
Towards a Flexible Data Stream Analytics

Platform based on the GCM Autonomous

Software Component Technology

Prof Françoise Baude, Léa El Beze (MSc), Miguel Oliva (MSc)

CNRS I3S UMR 7271,

University of Nice Sophia-Antipolis

France

Contact: baude@unice.fr

Agenda

I. Motivation and Requirements: flexible

analytics for big data streams

II. Background technology: GCM/ProActive

III. Proposition: GCM Streaming platform

IV. Current work & conclusion

Big data stream analytics: flexibility

• In-memory, on-line efficient analytics on big data volume

 From IoT, Social networks, etc

 Situation detection: Fraud, natural disaster

 Crisis prevention & management, urgent computing…

• Not all the situations must be handled the same way

 Normal versus exceptional

 Each situation requires a variant of the analytics

 Program the automatic switch between analytics

Flexible, self-adaptable analytics : Minimize STOP-

(UN)DEPLOY-START effects

 Programming & support of the « core » analytics

 Extension to runtime reconfiguration rules

Big data Stream analytics platforms:

Comparison criteria

• Reconfiguration capability of the Dataflow Analytics graph ?

 Non functional (e.g. to not violate SLAs)

 Functional (to adapt the analytics)

• Reconfigurability is expected to be more easy to handle if

 Data flow graph close to runtime view

 Data flow graph operators

 support elasticity / intra parallelism

 can be replaced on the fly

 Language/protocol for reconfiguration rules/program:

 Autonomic support

 Highly expressive

 Handling of tuples under analysis: expressive and safe

 Control /Enactment of the process: localized & distributed

Inspriring platforms / ideas (1/2)

• IBM SPL/ Infosphere Streams « ecosystem »

 Higher order composite coarse-grained operators (SPL)

 Separate adaptation logic to control when to submit /

cancel new applications
G. Jacques-Silva, B. Gedik, R. Wagle, K.-L. Wu, and V. Kumar, “Building user-defined runtime adaptation

routines for stream processing applications,” VLDB Endowment, 2012

Orchestration of the adaptation is done centrallyArc annotations indicate how long the source

application must run before the target one can start.

Inspiring platforms / ideas (2/2)

• Auto-parallelization of operators :

 Classical autonomic elasticity based on CPU/network

loads

 Operator Fission and Contraction

 Application-driven triggers definition
 E.g.: millions of tweets 2013 FIFA Confederations Cup +

application that calculates public sentiment changes during soccer

matches.

Goal: to meet SLA = “x sec/ analyzed tweet”, anticipate burst of

tweets as high changes in sentiments occur

A. A. D. Souza and M. A. Netto, “Using application data for SLA-aware auto-scaling in cloud environments”

IEEE MASCOTS, 2015

Ex: Operator Fission & state migration

protocol

B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for data stream processing”

IEEE Transactions on Parallel and Distributed Systems, 2014

Horizontal

synchronization

barrier on

master replica

Vertical

synchronization

barrier to « collect »

« donate » data to

the operator store

Ex: Operator Fission & tuple management

during state migration

B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for data stream processing”

IEEE Transactions on Parallel and Distributed Systems, 2014

Horizontal

synchronization

barrier

Vertical

synchronization

barrier

Analysis of state of the art: outcome

Open questions are mostly software-engineering related:

Which language(s) to design self-adaptation

algorithms

 Clear and clean separation of concerns

 Generic still customizable rules taking also Functional

concerns in account

 (self-)Evolvable rules (?)

Global distributed architecture (distributed controllers)

• Proposition towards solving these open questions:

 Select an appropriate distributed software technology

 GCM/ProActive
 Grid Component Model (GCM)

An extension of Fractal for Distributed computing

 GCM/ProActive

An implementation of GCM using Multi-Active objects

Programming distributed and adaptable autonomous components—the GCM/ProActive framework. F.

Baude, L. Henrio, and C. Ruz Software: Practice and Experience – 2014

Agenda

I. Motivation and Requirements: flexible

analytics for big data streams

II. Background technology: GCM/ProActive

III. Proposition: GCM Streaming platform

IV. Current work & conclusion

What is a GCM component

Business code

Primitive component

Business code

Primitive component

Composite component

Business code

Primitive component

Server

/ input

Client

/ output

Multi-Active GCM/ProActive Component

add() {

…

… }

monitor()

{…

… }

add() {

CI.foo(p)

}

Provided add, add and monitor are compatible

Note: monitor is compatible with join

Collective interfaces (GCM)

• One-to-many = multicast

• Many-to-one = gathercast

• Distribution and synchronisation/collection policies for

invocation and results

Business code

Primitive component

Business code

Primitive component

Composite component

Business code

Primitive component

Business code

Primitive component

Separation of concerns in GCM architecture

• Content: responsible

for business logic

• Membrane: responsible

for control part

• Functional and non-

functional interfaces

• Business logic and

control part can be

designed separately Then aggregated when describing the complete

Architecture (XML-based Architecture Description

Language)

Adaptation in the GCM

• Functional adaptation: adapt the architecture

+ behaviour of the application to new

requirements/objectives/environment

• Non-functional adaptation:

adapt the architecture of the container+middleware to

changing environment/NF requirements (QoS …)

 May impact the application also

• Both functional and non-functional adaptation expressed

as reconfigurations:

 sets of GCM architecture transformation operations

 Programmed using GCM Script or direct GCM API calls

Autonomic components:

MAPE loop in GCM/ProActive

Monitoring
Analysis

Planning Execution

metrics

actions

alarm

Monitoring

Interface

Rules

Interface

Actions

Interface

Monitoring

Interface

Actions

Interface

B C

A

Autonomic
Manager

A

B C

(a) (b)

MAPE API:

• Allow runtime

adaptation of

the MAPE

rules

• Can be under

responsibility

of controller

components

Functional

sensors possible

Typical usecase – Adaptive Farm pattern

G

Mf
F

W1

W2

W3

Af

Pf Ef

R

Mr
front-end

master

master

workers

repo

repo

repo

caller

reqServPerSec

idleCPU

freeDisk

freeMem

R1: {avgReqServPerSec,<,tL}
R2: {avgIdleCPU,>,tI}

avgReqServPerSec

avgIdleCPU

totalFreeDisk

totalFreeMem

freeRepositorySpace

Ex:Operator

fission

Deployment on distributed infrastructures

• Any GCM
application can
be deployed on
a set of
computing
nodes, as a
simple Java
application

• Using the
Grid/Cloud
configurable
deployment
technology

Agenda

I. Motivation and Requirements: flexible

analytics for big data streams

II. Background technology: GCM/ProActive

III. Proposition: GCM Streaming platform

IV. Current work & conclusion

Design principles for GCM-Streaming

A platform for autonomic big data stream analytics

• Built as a GCM/ProActive application

• Generic GCM components

 Abstract class as content

 Further personalized as concrete class

• Composed together, and in a hierarchical manner

• Whose reconfiguration can be programmed in the

respective component membranes

• Whose execution is parallel and distributed

Data Flow graph operators

• InTap

• OutTap

• MapReduce flavor

• Operator

• Aggregator

• All have a multicast interface as client, to propagate

tuples further in the data flow graph

 Possible configurations: broadcast, scatter/shuffle, …

• Exposing non-functional interfaces (e.g. Attribute control)

• Specific Operator type: to run any window strategy

interface InStream {

void receive(int inputSource,

List<Tuple> newTuples) ; }

MulticastInStream

Aggregator operator

Programming and composition of operators

• Architecture Description File for XML-based composition
<!-- Twitter -->

<component name="twitter" definition="org.inria.scale.streams.InTap">

<content class="org.inria.scale.streams.intaps.TwitterStreaming" />

<attributes signature="org.inria.scale.streams.configuration.TwitterStreamingConfiguration">

<attribute name="consumerKey" value="" />

<attribute name="consumerSecret" value="" />

<attribute name="accessToken" value="" />

<attribute name="accessTokenSecret" value="" />

<attribute name="terms" value="tsipras,bieber,obama,messi,tevez" />

</attributes>

</component>

<!-- Input window -->

<component name="input-window" definition="org.inria.scale.streams.Window">

<attributes signature="org.inria.scale.streams.configuration.WindowConfiguration">

<attribute name="windowConfiguration" value='("type": "tumbling", "tumblingType": "time", "milliseconds": 10000)' />

</attributes>

</component>

<!-- Getter -->

<component name="getter" definition="org.inria.scale.streams.Operator">

<content class="org.inria.scale.streams.operators.Getter" />

<attributes signature="org.inria.scale.streams.configuration.GetterConfiguration">

<attribute name="tupleComponent" value="0" />

</attributes>

</component>

………………………………………

<!-- Operator bindings -->

<binding client="twitter.out" server="input-window.in" />

<binding client="input-window.out" server="getter.in" />

<binding client="getter.out" server="normalizer.in" />

………………………………………

public class Getter extends BaseOperator implements

GetterConfiguration {

private int tupleComponent;

@Override

protected List<? extends Tuple> processTuples(

final List<Tuple> tuplesToProcess) {

return …………………..

Sentiment analysis GCM-streaming application

• Rank the sentiment (negative -

5 to positive +5) in Spanish

tweets pertaining to popular

terms,

• E.g.: Bieber, Obama

• At minute 20, dynamic

adaptation of the dictionary

used => English

• Obama, a personality which

seems to be more appreciated

by Spanish speakers

(Text,terms)

(Text,Sentiment value)

(Term,Sentiment value)

Future work around GGM-Streaming

GCM-Streaming: Public code: https://github.com/moliva/gcm-streaming

• Better benefit from Multi-active objects for parallel tuples processing within
an operator, besides operator fission

• extend the multi active object requests scheduler
• Advanced request parameters & operator state based compatibility rules

• DSLs for easing generic components implementation programming

Towards predictive analytics

• Deeply explore functional scenarios from e.g. situation-aware computing

• Expression of autonomic GCM-streaming reconfiguration policies
• triggered by functional concerns

• Safe protocols to transfer state and awaiting tuples

Need of manpower to pursue this work, in the Scale Team

An open PhD funded position !!!!!!!!

https://team.inria.fr/scale/files/2011/07/GCMStreamingPhD.pdf

from Fall 2016

https://github.com/moliva/gcm-streaming
http://univ-cotedazur.fr/english
http://univ-cotedazur.fr/english

