties23

P0(x) = 1, P1(x) = x,

∫ 1

−1
Pn(x)Pm(x)dx =

2δnm
2n+ 1

(37)

with δnm the usual Kronecker delta, we easily arrive at the desired solution

f(x) =
∑
n≥2

LnPn(x), Ln =
2n+ 1

2[2− n− n2]

∫ 1

−1
Pn(x)R(x)(x)dx for n ≥ 2. (38)

We also numerically solved (33)-(36) using a O(h2) second-order centered Finite-Difference

Method (FDM) with N−1 nodal points xn = −1+nh in ]−1, 1[ (with n = 1, · · · , N−1, h =

2/N) and discretizing the integral conditions (34) also at O(h2) using a trapezoidal rule. As

illustrated in TABLE II, comparisons of the implemented FDM against (38) are excellent

and the FDM exhibits the expected O(h2) accuracy.

2. Ill-posed problem for tb > 0

For tb > 0 there is no guarantee that our requirements (35)-(36) are consistent with

(33)-(34). This issue is addressed by first numerically solving (33)-(34) and then checking

whether (35)-(36) are satisfied. To do so we again run a O(h2) Finite-Difference Method

solely differing by a minor change (one had just to code the extra term tbxf arising in (33))

from the one validated for the previous tb = 0 case.
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x FDM,h = 0.01 FDM,h = 0.001 Legendre

-0.95 -0.0515542907 -0.0515508201 -0.0515507859

-0.30 0.0211203840 0.0211179167 0.0211178918

0. 0.0328849811 0.0328815520 0.0328815173

0.30 0.0273688098 0.0273649720 0.0273649332

0.95 -0.0636789022 -0.0636769410 -0.0636769211

TABLE II: Computed function f(x) for tb = 0 and l = 3a when retaining Nt = 25 terms in

expansions (A1) and (A4). In the Legendre approach (38) we take 2 ≤ n ≤ 20 and

evaluate each coefficient Ln with a Gaussian integration scheme at a 10−8 accuracy level.
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FIG. 8: Numerical solution to (33)-(34) for the bubble location l = 3a, spacing h = 0.001

and tb = 1 (◦), tb = 0.01 (•) or tb = 0 (∗). (a) Shape function ξ = f . (b) Function

g(x) = −
√

1− x2f ′(x) for x in the range [−0.999,−0.95].

Both computed functions f and g(x) = −
√

1− x2f ′(x) are plotted versus x in FIG. 8

for h = 10−3, a bubble location l = 3a (still keeping Nt = 25 terms in expansions (A1) and

(A4)) and different values of tb ≥ 0. As seen in FIG. 8(a), f is not only bounded (i.e. the

first requirement (35) holds) but it is also nearly-insensitive to the value of the parameter tb

except near the x = −1, 1 end points where f also exhibits a large derivative. Moreover, as

illustrated near the x = −1 point (i.e. close to the south pole) in FIG. 8(b), the function g is

bounded in [−1, 1]. Therefore, the computed solution f satisfies (33)-(35) whatever tb ≥ 0.

However, (36) is not fulfilled because g is non-zero at x = −1, 1 for tb > 0 although it tends

to zero there as tb vanishes (see FIG. 8(b) for x→ −1 if tb = 0.01).
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FIG. 9: Functions ξ and ξ̃ = ξ/λ versus θ/π for l/a = 1.5, 2, 3, 4, 6 and 10 (taken

negative values at θ = 0 decrease with l/a). (a) function ξ. (b) function ξ̃.

In summary, our computations reveal that (33)-(36) is ill-posed for tb > 0. However, for

small tb > 0 the solution f to (33)-(36) is close to the regular one obtained for tb = 0 and

we thus henceforth compute the perturbed bubble shape by taking tb = 0.

C. Numerical results and discussion

In this section perturbed bubble shapes are computed with spacing h = 10−3 and tb = 0.

Since in practice we give Bo it is worth introducing the function ξ̃ such that, recalling (26),

Bo ξ̃ = Ca ξ. Because Bo = λ0 Ca note that ξ̃ = ξ/λ0. As already pointed out, taking tb = 0

make ξ and therefore also ξ̃ solely depend upon the bubble location l/a. Both functions

are plotted in FIG. 9 versus θ/π for l/a = 1.5, 2, 3, 4, 6 and 10. Not surprisingly, the

bubble is squeezed by its weak interaction with the free surface near its θ = 0 north pole

and forced to expand away from its axis of revolution for θ close to π/2. As a result, ξ and ξ̃

are negative and positive near θ = 0 or near θ = π/2, respectively. Moreover, the bubble is

also squeezed near its θ = π south pole (negative functions near this pole) the deformation

being there smaller than near the north pole because the interacting free surface is more

distant (one bubble diameter more). Finally, domains of positive and negative values of the

shape functions ξ and ξ̃ are nearly insensitive to the bubble location l/a.

The bubble deformation is weak when compared with the free surface deformation on the

(z′Oz) axis. This is clear when comparing for a prescribed bubble location l/a the quantities

z/(aCa) at ρ = 0 (recall FIG. 7(a)) and ξ at the θ = 0 north pole. Moreover, |ξ̃| is at the

most of order 7% as soon as l exceeds 3a. Therefore, the perturbed bubble shapes remain
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FIG. 10: Normalized half spherical bubble (dashed line) and several exaggerated perturbed

bubble profiles (solid lines) for r′/a = 1 + ξ̃(θ) and l/a = 1.5, 2, 4, 6. For each profile the

value of l/a is obtained knowing that at z′ = 0 the bubble deformation increases with a/l.

very close to a sphere with radius a as soon as Bo ≤ 0.2 even for l/a = 1.5. This is why in

FIG. 10 we deliberately show exaggerated half (due to the symmetry about the (z′Oz) axis)

deformed bubble profiles by setting Bo = 1 and thus taking r′/a = 1 + ξ̃(θ). Those profiles

are drawn for l/a = 1.5, 2, 4, 6 in the half normalized plane (ρ′/a, z′/a) where z′ = z + l

(the bubble center of volume O′ having in this plane coordinates (0, 0) whatever l/a). Such

“amplified” profiles show a bubble squeezed at its north and south poles and expanded in

the vicinity of its horizontal z′ = 0 plane.

V. COMPARISONS AGAINST AN AXISYMMETRIC BEM SOLUTION

As mentioned in the introduction, direct numerical computations have been recently

performed10,27 to track in time the free surface and bubble boundary locations in a large

range of Bond number Bo. Those direct simulations appeal to an axisymmetric Boundary

Element Method (BEM) solution which has been actually found, as reported in Pigeonneau
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FIG. 11: Free surface shapes from the BEM solution (dashed lines) and the first-order

asymptotic analysis (solid lines) at Bo = 0.1 (◦) and Bo = 0.2 (•). The bubble center of

volume is located at l/a ∼ 6 (see TABLE III for the associated 4-digit value of l/(2a)).

and Sellier10, to experience numerical accuracy troubles for Bo ≤ O(0.1). This section

compares at small Bond number Bo the weakly perturbed free surface and bubble surface

shapes predicted either by the BEM or the present asymptotic analysis.

A. Comparisons for the weakly perturbed free surface

Predictions of the asymptotic analysis developed in § III and the Boundary Element

Method (BEM) are compared by running the asymptotic procedure for the bubble center-

of-volume location l/a computed by the BEM solution. First we draw in FIG. 11 the

resulting free surface shapes z/a versus ρ/a for a bubble location l/a ∼ 6 and Bo = 0.1, 0.2.

The asymptotic and BEM results are compared by inspecting the quantity

∆ = max |(z/a)BEM − (z/a)Asymptotic| (39)
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(l/(2a),Bo) (3.0008, 0.1) (3.0003, 0.2) (2.0022, 0.1) (2.0022, 0.2) (1.0016, 0.1) (1.0021, 0.2)

(Ca)2 8.40 · 10−3 3.36 · 10−2 7.70 · 10−3 3.06 · 10−2 5.60 · 10−3 2.22 · 10−2

∆ 1.10 · 10−3 2.40 · 10−3 3.30 · 10−3 8.00 · 10−3 2.73 · 10−2 2.14 · 10−2

(ρ/a)m 0 0 4 0 2.3 0

TABLE III: Setting (l/(2a),Bo) and quantities (Ca)2,∆ and (ρ/a)m for FIG. 11-12.
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FIG. 12: Free surface shapes from the BEM solution (dashed lines) and the first-order

asymptotic analysis (solid lines) at Bo = 0.1 (◦), Bo0 = 0.15 (*) and Bo = 0.2 (•). Here

l/a ∼ 4 (a) or l/a ∼ 2 (b) (see also TABLE III for the associated 4-digit values of l/(2a)).

versus the small quantity (Ca)2. Note that ∆ is actually reached at a not-necessarily zero

location (ρ/a)m. The values of (ρ/a)m,∆ and (Ca)2 for FIG. 11 (and also for FIG. 12) are

given in TABLE III which also provides the 4-digit value of the bubble center-of-volume

location l/(2a) obtained by the BEM computations and used in the asymptotic analysis.

At l ∼ 6a a nice agreement between the asymptotic and BEM is found for Bo in the range

[0.1, 0.2]. Of course, at a given Bond number the free surface is more perturbed when the

bubble approaches and this suggests also checking our asymptotic results for l < 6a. This

has been done for l/a ∼ 4, 2 in FIG. 12 and is also quantified in TABLE III.

While the l ∼ 4a results are still in full agreement some discrepancies are found at

Bo = 0.1 for the l ∼ 2a case of a close bubble. For this pair (Bo, l/a) the computed BEM

free surface exhibits a non-physical weavy shape close the (z′Oz) axis (inspect FIG. 12(b))
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FIG. 13: Parts of half bubble normalized profiles from the BEM Code (dashed lines) and

first-order asymptotic analysis (solid lines) at Bo = 0.1 (◦) and Bo = 0.2 (•). Here l/a ∼ 2

(see TABLE III) and the normalized unperturbed spherical bubble profile is shown in solid

line. (a) Bubble north pole (z′ = a) vicinity. (b) Bubble south pole (z′ = −a) vicinity.

and this results in a value of ∆ (see TABLE III) which is much larger than (Ca)2. This case

illustrates the troubles experienced at low Bond number by the BEM computations for a

close bubble, i.e. when on each deformed surface the local curvature slightly differs from the

uniform one prevailing for unperturbed surfaces (see also the introduction).

B. Case of the bubble shape

Comparisons between the BEM and asymptotic approaches have been also made and

found to be very convincing for the bubble shape. As noted in § IV C, the bubble deformation

is small when compared to the free surface shape deformation. Accordingly and in contrast

to the case depicted in FIG. 12(b) for the perturbed free surface, the agreement between

the BEM and asymptotic bubble shapes remains quite good even at l/a = 2 and Bo = 0.2.

This is illustrated by drawing in FIG. 13 and in FIG. 14 the perturbed bubble normalized

half profile where the largest deformations arise, i.e. near its north and south poles and

equatorial plane.

As seen in those figures, the asymptotic analysis yields a larger deformation than the

BEM approach. Moreover, the difference (when normalized with a) between those methods

on the entire bubble profile is order of 4 · 10−3 or 12 · 10−3 for Bo = 0.1 or Bo = 0.2,

respectively. Recalling the values given in TABLE III for the associated values of Ca2 then

shows that, as announced, both predictions well agree to order O(Ca2).
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FIG. 14: Vicinity of the z′ = 0 half equatorial plane for the normalized deformed bubble

profiles from the BEM Code (dashed lines) and first-order asymptotic analysis (solid lines)

at Bo = 0.1 (◦) and Bo = 0.2 (•). The bubble center of volume is located as in FIG. 13

(with l/a ∼ 2) and the normalized unperturbed spherical bubble profile is shown in solid.

VI. CONCLUSIONS

The shapes of interacting free surface and bubble in presence of a uniform gravity field

have been asymptotically obtained at the first order in small Bond number Bo (or equiv-

alently capillary number Ca). The analysis appeals to the accurate determination of the

normal stress n0 · σ0 · n0 prevailing in the case of unperturbed bubble spherical surface

and flat free surface. The gap of each surface to its unperturbed location is measured by

the quantity Ca f with f = O(1) the associated shape function obeying a linear problem

involving an ordinary differential equation in which the gravity appears through a term

proportional to Bo f . Keeping this latter term yields either a well-posed or an ill-posed

problem (in contrast to the unbounded liquid Haber11) for the free surface or bubble, re-

spectively. The bubble problem however is well posed if one ignores the requirement of

horizontal tangent plane at the bubble north and south poles or discards the Bo f term

both choices predicting for small Bond number Bo close bubble shape functions except in

the very vicinity of the bubble north and south poles. In the present work the Bo f term is

ignored in the bubble shape problem. The asymptotic analysis numerical implementation

reveals that, at given bubble location and small Bond number, the free surface is in practice
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more perturbed than the bubble. It also well agree with the BEM computations10 in the

overlapping range Bo = O(0.1).

One can readily deal with interacting bubble and free surface having unequal uniform

surfaces tensions by taking in the present analysis for each surface Bond and Capillary

numbers (recall (8)) based on the addressed boundary surface tension. Finally, one may

think about extending the work to the case of several bubbles interacting, at small Bond

number and in axisymmetric configuration, with a free surface. This time the evaluation

of the zeroth-order normal stress n0 · σ0 · n0 on the unperturbed flat free surface and on

each spherical bubble boundary might be done by proposing a new BEM approach somewhat

combining the ones employed in Sellier28 for the gravity-driven motion of a cluster of spherical

bubbles in an unbounded liquid and in Pasol et al.29 for a solid sphere interacting with a

fluid-fluid interface. Since this challenging task requires substantial additional efforts, it is

postponed to a future work.

Appendix A: Zeroth-order flow and drag coefficient

Denoting by Pn the usual Legendre polynomial of order n30, the stream function ψ reads31

ψ(ζ, χ) = U(cosh ζ − χ)−
3
2

∞∑
n=1

Un(ζ)[Pn−1(χ)− Pn+1(χ)], (A1)

Un(ζ) = Bn sinh[(n− 1/2)ζ] +Dn sinh[(n+ 3/2)], (A2)

Bn =
(2n+ 3)kn[e2ζp − e−(2n+1)ζp ]

cosh(2n+ 1)ζp − cosh 2ζp
, Dn =

(2n− 1)kn[e−(2n+1)ζp − e−2ζp ]

cosh(2n+ 1)ζp − cosh 2ζp
(A3)

with kn = c2 n(n + 1)/[
√

2(2n + 1)(2n + 3)(2n − 1)] for n ≥ 1. The drag coefficient λ0,

defined by (13), receives the analytical form17 λ0,a given by

λ0,a = [
√

2
∞∑
n=1

(2n+ 1)(Bn +Dn)]/(2ac) (A4)

but can also be evaluated by integrating the normal traction σ0ζζ either on S ′0(ζ = 0) or on

S ′1(ζ = −ζp). As the reader may easily check, upon introducing

λ0,1 = − a

2µU

∫ π

0

σ0ζζ(−ζp, η) cos θ sin θ dθ, cos η =
cos θ cosh ζp − 1

cos θ − cosh ζp
, (A5)

λ0,0 = − 1

2µUa

∫ ∞
0

ρσ0ζζ(0, η)dρ = −a(sinh ζp)
2

2µU

∫ π

0

σ0ζζ(0, η) sin η

(1− cos η)2
dη (A6)
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with angle θ defined in FIG. 2 one indeed arrives at λ0 = λa,0 = λ0,1 = λ0,0. These relations

are numerically checked in TABLE I, for several bubble locations l/a, by retaining Nt terms

in (A1) and (A4) and performing each integration in (A5)-(A6) at a 10−14 accuracy using

an iterative scheme with Gaussian quadratures.

Appendix B: Bubble first-order pressure and shape function problem

Enforcing (4) and using (29) provides on the unperturbed bubble boundary r = a

1

Ca

[
4 +

d

γ
(pa + ρlgl − p0b)

]
∼ 6 Bo ξ cos θ + 2L(ξ)− 2R(θ) (B1)

with angle θ introduced in FIG. 2 and, using the link Bo = λ0 Ca, the following function

R(θ) = −1

2

{
d

γ
p1b + 6λ0 cos θ + [n0 · σ0 · n0](θ)

}
. (B2)

in which [n0 · σ0 · n0](θ) means the normalized zeroth-order normal stress applied on the

unperturbed bubble surface S ′1 at point such that z = −l+a cos θ. Enforcing (B1) atO(Ca−1)

and O(1) retrieves p0b and gives (30), respectively. Now integrating (30) over θ in [0, π] and

using (27)-(28) yields the compatibility relation∫ π

0

R(θ) sin θdθ = 0. (B3)

Owing to the definition (B2), the condition (B3) provides the first-order pressure

p1b = − γ

2d

∫ π

0

[n0 · σ0 · n0](θ) sin θdθ. (B4)

Finally, one deduces (30) by substituting in (B2) the above quantity p1b .
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