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I. INTRODUCTION

The motion of particles (solid bodies, bubbles or drops) rising toward a free surface or a liquid-liquid interface is encountered in many industrial applications such as flotation, distillation, liquid-liquid extraction. For close boundaries (particle surface, free surface or interface) strong interactions arise which not only dictate the non-solid particle(s) and interface shapes but also the liquid flow pattern. Hence, for most of the applications it is necessary to adequately handle such particle-boundary and/or particle-particle interactions.

For instance, this is the case when estimating the lifetime of a bubble at a free surface, which is a key parameter to adequately predict the occurrence of foam in glass melting process [START_REF] Pilon | Foams in glass manufacture[END_REF] .

Once a particle (solid, drop, bubble) is finally stuck to an interface or a free surface (due to buoyancy) it lasts a long time before the rupture of the liquid film squeezed between the particle and this close surface. During this stage, the lubrication controls the film drainage. Actually, for small enough particles the liquid flows at low velocity not only during and but also before the drainage so that one can resort to the creeping flow assumption.

Within this Low-Reynolds-Number flow simplified framework, Lee and Leal 2 numerically investigated the axisymmetric slow rise of a solid sphere toward a liquid-liquid interface using a suitable boundary integral formulation. Simultaneously, Berdan and Leal 3 addressed the same problem but for a sufficiently distant sphere and a weakly perturbed interface by working out an asymptotic analysis. Yiantsios and David 4 later investigated the case of a solid sphere or drop approaching a deformable interface.

As already illustrated in the seminal contribution of Youngren and Acrivos 5 for a solid body, the boundary element method (BEM) is a powerful technique to deal with steady Stokes flows. This well-established method (see textbooks such as [START_REF] Kim | Microhydrodynamics. Principles and selected applications[END_REF][START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF] and also for the numerical implementation [START_REF] Sellier | Boundary element technique for slow viscous flows about particles[END_REF] ) is also quite efficient to track interacting non-rigid boundaries (free surface, interface) even for the case of fully three-dimensional liquid domains.

As experimentally evidenced for one bubble [START_REF] Kočárková | Film drainage of viscous liquid on top of bare bubble: Influence of the bond number[END_REF] , the free surface and bubble deformations play a key role on the drainage dynamics. Therefore, it is necessary to accurately compute the shape of each encountered time-dependent interface. Unfortunately, this issue has been found by Pigeonneau and Sellier [START_REF] Pigeonneau | Low-Reynolds-Number gravity-driven migration and deformation of bubbles near a free surface[END_REF] to be very challenging when the surface tension γ becomes in a sense too large compared with the magnitude g > 0 of the imposed uniform gravity field g. More precisely, if the bubble(s) with a typical length a are immersed in a liquid with uniform density ρ l and viscosity µ, the numerical accuracy deteriorates as the Bond number Bo = ρ l ga 2 /(3γ) vanishes. In practice, it is required to drastically refine the mesh on each interface and to decrease the time step as soon as Bo ≤ 0.2 while for Bo ≤ 0.05 numerical computations finally exhibit unphysical free surface and bubble shapes close the problem axis of revolution. Actually, this has to do with the accuracy level at which one approximates on the entire liquid boundary S both the unit normal n and the curvature given by the surface divergence of n: ∇ S • n. Indeed, if the computational error made on a∇ S • n is order a > 0 the resulting numerical error for the capillary force is order a / Bo and thus becomes too large when Bo vanishes. This error then worsens the determination of the flow velocity u on the entire surface S and therefore the liquid domain boundary S time-dependent location [START_REF] Pigeonneau | Low-Reynolds-Number gravity-driven migration and deformation of bubbles near a free surface[END_REF] . However, at small Bo each bubble and the free surface remain nearly-spherical and nearly-flat, respectively and this suggests gaining the weakly perturbed shapes by developing an asymptotic analysis in terms of the small Bond number Bo.

The aim of the present work is to asymptotically approximate at leading order in small Bond number the shapes of two interacting and gravity-driven bubble and free surface (i.e. to treat for only one bubble the problem encountered by Pigeonneau and Sellier 10 for vanishing Bo). Similar issues have been actually addressed in the literature but for different circumstances. One can first cite the case of a bubble or droplet with large uniform surface tension γ and subject (in absence of gravity) to an arbitrary ambient steady Stokes flow with velocity magnitude V . This problem has been nicely handled by Hetsroni and Haber 11 in which the nearly-spherical particle shape is approximated at the first order in Capillary number Ca = µV /γ whatever the ambient Stokes flow. As earlier mentioned, Berdan and Leal 3 later asymptotically obtained the nearly-flat shape of a fluid-fluid interface interacting with a solid and not-necessarily force-free sphere with radius a as both capillary number Ca and Bond number Bo vanish. Finally, one should mention two additional papers dealing with two nearly spherical and weakly interacting drops moving either in the same liquid in absence of gravity [START_REF] Chervenivanova | On the deformation of two droplets in a quasisteady Stokes flow[END_REF] or in two different liquids due to the gravity [START_REF] Chervenivanova | The slow motion of droplets perpendicular to a deformable flat fluid interface[END_REF] (with in this latter case also the approximation of the nearly-flat liquid-liquid interface). One should note that the results obtained by Chervenivanova and Zapryanov [START_REF] Chervenivanova | The slow motion of droplets perpendicular to a deformable flat fluid interface[END_REF] amazingly predict, a non-smooth perturbed interface and are therefore questionable. In addition, there is to the authors very best knowledge no work dealing with the case of a bubble interacting with a free surface at small Bond number. The paper is organized as follows. The governing Stokes problem and its associated zeroth-order flow are presented in §II. The free-surface location first-order approximation in small capillary number is obtained in § III while § IV is devoted to the estimate, at the same order, of the weakly non-spherical bubble shape. The proposed asymptotic theory is compared in § V with the BEM predictions provided by Pigeonneau and Sellier 10 while concluding remarks close the paper in § VI.

II. GOVERNING PROBLEM AND ZEROTH-ORDER FLOW SOLUTION

This section presents the governing axisymmetric Stokes problem and the flow asymptotic expansion at relevant vanishing Bond and capillary numbers.

A. Axisymmetric Stokes problem

As sketched in FIG. 1, we consider a bubble ascending, in a Newtonian liquid with a uniform density ρ l , toward a free surface under a uniform gravity field g = -ge z . For distant bubble and free surface this bubble is spherical with a radius a while the free surface is the z = 0 plane. Otherwise, at time t the non-spherical bubble center-of-volume O is located at a distance l from the z = 0 plane. In the liquid domain D(t) the fluid has a velocity field u, with a magnitude U, and a pressure field p + ρ l g • x + p a where x = OM and p a designates the uniform ambient pressure above the free surface. Assuming a vanishing

Reynolds number, i.e. Re = ρ l U a/µ 1, and a flow quiescent far from the bubble it follows that (u, p) obeys

µ∇ 2 u = ∇p and ∇ • u = 0 in D(t), (1) 
(u, p) → (0, 0) as |x| → ∞.

(2)

We supplement (1)-( 2) with boundary conditions on the free surface S 0 and the bubble boundary S 1 having a unit outward normal n and a local average curvature

H = ∇ S • n/2
with ∇ S the surface divergence [START_REF] Aris | Vectors, Tensors and the basic equation of fluid mechanics[END_REF] . Assuming the same uniform surface tension γ on each surface and denoting by p b the bubble uniform pressure and by σ the flow (u, p) stress tensor

yields 15 n • σ • n = ρ l g • x + γ∇ S • n on S 0 , (3) 
n • σ • n = ρ l g • x + p a -p b + γ∇ S • n on S 1 , (4) 
(σ • n) ∧ n = 0 on S 0 , S 1 . (5) 
There is no mass transfer across S 0 ∪ S 1 and the bubble has a constant volume V b . Thus,

S 1 u • ndS = 0. (6) 
At each time t one gains (u, p) by solving the well-posed problem (1)-( 6). Note that:

(i) The bubble is force free since integrating (4) over S 1 with p ap b uniform gives a zero contribution 16 .

(ii) To track in time the liquid boundary S 0 ∪ S 1 , with the material velocity U , it is sufficient to first get there the velocity u and then to exploit the no-mass transfer condition

U • n = u • n on S 0 ∪ S 1 . (7) 

B. Dimensionless numbers and flow expansion at vanishing Bond number

In (3)-( 4) the terms n • σ • n, ρ l g • x and γ∇ S • n are of flow, gravity and capillary natures.

Taking U as typical velocity magnitude and the bubble initial radius a as length scale give

γ∇ S • n ∼ γ/a, n • σ • n ∼ µU/a, ρ l g • x ∼ ρ l ga on S 0 ∪ S 1 . (8) 
Comparing either in (3) or in (4) the gravity term and the flow term with the capillary term then introduces two dimensionless numbers: the Bond number Bo and the capillary number Ca here defined as

Bo = ρ l ga 2 3γ , Ca = µU γ . ( 9 
)
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FIG. 2: Zeroth-order axisymmetric problem of a spherical bubble with radius a, center O and surface S 1 translating at the velocity U e z toward the z = 0 flat free surface S 0 .

For the present problem Ca = O(Bo) since, due to the cancellation of the integral of (4),

µU a ∼ ρ l ga 3 .
Henceforth, it is assumed that Bo 1 and therefore also that Ca 1. In that case the bubble and the free surface remain nearly spherical and flat, respectively while the flow (u, p) is expanded as follows

u = u 0 + Ca u 1 + O(Ca 2 ), p = p 0 + Ca p 1 + O(Ca 2 ). ( 10 
)
The zeroth-order flow (u 0 , p 0 ), with stress tensor σ 0 , is handled in § II C while (u 1 , p 1 ) is discarded because, as shown in sections § III and § IV, determining the first-order O(Ca)

weakly perturbed free surface and bubble shapes solely appeals to the normal stress n 0 •σ 0 •n 0 on the unperturbed spherical bubble surface and flat free surface with the unit normal n 0 .

C. Zeroth-order flow problem and solution

Zeroth-order flow and drag coefficient

As illustrated in FIG. 2, (u 0 , p 0 ) is the flow about a spherical bubble with a radius a and surface S 1 translating at the velocity u 0 = U e z toward (U > 0) the motionless z = 0 plane S 0 . The liquid domain is D 0 and (u 0 , p 0 ) obeys, using (7),

µ∇ 2 u 0 = ∇p 0 and ∇ • u 0 = 0 in D 0 , (u 0 , p 0 ) → (0, 0) as |x| → ∞, (11) 
u 0 • n 0 = 0 on S 0 , u 0 • n 0 = U e z • n 0 on S 1 , (σ 0 • n 0 ) ∧ n 0 = 0 on S 0 ∪ S 1 . (12) 
For symmetry reasons, (u 0 , p 0 ) exerts on the bubble a zero torque and a force F 0 given by

F 0 = S 1 σ 0 • n dS = -4πµU aλ 0 e z (13) 
with drag coefficient λ 0 > 1 (see Table I in § II C 2) solely depending upon the bubble normalized l/a. For the freely-suspended bubble, expanding (B5) at the leading order in small Bo yields

U = ρ l ga 2 3µλ 0 , λ 0 = Bo / Ca = O(1). (14) 

Solution in bipolar coordinates and comparisons

As in [START_REF] Bart | The slow unsteady settling of a fluid sphere toward a flat fluid interface[END_REF][START_REF] Meyyappan | Thermocapillary migration of a bubble normal to a plane surface[END_REF] , the axisymmetric problem ( 11)-( 12) is solved using the usual bipolar coordinates (ζ, η, φ) here related to the cylindrical coordinates (ρ, z, φ) as follows 

19 z = c sinh ζ cosh ζ -cos η , ρ = c sin η cosh ζ -cos η , c = √ l 2 -a 2 . ( 15 
ζ p ≤ ζ ≤ 0, η ∈ [0, π] and φ ∈ [0, 2π] (see FIG. 2). Setting χ = cos η, one gets u 0 (x) = u 0ζ e ζ + u 0η e η with u 0ζ (ζ, χ) = - (cosh(ζ) -χ) 2 c 2 ∂ψ ∂χ , u 0η (ζ, χ) = - (cosh(ζ) -χ) 2 c 2 sin(η) ∂ψ ∂ζ (16) 
and a stream function ψ(ζ, χ) recalled 20 in Appendix A. On S 0 and S 1 the required normal stress reads n 0 • σ 0 • n 0 = σ 0ζζ = -p 0 + τ 0ζζ with p 0 the pressure obtained as detailed in [START_REF] Zapryanov | Dynamics of bubbles, drops and rigid particles[END_REF] and τ 0ζζ the normal viscous stress given by 19

τ 0ζζ (ζ, χ) = -2 µU (cosh ζ -χ) c 3 ∂ ∂ζ (cosh ζ -χ) 2 ∂ψ ∂χ -(cosh ζ -χ) ∂ψ ∂ζ . (17) 
The resulting values of σ 0ζζ on both S 0 (ζ = 0) and S 1 (ζ = -ζ p ), available in [START_REF] Guémas | Low-Reynolds-Number gravity-driven migration and deformation of bubble(s) and/or solid particle(s) near a deformable free surface[END_REF] , are here tested in Appendix A) by analytical evaluation (λ 0,a ), integration over S 1 (λ 0,1 ) or integration over S 0 (λ 0,0 ). The 6-digit value of λ 0,a obtained by Bart 17 is given for comparison.

III. FIRST-ORDER WEAKLY PERTURBED FREE SURFACE SHAPE

A. Governing problem for the free surface shape 

[∇ S • n 1 ](f ) = d 2 f dρ 2 + 1 ρ df dρ . (18) 
Recalling that g = -ge z , substituting n and z in (3) and retaining the leading order terms yields, in conjunction with (18), the governing equation for the shape function

ρ d 2 f dρ 2 + df dρ -t f ρf = ρ [n 0 • σ 0 • n 0 ] (z = 0) with t f = 12 Bo . ( 19 
)
The free surface is unperturbed far from the (z Oz) axis and exhibits (axisymmetric problem)

an horizontal tangent on the (z Oz) axis. Therefore, we supplement (19) with the conditions

df dρ = 0 for ρ = 0, f (ρ) = 0 as ρ → ∞. (20) 

B. Basic property and analytical solution

In solving ( 19)-(20), one may think about neglecting the term t f ρf in (19) because Bo = O(Ca) for the freely suspended bubble. Doing so, and taking into account of the first condition (20) would give

df dρ = g(ρ) ρ , f (ρ) = ρ ∞ g(s) s ds, g(s) = s 0 u[n 0 • σ 0 • n 0 ](u)du. ( 21 
)
But from (A6) one gains g(s) → -λ 0 = 0 as s becomes large and thus f given by ( 21) is not bounded! Thus, one must keep the term t f ρf in (19). Moreover, for a freely-suspended bubble the volume of liquid above the z = 0 plane does not depend upon (l/a, Bo) and is equal to the bubble volume. Indeed, when normalized by 8a 3 , this volume V l satisfies

V l = 2π ∞ 0 Ca f (ρ)ρdρ = - π 6λ 0 ∞ 0 σ 0ζζ (u)u du = π 6 . ( 22 
)
This is due to (19) which with λ 0 = Bo / Ca for the freely-suspended bubble becomes

d dρ ρ df dρ = 12λ 0 Ca ρf (ρ) + ρ σ 0ζζ . (23) 
Anticipating on (24) it is possible to show that ρdf /dρ → 0 as ρ → ∞. This latter property and the boundary condition df /dρ = 0 at ρ = 0 (see (20)) then provide (22) by integrating

(23) over [0, ∞[.
Using the so-called method of Wronskian as done by Berdan and Leal 3 for a distant solid sphere, provides the following analytical solution to ( 19)-( 20) (24) where σ 0ζζ = n 0 • σ 0 • n 0 = 2aσ 0ζζ /(µU ) and I 0 or K 0 denotes the usual modified Bessel functions of the first or second kind, respectively [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] . From ( 24) and I 0 (0) = 1 it appears that the free surface shape function on the (z Oz) takes the value

f (ρ) = I 0 ( t f ρ) ∞ ρ K 0 ( t f u), u σ 0ζζ (u)du -K 0 ( t f ρ) ρ 0 I 0 ( t f u) u σ 0ζζ (u)du
f (0) = ∞ 0 K 0 ( t f u) u σ 0ζζ (u)du. (25) 

C. Numerical results and discussion

The shape function f is computed from (24) with a Fortran routine using the Netlib Library for the modified Bessel functions I 0 and K 0 .

To our very best knowledge no asymptotic result for a bubble is available in the literature and we thus first compare our results with the predictions of Berdan and Leal 3 for a distant solid sphere. For a distant particle (solid sphere or bubble) translating at the velocity U e z the free surface is, at the leading order, pushed by the flow produced by a point force located at the particle center of volume. This point force has strength F 0 = -4πµU aλ 0 e z for the bubble and strength F 0,s = -6πµU aλ 0,s e z for the solid sphere with drag coefficient λ 0,s given in Bart 17 using bipolar coordinates. For prescribed (l/a, Bo, Ca) the free surface shapes f and f s obtained for distant bubble and solid sphere then obey

f s /f = ||F 0,s ||/||F 0 || = 3λ 0,s /(2λ 0
). This relation is tested for l/a = 6, Bo = 1/3 and Ca = 0.2 by plotting in FIG. 3 the free surface locations z/a obtained for shape functions f b given by (24),

f s = 3λ 0,s f b /(2λ 0 ) ∼ 1.570f b 24
, f bel given for a solid sphere in 3 and finally f sbip or f sa obtained by using in (24) the normal stress σ 0ζζ (u) for a solid sphere either calculated in bipolar coordinates as in Bart 17 for f sbip or asymptotically evaluated as in Berdan and Leal 3 for f sa . Clearly, the results for the distant solid sphere using f s , f bel , f sbip and f sa are consistent and predict a more deformed free surface than for the case of a bubble (using f b ) because of different (no-slip or no tangential stress) boundary conditions on the particle (sphere, bubble) surface.

We now examine the free surface deformation due to the freely-suspended bubble by prescribing the Bond number Bo and taking Ca = Bo /λ 0 with λ 0 given by (A4). In FIG. 

IV. FIRST-ORDER BUBBLE SHAPE

A. Governing problem for the bubble shape Mimicking section § III A we need to asymptotically enforce at small Ca = O(Bo) the relation (4) on the perturbed bubble surface S 1 . Employing bipolar coordinates (recall (15)), as done by Chervenivanova and Zapryanov [START_REF] Chervenivanova | The slow motion of droplets perpendicular to a deformable flat fluid interface[END_REF] for a droplet, is not convenient. As depicted in FIG. 2 

p b ∼ p 0 b + Ca p 1 b , r ∼ a[1 + Ca ξ(θ)] on S 1 (26) 
with p 0 b = p a +ρ l gl +2γ/a prevailing at Bo = 0 and unknown uniform pressure p 1 b and bubble shape function ξ(θ) = O(1). Requiring conservation of the bubble volume and center-ofvolume O location and the bubble surface to be smooth, bounded and to exhibit horizontal tangent planes at its two θ = 0 and θ = π poles 25 provides, at order O(Ca), the conditions

π 0 ξ(θ) sin θdθ = 0, π 0 ξ(θ) sin θ cos θdθ = 0, (27) 
ξ and dξ dθ bounded in [0, π]; dξ dθ = 0 for θ = 0, π.

As for the free surface, we set ∇ S • n = d∇ S • n and σ = dσ/(µU ) when imposing (4) while this time the second approximation ( 26) yields (see 11 , 26 )

∇ S • n ∼ 4 -2 Ca L(ξ), L(ξ) = 2ξ + 1 sin θ d dθ sin θ dξ dθ . (29) 
As shown in Appendix B, enforcing (4) up to order O(1) then gives the pressure p 1 b (see Appendix B) and for the bubble shape function ξ the linear second-order differential equation

t b ξ sin θ cos θ + 2ξ sin θ + d dθ sin θ dξ dθ = R(θ) sin θ, t b = 3 Bo, (30) 
R(θ) = 1 2 1 2 π 0 [n 0 • σ 0 • n 0 ](α) sin αdα -6λ 0 cos θ -[n 0 • σ 0 • n 0 ](θ) . (31) 
In (31) we calculate λ 0 from (A4) and the occurring normalized zeroth-order normal traction

is given by [n 0 • σ 0 • n 0 ](θ) = d[σ 0ζζ (-ζ p , η)]/(µU ) with, see (A5), cos η = (cos θ cosh ζ p - 1)/(cos θ -cosh ζ p ).
Accordingly, R and ξ solely depend on l/a and (l/a, Bo), respectively.

In summary, ξ is obtained by solving ( 30) and ( 27)-( 28) for R given by (31).

B. Approximated well-posed and ill-posed problems

Setting x = cos θ, we seek the bubble shape function f (x) = ξ(θ) for x in [-1, 1]. Using the prime symbol for differentiation with respect to x and the relations

f (x) = ξ(θ), dξ dθ = - √ 1 -x 2 f (x), (32) 
makes it possible to recast the determination of ξ into the following equivalent problem

(1 -x 2 )f -2xf + (2 + t b x)f = R(x) for -1 < x < 1, (33) 1 -1 f (x)dx = 0, 1 -1 xf (x)dx = 0, ( 34 
)
f and √ 1 -x 2 f (x) are bounded in [-1, 1], ( 35 
) lim x→-1 √ 1 -x 2 f (x) = 0, lim x→1 √ 1 -x 2 f (x) = 0. ( 36 
)
As will be shown in § IV B 2, such a problem turns out to be ill-posed for t b > 0. 

P 0 (x) = 1, P 1 (x) = x, 1 -1 P n (x)P m (x)dx = 2δ nm 2n + 1 ( 37 
)
with δ nm the usual Kronecker delta, we easily arrive at the desired solution

f (x) = n≥2 L n P n (x), L n = 2n + 1 2[2 -n -n 2 ] 1 -1 P n (x)R(x)(x)dx for n ≥ 2. ( 38 
)
We also numerically solved (33)-(36) using a O(h 2 ) second-order centered Finite-Difference Method (FDM) with N -1 nodal points from the one validated for the previous t b = 0 case.

x n = -1+nh in ]-1, 1[ (with n = 1, • • • , N -1, h = 2/N )
x FDM,h = 0.01 FDM,h = 0.001 Legendre -0.95 -0.0515542907 -0.0515508201 -0.0515507859 -0.30 0.0211203840 0.0211179167 0.0211178918 0. 0.0328849811 0.0328815520 0.0328815173 0.30 0.0273688098 0.0273649720 0.0273649332 0.95 -0.0636789022 -0.0636769410 -0.0636769211 TABLE II: Computed function f (x) for t b = 0 and l = 3a when retaining N t = 25 terms in expansions (A1) and (A4). In the Legendre approach (38) we take 2 ≤ n ≤ 20 and evaluate each coefficient L n with a Gaussian integration scheme at a 10 -8 accuracy level. In summary, our computations reveal that (33)-( 36) is ill-posed for t b > 0. However, for small t b > 0 the solution f to (33)-( 36) is close to the regular one obtained for t b = 0 and we thus henceforth compute the perturbed bubble shape by taking t b = 0.

C. Numerical results and discussion

In this section perturbed bubble shapes are computed with spacing h = 10 -3 and t b = 0.

Since in practice we give Bo it is worth introducing the function ξ such that, recalling (26), Bo ξ = Ca ξ. Because Bo = λ 0 Ca note that ξ = ξ/λ 0 . As already pointed out, taking t b = 0 make ξ and therefore also ξ solely depend upon the bubble location l/a. Both functions are plotted in FIG. 9 versus θ/π for l/a = 1.5, 2, 3, 4, 6 and 10. Not surprisingly, the bubble is squeezed by its weak interaction with the free surface near its θ = 0 north pole and forced to expand away from its axis of revolution for θ close to π/2. As a result, ξ and ξ are negative and positive near θ = 0 or near θ = π/2, respectively. Moreover, the bubble is also squeezed near its θ = π south pole (negative functions near this pole) the deformation being there smaller than near the north pole because the interacting free surface is more distant (one bubble diameter more). Finally, domains of positive and negative values of the shape functions ξ and ξ are nearly insensitive to the bubble location l/a.

The bubble deformation is weak when compared with the free surface deformation on the (z Oz) axis. This is clear when comparing for a prescribed bubble location l/a the quantities z/(a Ca) at ρ = 0 (recall FIG. 7(a)) and ξ at the θ = 0 north pole. Moreover, | ξ| is at the most of order 7% as soon as l exceeds 3a. Therefore, the perturbed bubble shapes remain very close to a sphere with radius a as soon as Bo ≤ 0.2 even for l/a = 1.5. This is why in FIG. 10 we deliberately show exaggerated half (due to the symmetry about the (z Oz) axis) deformed bubble profiles by setting Bo = 1 and thus taking r /a = 1 + ξ(θ). Those profiles are drawn for l/a = 1.5, 2, 4, 6 in the half normalized plane (ρ /a, z /a) where z = z + l (the bubble center of volume O having in this plane coordinates (0, 0) whatever l/a). Such "amplified" profiles show a bubble squeezed at its north and south poles and expanded in the vicinity of its horizontal z = 0 plane.

V. COMPARISONS AGAINST AN AXISYMMETRIC BEM SOLUTION

As mentioned in the introduction, direct numerical computations have been recently performed [START_REF] Pigeonneau | Low-Reynolds-Number gravity-driven migration and deformation of bubbles near a free surface[END_REF][START_REF] Guémas | Slow viscous gravity-driven interaction between a bubble and a free surface with unequal surface tensions[END_REF] to track in time the free surface and bubble boundary locations in a large range of Bond number Bo. Those direct simulations appeal to an axisymmetric Boundary Element Method (BEM) solution which has been actually found, as reported in Pigeonneau versus the small quantity (Ca) 2 . Note that ∆ is actually reached at a not-necessarily zero location (ρ/a) m . The values of (ρ/a) m , ∆ and (Ca) [START_REF] Lee | The motion of a sphere in the presence of a deformable interface. II. A numerical study of the translation of a sphere normal to an interface[END_REF] for FIG. 11 (and also for FIG. 12) are given in TABLE III which also provides the 4-digit value of the bubble center-of-volume location l/(2a) obtained by the BEM computations and used in the asymptotic analysis.

At l ∼ 6a a nice agreement between the asymptotic and BEM is found for Bo in the range [0.1, 0.2]. Of course, at a given Bond number the free surface is more perturbed when the bubble approaches and this suggests also checking our asymptotic results for l < 6a. This has been done for l/a ∼ 4, 2 in FIG. 12 and is also quantified in TABLE III.

While the l ∼ 4a results are still in full agreement some discrepancies are found at Bo = 0.1 for the l ∼ 2a case of a close bubble. For this pair (Bo, l/a) the computed BEM free surface exhibits a non-physical weavy shape close the (z Oz) axis (inspect FIG. 12 III) which is much larger than (Ca) 2 . This case illustrates the troubles experienced at low Bond number by the BEM computations for a close bubble, i.e. when on each deformed surface the local curvature slightly differs from the uniform one prevailing for unperturbed surfaces (see also the introduction).

B. Case of the bubble shape

Comparisons between the BEM and asymptotic approaches have been also made and found to be very convincing for the bubble shape. As noted in § IV C, the bubble deformation is small when compared to the free surface shape deformation. Accordingly and in contrast to the case depicted in FIG. 12(b) for the perturbed free surface, the agreement between the BEM and asymptotic bubble shapes remains quite good even at l/a = 2 and Bo = 0.2. This is illustrated by drawing in FIG. 13 and in FIG. 14 the perturbed bubble normalized half profile where the largest deformations arise, i.e. near its north and south poles and equatorial plane.

As seen in those figures, the asymptotic analysis yields a larger deformation than the BEM approach. Moreover, the difference (when normalized with a) between those methods on the entire bubble profile is order of 4 • 10 -3 or 12 • 10 -3 for Bo = 0.1 or Bo = 0.2, respectively. Recalling the values given in TABLE III for the associated values of Ca 2 then shows that, as announced, both predictions well agree to order O(Ca 2 ). profiles from the BEM Code (dashed lines) and first-order asymptotic analysis (solid lines) at Bo = 0.1 (•) and Bo = 0.2 (•). The bubble center of volume is located as in FIG. 13 (with l/a ∼ 2) and the normalized unperturbed spherical bubble profile is shown in solid.

VI. CONCLUSIONS

The shapes of interacting free surface and bubble in presence of a uniform gravity field have been asymptotically obtained at the first order in small Bond number Bo (or equivalently capillary number Ca). The analysis appeals to the accurate determination of the normal stress n 0 • σ 0 • n 0 prevailing in the case of unperturbed bubble spherical surface and flat free surface. The gap of each surface to its unperturbed location is measured by the quantity Ca f with f = O(1) the associated shape function obeying a linear problem involving an ordinary differential equation in which the gravity appears through a term proportional to Bo f . Keeping this latter term yields either a well-posed or an ill-posed problem (in contrast to the unbounded liquid Haber 11 ) for the free surface or bubble, respectively. The bubble problem however is well posed if one ignores the requirement of horizontal tangent plane at the bubble north and south poles or discards the Bo f term both choices predicting for small Bond number Bo close bubble shape functions except in the very vicinity of the bubble north and south poles. In the present work the Bo f term is ignored in the bubble shape problem. The asymptotic analysis numerical implementation reveals that, at given bubble location and small Bond number, the free surface is in practice more perturbed than the bubble. It also well agree with the BEM computations 10 in the overlapping range Bo = O(0.1).

One can readily deal with interacting bubble and free surface having unequal uniform surfaces tensions by taking in the present analysis for each surface Bond and Capillary numbers (recall (8)) based on the addressed boundary surface tension. Finally, one may think about extending the work to the case of several bubbles interacting, at small Bond number and in axisymmetric configuration, with a free surface. This time the evaluation of the zeroth-order normal stress n 0 • σ 0 • n 0 on the unperturbed flat free surface and on each spherical bubble boundary might be done by proposing a new BEM approach somewhat combining the ones employed in Sellier [START_REF] Sellier | Thermocapillary motion of a two-bubble cluster near a plane solid wall[END_REF] for the gravity-driven motion of a cluster of spherical bubbles in an unbounded liquid and in Pasol et al. [START_REF] Pasol | Migration of a solid particle in the vicinity of a plane fluid-fluid interface[END_REF] for a solid sphere interacting with a fluid-fluid interface. Since this challenging task requires substantial additional efforts, it is postponed to a future work.

with angle θ defined in FIG. 2 one indeed arrives at λ 0 = λ a,0 = λ 0,1 = λ 0,0 . These relations are numerically checked in TABLE I, for several bubble locations l/a, by retaining N t terms in (A1) and (A4) and performing each integration in (A5)-(A6) at a 10 -14 accuracy using an iterative scheme with Gaussian quadratures.

FIG. 1 :

 1 FIG.1:A nearly-spherical bubble B 1 ascending, under the uniform gravity field g = -ge z , toward a weakly perturbed free surface S 0 .

)

  Surfaces ζ = 0 and ζ = -ζ p for sinh ζ p = c/a are the boundaries S 0 and S 1 , respectively. Local unit normal vectors e ζ , e η , e φ = e η ∧ e ζ are introduced at each point x(ζ, η, φ) in the liquid domain -

  The free surface shape location is obtained from(3) which gives the normal traction n • σ • n on the perturbed free surface S 0 . Setting d = 2a, we adopt dimensionless quantities z = z/d, ρ = ρ/d, ∇ S • n = d∇ S • n and σ = dσ/(µU ). The perturbed free surface S 0 admits equation z = Ca f (ρ) with f = O(1) the unknown shape function. Moreover, it has unit normal n ∼ -e z + Ca n 1 with 3

4FIG. 3 :

 3 FIG. 4 when ρ/a ≥ 5.5, and confirmed by plotting in FIG. 5(b) the free surface deformation z/a at ρ/a = 10 versus (l/a, Bo). At given l/a this deformation increases as Bo drops from 1/3 to 0.05 while it increases with Bo in the range [0.005, 0.01]. Moreover, depending on l/a, the value of z/a at Bo = 0.05 is either larger or smaller than its value at Bo = 0.005. At ρ/a = 10 this free surface deformation z/a amazing sensitivity to Bo is due to the volume

FIG. 4 :

 4 FIG. 4: Free surface shapes at different Bond numbers Bo for a bubble location l = 6a. Bo = 1/3 (+); Bo = 0.1 (•); Bo = 0.05 (-); Bo = 0.01 ( ); Bo = 0.005 ( ).

FIG. 5 :

 5 FIG. 5: Free surface deformation z/a versus l/a on the ρ = 0 axis (a) and at ρ = 10a (b) for Bo = 1/3 (+); Bo = 0.1 (•); Bo = 0.05 (-); Bo = 0.01 ( ); Bo = 0.005 ( ).

FIG. 6 :

 6 FIG. 6: Free surface shapes at different Bond numbers: Bo = 1/3 (+); Bo = 0.1 (•); Bo = 0.05 (-); Bo = 0.01 ( ); Bo = 0.005 ( ). (a) l = 4a and (b) l = 2a.

FIG. 7 :

 7 FIG. 7: (a) ratio z/(a Ca) = 2f (ρ/a) and (b) ratio z/(aBo) = 2f (ρ/a)/λ on the ρ = 0 axis for Bo = 0.1 (•); Bo = 0.05 (-); Bo = 0.01 ( ) and Bo = 0.005 ( ).

  FIG. 2 and according to Hetsroni and Haber 11 , we instead use spherical coordinates (r , θ, φ), centered at the bubble center-of-volume O such that OO = -le z , with φ ∈ [0, 2π], θ ∈ [0, π] and r = |x | for x = O M. For small Ca = O(Bo) the nearly-spherical bubble uniform

1 .

 1 Approximated well-posed problem for t b = 0 For t b = 0 it is possible to solve (33)-(36) by expanding f in Legendre polynomials P n 23 , as done by Hetsroni and Haber 11 when dealing with the weakly deformation of a bubble freelysuspended in a prescribed arbitrary ambiant Stokes flow in an unbounded liquid. Exploiting the differential equation satisfied by each Legendre polynomial and the properties 23

FIG. 8 :

 8 FIG. 8: Numerical solution to (33)-(34) for the bubble location l = 3a, spacing h = 0.001 and t b = 1 (•), t b = 0.01 (•) or t b = 0 ( * ). (a) Shape function ξ = f . (b) Function g(x) = -√ 1x 2 f (x) for x in the range [-0.999, -0.95].

FIG. 9 :

 9 FIG. 9: Functions ξ and ξ = ξ/λ versus θ/π for l/a = 1.5, 2, 3, 4, 6 and 10 (taken negative values at θ = 0 decrease with l/a). (a) function ξ. (b) function ξ.

FIG. 10 :

 10 FIG.10: Normalized half spherical bubble (dashed line) and several exaggerated perturbed bubble profiles (solid lines) for r /a = 1 + ξ(θ) and l/a = 1.5, 2, 4, 6. For each profile the value of l/a is obtained knowing that at z = 0 the bubble deformation increases with a/l.

FIG. 11 :

 11 FIG.11: Free surface shapes from the BEM solution (dashed lines) and the first-order asymptotic analysis (solid lines) at Bo = 0.1 (•) and Bo = 0.2 (•). The bubble center of volume is located at l/a ∼ 6 (see TABLE III for the associated 4-digit value of l/(2a)).

FIG. 12 :

 12 FIG.12: Free surface shapes from the BEM solution (dashed lines) and the first-order asymptotic analysis (solid lines) at Bo = 0.1 (•), Bo 0 = 0.15 (*) and Bo = 0.2 (•). Here l/a ∼ 4 (a) or l/a ∼ 2 (b) (see also TABLE III for the associated 4-digit values of l/(2a)).

FIG. 13 :

 13 FIG. 13: Parts of half bubble normalized profiles from the BEM Code (dashed lines) and asymptotic analysis (solid lines) at Bo = 0.1 (•) and Bo = 0.2 (•). Here l/a ∼ 2 (see TABLE III) and the normalized unperturbed spherical bubble profile is shown in solid line. (a) Bubble north pole (z = a) vicinity. (b) Bubble south pole (z = -a) vicinity.

FIG. 14 :

 14 FIG.14: Vicinity of the z = 0 half equatorial plane for the normalized deformed bubble

TABLE I :

 I Computed drag coefficients versus the bubble location ζ p and the truncation number N t (see

  and discretizing the integral conditions (34) also at O(h 2 ) using a trapezoidal rule. As illustrated in TABLE II, comparisons of the implemented FDM against (38) are excellent and the FDM exhibits the expected O(h 2 ) accuracy.

	2. Ill-posed problem for t b > 0
	For t b > 0 there is no guarantee that our requirements (35)-(36) are consistent with

(33)-(34). This issue is addressed by first numerically solving (33)-(34) and then checking whether (35)-(36) are satisfied. To do so we again run a O(h 2 ) Finite-Difference Method solely differing by a minor change (one had just to code the extra term t b xf arising in (33))

  10 -3 3.36 • 10 -2 7.70 • 10 -3 3.06 • 10 -2 5.60 • 10 -3 2.22 • 10 -2 ∆ 1.10 • 10 -3 2.40 • 10 -3 3.30 • 10 -3 8.00 • 10 -3 2.73 • 10 -2 2.14 • 10 -2

	(l/(2a), Bo) (3.0008, 0.1) (3.0003, 0.2) (2.0022, 0.1) (2.0022, 0.2) (1.0016, 0.1) (1.0021, 0.2)
	(Ca) 2 8.40 • (ρ/a) m 0	0	4	0	2.3	0
	TABLE III: Setting (l/(2a), Bo) and quantities (Ca) 2 , ∆ and (ρ/a) m for FIG. 11-12.

Denoting by P n the usual Legendre polynomial of order n 30 , the stream function ψ reads 31

(A1)

The drag coefficient λ 0 , defined by (13), receives the analytical form 17 λ 0,a given by

but can also be evaluated by integrating the normal traction σ 0ζζ either on S 0 (ζ = 0) or on

As the reader may easily check, upon introducing

Appendix B: Bubble first-order pressure and shape function problem

Enforcing (4) and using ( 29) provides on the unperturbed bubble boundary r = a

with angle θ introduced in FIG. 2 and, using the link Bo = λ 0 Ca, the following function