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Abstract

We consider the problem of estimating a low-rank signal matrix from noisy measurements
under the assumption that the distribution of the data matrix belongs to an exponential fam-
ily. In this setting, we derive generalized Stein’s unbiased risk estimation (SURE) formulas
that hold for any spectral estimators which shrink or threshold the singular values of the
data matrix. This leads to new data-driven spectral estimators, whose optimality is dis-
cussed using tools from random matrix theory and through numerical experiments. Under
the spiked population model and in the asymptotic setting where the dimensions of the data
matrix are let going to infinity, some theoretical properties of our approach are compared
to recent results on asymptotically optimal shrinking rules for Gaussian noise. It also leads
to new procedures for singular values shrinkage in finite-dimensional matrix denoising for
Gamma-distributed and Poisson-distributed measurements.

Keywords: matrix denoising, singular value decomposition, low-rank model, Gaussian spiked
population model, spectral estimator, Stein’s unbiased risk estimate, random matrix theory,
exponential family, optimal shrinkage rule, degrees of freedom.
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1 Introduction

1.1 Low rank matrix denoising in an exponential family

In various applications, it is of interest to estimate a signal matrix from noisy data. Typical
examples include the case of data that are produced in a matrix form, while others are concerned
with observations from multiple samples that can be organized in a matrix form. In such setting,
a typical inference problem involves the estimation of an unknown (non-random) signal matrix
X ∈ Rn×m from a noisy data matrix Y satisfying the model:

Y = X +W , (1.1)



where W is an n ×m noise matrix with real entries W ij assumed to be independent random
variables with E[W ij ] = 0 and Var(W ij) = τ2

ij for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In this paper, we
focus on the situation where the signal matrix X is assumed to have a low rank structure, and
we consider the general setting where the distribution of Y belongs to a continuous exponential
family parametrized by the entries of the matrix X = E[Y ]. For discrete observations (count
data), we also consider the specific case of Poisson noise.

The low rank assumption on X is often met in practice when there exists a significant
correlation between the columns of X. This can be the case when the columns of X represent
2D images at different wavelength of hyperspectral data, since images at nearby wavelengths are
strongly correlated [CSLT13]. Further applications, where low-rank modeling of X is relevant,
can be found in genomics [WDB01, ABB00], NMR spectroscopy [NPDL11], collaborative filtering
[CR09] or medical imaging [BD06, LBH+12], among many others.

Low-rank matrix estimation is classically done in the setting where the additive noise is
Gaussian with homoscedastic variance. The more general case of observations sampled from
an exponential family is less developed, but there exists an increasing research interest in the
study of low rank matrix recovery beyond the Gaussian case. Examples of low-rank matrix
recovering from Poisson distributed observations can be found in applications with count data
such as network traffic analysis [BMG13] or call center data [SH05]. A theory for low-rank matrix
recovery and completion in the case of Poisson observations has also been recently proposed in
[CX16]. Matrix completion under a low rank assumption with additive errors having a sub-
exponential distribution and belonging to an exponential family has also been considered in
[Laf15]. The recent work [UHZB16] proposes a novel framework to approximate, by a low rank
matrix, a tabular data set made of numerical, Boolean, categorical or ordinal observations.

1.2 The class of spectral estimators

A standard approach to estimate a low rank matrix relies on the singular value decomposition
(SVD) of the data matrix

Y =

min(n,m)∑
k=1

σ̃kũkṽ
t
k, (1.2)

where σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃min(n,m) ≥ 0 denote its singular values, and ũk, ṽk denote the associated

singular vectors. In this paper, we propose to consider the class of spectral estimators X̂
f

=
f(Y ), where f : Rn×m → Rn×m is a (possibly data-dependent) mapping that acts on the singular
values of the data matrix Y while leaving its singular vectors unchanged. More precisely, these
estimators take the form

X̂
f

= f(Y ) =

min(n,m)∑
k=1

fk(Y )ũkṽ
t
k, (1.3)

where, for each 1 ≤ k ≤ min(n,m), fk(Y ) are real positive values that may depend only on σ̃k
(hence we write fk(σ̃k)) or on the whole matrix Y .
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1.3 Investigated spectral estimators

Typical examples of spectral estimators include the classical principal component analysis (PCA)
applied to matrix denoising defined, for some 1 ≤ r ≤ min(n,m), as

X̂
r

=

r∑
k=1

σ̂kũkṽ
t
k with σ̂k = fk(σ̃k) = σ̃k (1.4)

for all 1 ≤ k ≤ r and where it is implicitely understood that fk(σ̃k) = 0 for k ≥ r + 1.
Another typical spectral estimator in matrix denoising with Gaussian measurements is the soft-
thresholding [CSLT13] which corresponds to the choice

X̂soft =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = fk(Y ) =

(
1− λ(Y )

σ̃k

)
+

σ̃k, (1.5)

for all 1 ≤ k ≤ min(n,m) and where λ(Y ) > 0 is a possibly data-dependent threshold parameter,
and (x)+ = max(x, 0) for any x ∈ R. Finaly, we will consider a more general class of shrinkage
estimators, encompassing the PCA and the soft-thresholding, that perform

X̂w =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = fk(Y ) = wk(Y )σ̃k, (1.6)

where wk(Y ) ∈ [0, 1] is a possibly data-dependent shrinking weight.

1.4 Main contributions

Under the assumption that the distribution of Y belongs to an exponential family, the goal of
this paper is to derive data-driven choices for the weights wk(Y ) in (1.3).We construct estimators
via a two-step procedure. First, an active set of non-zero singular values is defined. Then, in a
second step, weights wk(Y ) associated with non-zero singular values are optimized, and shown
to reach desired asymptotical properties in the Gaussian spiked population model. The main
contributions of the paper are then the following ones.

1.4.1 An AIC inspired criterion for rank and singular values locations estimation

When no a priori is available on the rank of the signal matrix X, optimizing for the weights wk,
for all 1 ≤ k ≤ min(m,n), can lead to estimators with large variance (i.e., overfitting the noise).
We propose an automatic rule to prelocalize the subset of non-zero singular values. An active
set s? ⊆ I = {1, 2, . . . ,min(n,m)} of singular values is defined as the minimizer of a penalized
log-likelihood criterion that is inspired by the Akaike information criterion (AIC)

s∗ ∈ arg min
s⊆I

− 2 log q(Y ; X̃
s
) + 2|s|pn,m with pn,m =

1

2

(√
m+

√
n
)2
, (1.7)

where X̃
s

=
∑

k∈s σ̃kũkṽ
t
k, |s| is the cardinal of s, and q(Y ; X̃

s
) is the likelihood of the data in a

given exponential family with estimated parameter X̃
s
. For the case of Gaussian measurements
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with homoscedastic variance τ2, one has that q(Y ; X̃
s
) = ‖Y − X̃s‖2F /2τ2, where ‖ · ‖F denotes

the Frobenius norm of a matrix, and we show that the active set of singular values boils down to

s? = {k ; σ̃k > cn,m+ }, (1.8)

where cn,m+ = τ(
√
m +

√
n). For Gamma and Poisson measurements, we resort to a greedy

optimization procedure described in Section 4.
Once the active set has been determined, the subsequent shrinkage estimator is obtained by

optimizing only for the weights within this subset while setting the other ones to zero.

1.4.2 Novel data-driven shrinkage rules minimizing SURE-like formulas

We use the principle of Stein’s unbiased risk estimation (SURE) [Ste81] to derive unbiased
estimation formulas for the mean squared error (MSE) risk and mean Kullback-Leibler (MKL)
risks of spectral estimators. Minimizing such SURE-like formulas over an appropriate class of
spectral estimators is shown to lead to novel data-driven shrinkage rules of the singular values
of the matrix Y . In particular, our approach leads to novel spectral estimators in situations
where the variances τ2

ij of the entriesW ij of the noise matrix are not necessarily equal, and may
depend on the signal matrix X.

As an illustrative example, let us consider spectral estimators of the form

X̂
1
w = f(Y ) = w1(Y )σ̃1ũ1ṽ

t
1, (1.9)

which only act on the first singular value σ̃1 of the data while setting all the other ones to zero.
In this paper, examples of data-driven choices for the weight w1(Y ) are the following ones:

• for Gaussian measurements with n ≤ m and known homoscedastic variance τ2

w1(Y ) =

(
1− τ2

σ̃2
1

(
1 + |m− n|+ 2

n∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

))
+

11{σ̃1>cn,m
+ }, (1.10)

• for Gamma measurements with τ2
ij = X2

ij/L and L > 2 (see Section 2.1 for a precise definition),

w1(Y ) = min

1,

L− 1

Lmn

n∑
i=1

m∑
j=1

X̂
1
ij

Y ij
+

1

Lmn

1 + |m− n|+ 2

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

−1 11{1∈s∗},

(1.11)

• for Poisson measurements with τ2
ij = Xij (see Section 2.1 for a precise definition)

w1(Y ) = min

1,

∑n
i=1

∑m
j=1 Y ij∑n

i=1

∑m
j=1 X̂

1
ij

 11{1∈s∗}. (1.12)
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Beyond the case of rank one, closed-form solutions for the weights cannot be obtained, except
for the case of Gaussian measurements with homoscedastic variance τ2. In this latter case, the
rule for w1(Y ) in (1.10) generalizes to other eigenvalues wk(Y ) as

wk(Y ) =

1− τ2

σ̃2
k

1 + |m− n|+ 2

min(n,m)∑
`=1;`6=k

σ̃2
k

σ̃2
k − σ̃2

`


+

11{σ̃k>cn,m
+ }. (1.13)

For Gamma or Poisson distributed measurements, we propose fast algorithms to get numerical
approximations of the weights wk(Y ) (see Section 5.2 for more details).

1.4.3 Asymptotic properties in the Gaussian spiked population model

Another contribution of the paper is to discuss the optimality of the shrinking weights (1.13)
for Gaussian noise in the asymptotic setting where the dimensions of the matrix Y are let going
to infinity. These theoretical results are obtained for the so-called spiked population model that
has been introduced in the literature on random matrix theory and high-dimensional covariance
matrix estimation (see e.g. [BS06, BN12, DS07, SN13]). All the theoretical and asymptotic
results of the paper (other than derivation of proposed estimators) assume this model.

Definition 1.1. The Gaussian spiked population model corresponds to the following setting:

• the W ij in (1.1) are iid Gaussian random variables with zero mean and variance τ2 = 1/m,

• the Xij’s in (1.1) are the entries of an unknown n×m matrix X that has a low rank structure,
meaning that it admits the SVD X =

∑r∗

k=1 σkukv
t
k, where uk and vk are the left and

right singular vectors associated to the singular value σk > 0, for each 1 ≤ k ≤ r∗, with
σ1 > σ2 > . . . > σr∗,

• the rank r∗ of the matrix X is assumed to be fixed,

• the dimensions of the data matrix Y = X + W are let going to infinity in the asymptotic
framework where the sequence m = mn ≥ n is such that limn→+∞

n
m = c with 0 < c ≤ 1.

In the Gaussian spiked population model, the asymptotic locations of the empirical singular
values σ̃1 ≥ . . . ≥ σ̃min(n,m) are well understood in the random matrix theory (further details are
given in Section 3.1). Note that the setting where the rank r∗ is not held fixed but allowed to
grow with min(n,m) is very different, see e.g. [LW12] and references therein.

Under the Gaussian spiked population model, our contributions are then as follows:

• we prove the convergence of the SURE formula when the dimensions of Y tend to infinity,

• it is shown that minimizing the asymptotic value of SURE leads to the same estimator as the
limiting value of the estimator obtained by minimizing the SURE,

• this model allows to show that the novel data-driven spectral estimators derived in this paper
are asymptotically connected to existing optimal shrinkage rules [SN13, GD14a, Nad14] for
low-rank matrix denoising,

• in this setting, we are also able to connect the choice of the penalty function 2|s|pn,m in (1.7)
with Stein’s notion of degrees of freedom (see e.g. [Efr04]) for spectral estimators.
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1.4.4 Numerical experiments and publicly available source code

As the theoretical properties of our estimators are studied in an asymptotic setting, we report the
results of various numerical experiments to analyze the performances of the proposed estimators
for finite-dimensional matrices. These experiments allow the comparison with existing shrinkage
rules for Gaussian-distributed measurements and they are also used to shed some lights on the
finite sample properties of the method for Gamma-distributed or Poisson-distributed measure-
ments. We also exhibit the settings where the signal matrix X is either easy or more difficult to
recover. From these experiments, the main findings are the following ones:

• the use of an appropriate active set s of singular values is an essential step for the quality
of shrinkage estimators whose weights are data-driven by SURE-like estimators; taking
s = {1, . . . ,min(n,m)} leads to poor results while the choice of s = s∗ minimizing the AIC
criterion (1.7) appears to yield the best performances,

• for Gaussian noise, the performances of our approach are similar to those obtained by the
asymptotically optimal spectral estimator proposed in [GD14a] when the true rank r∗ of
the signal matrix X is sufficiently small,

• for Gamma or Poisson distributed measurements, the spectral estimators proposed in this
paper give better results than estimators based on PCA (restricted to the active set s∗) or
soft-thresholding of singular values.

Beyond the case of Gaussian noise, the implementation of the estimators is not straightfor-
ward, and we thus provide publicly available source code at

https://www.math.u-bordeaux.fr/~cdeledal/gsure_low_rank

to reproduce the figures and the numerical experiments of this paper.

1.5 Related results in the literature

Early work on singular value thresholding began with the work in [EY36] on the best approxima-
tion of fixed rank to the data matrix Y . Spectral estimators with different amounts of shrinkage
for each singular value of the data matrix have then been proposed in [EM72, EM76]. In the case
of Gaussian measurements with homoscedastic variance, the problem of estimating X under a
low-rank assumption has recently received a lot of attention in the literature on high-dimensional
statistics, see e.g. [CSLT13, DG14, JS15, SN13]. Recent works [GD14a, Nad14] also consider the
more general setting where the distribution of the additive noise matrixW is orthogonally invari-
ant, and such that its entries are iid random variables with zero mean and finite fourth moment.
In all these papers, the authors have focused on spectral estimators which shrink or threshold the
singular values of Y , while its singular vectors are left unchanged. In this setting, the main issue
is to derive optimal shrinkage rules that depends on the class of spectral estimators that is con-
sidered, on the loss function used to measure the risk of an estimator of X, and on appropriate
assumptions for the distribution of the additive noise matrix W .
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1.6 Organization of the paper

Section 2 is devoted to the analysis of a data matrix whose entries are distributed according to
a continuous exponential family. SURE-like formula are first given for the mean squared error
risk, and then for the Kullback-Leibler risk. As an example of discrete exponential family, we
also derive such risk estimators for Poisson distributed measurements. The computation of data-
driven shrinkage rules is then discussed for Gaussian, Gamma and Poisson noises. In Section 3,
we restrict our attention to the Gaussian spiked population model in order to derive asymptotic
properties of our approach. We study the asymptotic behavior of the SURE formula proposed
in [CSLT13, DG14] for spectral estimators using tools from RMT. This result allows to make a
connection between data-driven spectral estimators minimizing the SURE for Gaussian noise, and
the asymptotically optimal shrinkage rules proposed in [SN13, Nad14] and [GD14a]. In Section
4, we study the penalized log-likelihood criterion (1.7) used to select an active set of singular
values. Its connection to the degrees of freedom of spectral estimators and rank estimation in
matrix denoising is discussed. Various numerical experiments are finally proposed in Section 5
to illustrate the usefulness of the approach developed in this paper for low-rank denoising and
to compare its performances with existing methods. The proofs of the main results of the paper
are gathered in a technical Appendix A, and numerical implementation details are described in
Appendix B.

2 SURE-like formulas in exponential families

For an introduction to exponential families, we refer to [Bro86]. The idea of unbiased risk
estimation in exponential families dates back to [Hud78]. More recently, generalized SURE
formulas have been proposed for the estimation of the MSE risk, for denoising under various
continuous and discrete distributions in [RS07], and for inverse problems whithin the continuous
exponential families in [Eld09]. In [Del15], SURE-like formula are derived for the estimation of
the Kullback-Leibler risk that applies to both continuous and discrete exponential families. In
what follows, we borrow some ideas and results from these works. We first treat the case of
continuous exponential families, and then we focus on Poisson data in the discrete case.

2.1 Data sampled from a continuous exponential family

We recall that Y is an n×mmatrix with independent and real entries Y ij . For each 1 ≤ i ≤ n and
1 ≤ j ≤ m, we assume that the random variable Y ij is sampled from a continuous exponential
family, in the sense that each Y ij admits a probability density function (pdf) q(y;Xij) with
respect to the Lebesgue measure dy on the real line Y = R. The pdf q(y;Xij) of Y ij can thus
be written in the general form:

q(y;Xij) = h(y) exp (η(Xij)y −A(η(Xij))) , y ∈ Y, (2.1)

where η (the link function) is a one-to-one and smooth function, A (the log-partition function)
is a twice differentiable mapping, h is a known function, and Xij is an unknown parameter of
interest belonging to some open subset X of R. Throughout the paper, we will suppose that the
following assumption holds:
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Assumption 2.1. The link function η and the log-partition function A are such that

A′(η(x)) = x for all x ∈ X ,

where A′ denotes the first derivative of A.

Since E[Y ij ] = A′(η(Xij)) for exponential families in the general form (2.1), Assumption 2.1
implies that E[Y ij ] = Xij , and thus the data matrix satisfies the relation Y = X +W where
W is a centered noise matrix, which is in agreement with model (1.1). Now, if we let Θ = η(X ),
it will be also convenient to consider the expression of the pdf of Y ij in the canonical form:

p(y;θij) = h(y) exp (θijy −A(θij)) , y ∈ Y, (2.2)

where θij = η(Xij) ∈ Θ is usually called the canonical parameter of the exponential family.
Finally, we recall the relation Var(Y ij) = A′′(θij) = A′′(η(Xij)) where A′′ denotes the second
derivative of A. Then, we denote by θ the n×m matrix whose entries are the θij ’s.

Examples of data satisfying model (2.1) are the following ones:

Gaussian noise with known variance τ2:

q(y;Xij) =
1√
2π

exp

(
−(y −Xij)

2

2τ2

)
, E[Y ij ] = Xij , Var(Y ij) = τ2,

Y = R, X = R, Θ = R, h(y) =
1√
2πτ

exp

(
− y2

2τ2

)
, η(x) =

x

τ2
, A(θ) = τ2 θ

2

2
.

Gamma-distributed measurements with known shape parameter L > 0:

q(y;Xij) =
LLyL−1

Γ(L)XL
ij

exp

(
−L y

Xij

)
11]0,+∞[(y), E[Y ij ] = Xij , Var(Y ij) =

X2
ij

L
,

Y = R, X =]0,+∞[, Θ =]−∞, 0[, h(y) =
LLyL−1

Γ(L)
11]0,+∞[(y), η(x) = −L

x
, A(θ) = −L log

(
− θ
L

)
.

The matrix θ = η(X) can then be estimated via the n×m matrix θ̂
f

= θ̂
f
(Y ) whose entries

are given by

θ̂
f

ij(Y ) = η
(
X̂

f
ij

)
, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, (2.3)

where X̂
f
ij is a spectral estimator as defined in eq. (1.3).

In the rest of this section, we follow the arguments in [Eld09] and [Del15] to derive SURE-like
formulas under the exponential family for the estimators θ̂

f
and X̂

f
, using either the mean-

squared error (MSE) risk or the Kullback-Leibler (KL) risk.
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2.1.1 Unbiased estimation of the MSE risk

We consider the following MSE risk which provides a measure of discrepancy in the space Θ of
natural parameters, and then indirectly in the space of interest X .
Definition 2.1. The squared error (SE) risk of θ̂

f
is SE(θ̂

f
,θ) = ‖θ̂f − θ‖2F , and the mean-

squared error (MSE) risk of θ̂
f
is defined as MSE(θ̂

f
,θ) = E

[
SE(θ̂

f
,θ)
]

= E
[
‖θ̂f − θ‖2F

]
.

Using the above MSE risk to compare θ̂
f
and θ implies that the discrepancy between the

estimator X̂
f

and the matrix of interest X is measured by the quantity MSEη(X̂
f
,X) =

MSE(η(X̂
f
), η(X)) which is different from MSE(X̂

f
,X). For Gaussian noise, MSEη(X̂

f
,X) =

1
τ2
E
[
‖X̂f −X‖2F

]
, while for Gamma distributed measurements with known shape parameter

L > 0, it follows that

MSEη(X̂
f
,X) = L2

n∑
i=1

m∑
j=1

Xij − X̂
f
ij

XijX̂
f
ij

2

.

The following proposition gives a SURE formula for the MSE risk introduced in Definition 2.1.

Proposition 2.1. Suppose that the data are sampled from a continuous exponential family.
Assume that the function h, in the definition (2.2) of the exponential family, is twice continuously
differentiable on Y = R. If the following condition holds

E
[∣∣∣θ̂fij(Y )

∣∣∣] < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, (2.4)

then, the quantity

GSURE(θ̂
f
) = ‖θ̂f (Y )‖2 +

n∑
i=1

m∑
j=1

(
2
h′(Y ij)

h(Y ij)
θ̂
f

ij(Y ) +
h′′(Y ij)

h(Y ij)

)
+ 2 div θ̂

f
(Y ), (2.5)

where div θ̂
f
(Y ) =

n∑
i=1

m∑
j=1

∂θ̂
f

ij(Y )

∂Y ij
, is an unbiased estimator of MSE(θ̂

f
,θ)

Note that GSURE(θ̂
f
) is an unbiased estimator of MSE(θ̂

f
,θ) and not of MSE(X̂

f
,X). It

is shown in Section 3.3 that the results of Proposition 2.4 coincide with the approach in [CSLT13]
on the derivation of a SURE formula in the case of Gaussian noise for smooth spectral estimators.
In the case of Gamma noise, assuming L > 2 implies that the conditions on the function h in
Proposition 2.1 is satisfied, hence assuming that conditions (2.4) holds as well, and using that

θ̂
f

ij(Y ) = − L

fij(Y )
and

∂θ̂
f

ij(Y )

∂Y ij
=

L

|fij(Y )|2
∂fij(Y )

∂Y ij
,

it follows that

GSURE(θ̂
f
) =

n∑
i=1

m∑
j=1

L2

|fij(Y )|2 −
2L(L− 1)

Y ijfij(Y )
+

2L

|fij(Y )|2
∂fij (Y )

∂Y ij
− (L− 1)(L− 2)

|Y ij |2
.

(2.6)
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2.1.2 Unbiased estimation of KL risks

Following the terminology in [Del15], let us now introduce two different notions of Kullback-
Leibler risk, which arise from the non-symmetry of this discrepancy measure.

Definition 2.2. Let f : Rn×m → Rn×m be a smooth spectral function. Consider the estimator
θ̂
f
defined by (2.3), where Y is a matrix whose entries Y ij are independent random variables

sampled from the exponential family (2.2) in canonical form:

• the Kullback-Leibler synthesis (KLS) risk of θ̂
f
is defined as

KLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

∫
R

log

p(y; θ̂
f

ij)

p(y;θij)

 p(y; θ̂
f

ij) dy,

and the mean KLS risk of θ̂
f
is defined as MKLS(θ̂

f
,θ) = E

[
KLS(θ̂

f
,θ)
]
,

• the Kullback-Leibler analysis (KLA) risk of θ̂
f
is defined as

KLA(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

∫
R

log

p(y;θij)

p(y; θ̂
f

ij)

 p(y;θij) dy,

and the mean KLA risk of θ̂
f
is defined as MKLA(θ̂

f
,θ) = E

[
KLA(θ̂

f
,θ)
]
.

A key advantage of the Kullback-Leibler risk is that it measures the discrepancy between the
unknown distribution p(y;θij) and its estimate p(y; θ̂

f

ij). It is thus invariant with respect to the

reparametrization θ̂
f

= η(X̂
f
) (unlike the MSE risk), and we may also write MKLS(θ̂

f
,θ) =

MKLS(X̂
f
,X) and MKLA(θ̂

f
,θ) = MKLA(X̂

f
,X). As suggested in [Del15], the MKLA risk

represents how well the distribution p(y; θ̂
f

ij) explain a random variable Y ij sampled from the
pdf p(y;θij). The MKLA risk is a natural loss function in many statistical problems since it
takes as a reference measure the true distribution of the data, see e.g. [Hal87]. The MKLS risk
represents how well one may generate an independent copy of Y ij by sampling a random variable
from the pdf p(y; θ̂

f

ij). The MKLS risk has also been considered in various inference problems in
statistics [HL06, Yan94].

By simple calculation, it follows that

MKLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E
[(
θ̂
f

ij − θij
)
A′(θ̂

f

ij)
]

+A(θij)− E
[
A(θ̂

f

ij)
]
, (2.7)

and MKLA(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E
[(
θij − θ̂

f

ij

)
A′(θij)

]
+ E

[
A(θ̂

f

ij)
]
−A(θij). (2.8)
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Hence, in the case of Gaussian measurements with known variance τ2, we easily retrieve that
MKLS(θ̂

f
,θ) = MKLA(θ̂

f
,θ) = τ2

2 MSE(θ̂
f
,θ) = 1

2τ2
E
[
‖X̂f −X‖2F

]
. In the case of Gamma

distributed measurements with known shape parameter L > 0, it follows that

MKLS(θ̂
f
,θ) = L

n∑
i=1

m∑
j=1

E

X̂f
ij

Xij
− log

X̂f
ij

Xij

− 1

 ,
MKLA(θ̂

f
,θ) = L

n∑
i=1

m∑
j=1

E

Xij

X̂
f
ij

− log

Xij

X̂
f
ij

− 1

 .
Below, we use some of the results in [Del15] whose main contributions are the derivation of
new unbiased estimators of the MKLS and MKLA risks. For continuous exponential family, the
risk estimate derived in [Del15] is unbiased for the MKLS risk, while it is only asymptotically
unbiased for the MKLA risk with respect to the signal-to-noise ratio. For data sampled from a
continuous exponential family, this makes simpler the use of the MKLS risk to derive data-driven
shinkage in low rank matrix denoising, and we have therefore chosen to concentrate our study
on this risk in this setting. The following proposition establishes a SURE formula to estimate
the MKLS risk in the continuous case.

Proposition 2.2. Suppose that the data are sampled from a continuous exponential family.
Assume that the function h, in the definition (2.2) of the exponential family, is continuously
differentiable on Y = R. Suppose that the function A, in the definition (2.2) of the exponential
family, is twice continuously differentiable on Θ. If the following condition holds

E
[∣∣∣A′(θ̂fij(Y ))

∣∣∣] < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, (2.9)

then, the quantity

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f

ij(Y ) +
h′(Y ij)

h(Y ij)

)
A′(θ̂

f

ij(Y ))−A(θ̂
f

ij(Y ))

)
+ div f(Y ),

(2.10)

where div f(Y ) =
m∑
i=1

n∑
j=1

∂fij(Y )

∂Y ij
, is an unbiased estimator of MKLS(θ̂

f
,θ)−

n∑
i=1

m∑
j=1

A(θij).

A key difference in the formula of unbiased estimates for the MSE and the KL risks is the
computation of the divergence term in (2.5) and (2.10), when X̂

f
=
∑min(n,m)

k=1 fk(σ̃k)ũkṽ
t
k is

a smooth spectral estimator in the sense where each function fk : R+ → R+ is assumed to be
(almost everywhere) differentiable for 1 ≤ k ≤ min(n,m). In this setting, the divergence term in
the expression of GSURE(θ̂

f
) depends upon the matrix θ̂

f
(Y ) = η(X̂

f
). Therefore, when η is a

nonlinear mapping, it is generally not possible to obtain a simpler expression for div θ̂
f
(Y ). To

the contrary, for SUKLS(θ̂
f
), the divergence term is div f(Y ) which has the following closed-form

11



expression for any smooth spectral estimators

div f(Y ) = |m− n|
min(n,m)∑
k=1

fk(σ̃k)

σ̃k
+

min(n,m)∑
k=1

f ′k(σ̃k) + 2

min(n,m)∑
k=1

fk(σ̃k)

min(n,m)∑
`=1;`6=k

σ̃k
σ̃2
k − σ̃2

`

,

(2.11)

thanks to the results from Theorem IV.3 in [CSLT13].
Note that SUKLS(X̂

r
w) = τ2

2 SURE(X̂
r
w) for Gaussian measurements, hence, the GSURE

and SUKLS strategies match in this case. In the case of Gamma measurements, assuming that
L > 2 implies that the conditions on the function h in Proposition 2.2 is satisfied, and by
assuming that condition (2.9) holds as well, it follows that

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

(
(L− 1)

fij(Y )

Y ij
− L log (fij(Y ))

)
− Lmn+ div f(Y ),

where the expression of div f(Y ) is given by (2.11).
Note that it is implicitly understood in the definition of div f(Y ) that each mapping fij :

Rn×m → R is differentiable. The differentiability of the spectral function f (and thus of its
components fij) is a consequence of the assumption that the functions f1, . . . , fmin(n,m) (acting on
the singular values) are supposed to be differentiable. For further details, on the differentiability
of f and the fij ’s, we refer to Section IV in [CSLT13]. From the arguments in [CSLT13], it
follows that formula (2.11) for the divergence of f is also valid under the assumption that each
function fk is differentiable on R+ except on a set of Lebesgue measure zero.

2.2 The case of Poisson data

For Poisson data, the key result to obtain unbiased estimate of a given risk is the following lemma
which dates back to the work in [Hud78].

Lemma 2.1. Let f : Zn×m → Rn×m be a measurable mapping. Let 1 ≤ i ≤ n and 1 ≤ j ≤ m,
and denote by fij : Zn×m → R a measurable function. Let Y ∈ Zn×m be a matrix whose entries
are independently sampled from a Poisson distribution on Z. Then,

E

 n∑
i=1

m∑
j=1

Xijfij(Y )

 = E

 n∑
i=1

m∑
j=1

Y ijfij(Y − eietj)

 ,
where, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, fij(Y ) denotes the (i, j)-th entry of the matrix f(Y ),
and ei (resp. ej) denotes the vector of Zn (resp. Zm) with the i-th entry (resp. j-th entry) equals
to one and all others equal to zero.

Hudson’s lemma provides a way to estimate (in an unbiased way) the expectation of the
Frobenius inner product between the matrix X and the matrix f(Y ). To see the usefulness of
this result, one may consider the following mean-squared error

MSE(X̂
f
,X) = E

[∥∥∥X̂f −X
∥∥∥2

F

]
= E

∥∥∥X̂f
∥∥∥2

F
− 2

n∑
i=1

m∑
j=1

XijX̂
f
ij(Y ) + ‖X‖2F

 .
12



Therefore, by Lemma 2.1, one immediately obtains that

PURE(θ̂
f
) =

∥∥∥X̂f
∥∥∥2

F
− 2

n∑
i=1

m∑
j=1

Y ijfij(Y − eietj), (2.12)

is an unbiased estimate for the quantity MSE(X̂
f
,X)− ‖X‖2F .

For Poisson data, one may also define the following KL risks

MKLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E

Xij − X̂
f
ij − X̂

f
ij log

Xij

X̂
f
ij

 , (2.13)

MKLA(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E

X̂f
ij −Xij −Xij log

X̂f
ij

Xij

 , (2.14)

which are in agreement with Definition 2.2 of KL risks for data sampled from a Poisson distri-
bution. From the arguments in [Del15], there does not currently exist an approach to derive a
SURE formula for the MKLS risk in the Poisson case since they are no unbiased formula for
X̂

f
ij logXij . Nevertheless, as shown in [Del15], Hudson’s Lemma 2.1 provides an unbiased esti-

mator for Xij log X̂
f
ij , and then it is possible to unbiasedly estimate the MKLA risk as follows.

Proposition 2.3. For data sampled from a Poisson distribution, the quantity

PUKLA(θ̂
f
) =

n∑
i=1

m∑
j=1

X̂
f
ij − Y ij log

(
fij(Y − eietj)

)
, (2.15)

is an unbiased estimator of MKLA(θ̂
f
,θ) +

n∑
i=1

m∑
j=1

Xij −Xij log (Xij).

2.3 Data-driven shrinkage in low-rank matrix denoising

For a matrix X with entries Xij ∈ X = R, we consider shrinkage estimators of the form

X̂
s
w = f(Y ) =

∑
k∈s

wkσ̃kũkṽ
t
k, (2.16)

with s ⊆ I = {1, 2, . . . ,min(n,m)} and wk ∈ [0, 1], for all k ∈ s.
When the underlying matrix X is constrained to have positive entries, e.g. X =]0,+∞[ in

the Gamma and Poisson cases, we consider instead estimators of the form

X̂
s
w = f(Y ) = max

[∑
k∈s

wkσ̃kũkṽ
t
k, ε

]
, (2.17)

where ε > 0 is an a priori lower bound on the smallest value of Xij , where for any matrix X,
max[X, ε]ij = max[Xij , ε], for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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The construction of the subset s is postponed to Section 4, and we focus here in selecting
the weights in a data-driven way for a fixed given s. In the following, we denote by sc the
complementary set of s in I, i.e., sc = I \ s, and we let θ̂

s

w = η
(
X̂

s
w

)
. When X =]0,+∞[, we

have found that considering estimators of the form (2.17) is more appropriate than trying to find
shrinking weights (wk)k∈s such that all the entries of the matrix

∑
k∈swkσ̃kũkṽ

t
k are positive,

for a given subset s.

Gaussian noise with known homoscedastic variance τ2

By applying the GSURE formula (2.5) for Gaussian distributed measurements and thanks to the
expression (2.11) for the divergence of smooth spectral estimators, we obtain for X̂

s
w, as defined

in (2.16), the SURE expression given by

SURE(X̂
s
w) = −mnτ2 +

∑
k∈s

(wk − 1)2σ̃2
k +

∑
k∈sc

σ̃2
k + 2τ2

s∑
k=1

1 + |m− n|+ 2

min(n,m)∑
`=1;`6=k

σ̃2
k

σ̃2
k − σ̃2

`

wk

which unbiasedly estimate MSE(X̂
s
w,X). Hence, for each k ∈ s, by differentiating the above

expression with respect to wk, it follows that a data-driven weight for the k-th empirical singular
value is given by

wk(Y ) =

1− τ2

σ̃2
k

1 + |m− n|+ 2

min(n,m)∑
`=1;`6=k

σ̃2
k

σ̃2
k − σ̃2

`


+

, (2.18)

which fullfils the requirement that wk(Y ) ∈ [0, 1]. Note that as SUKLS(X̂
s
w) = τ2

2 SURE(X̂
s
w)

for Gaussian measurements, the exact same data-driven weight would be obtained by minimizing
an estimate of the MKLS(X̂

s
w,X).

The case of estimators with rank one. Consider the case of estimators with rank 1, i.e., let
s = {1}. It follows that X̂1

w = X̂
{1}
w = w1X̂

1
where w1 ∈ [0, 1] is given by

w1(Y ) =

1− τ2

σ̃2
1

1 + |m− n|+ 2

min(n,m)∑
`=1;` 6=1

σ̃2
1

σ̃2
1 − σ̃2

`


+

.

Gamma and Poisson distributed measurements

In Gamma and Poisson cases, it is not possible to follow the same strategy as in the Gaussian case
to derive optimal weights for (2.17) in a closed-form using the established SURE-like formulas.
We shall investigate how data-driven shinkage can be approximated in Section 5 on numerical
experiments using fast algorithms. Nevertheless, when the estimator is restricted to rank 1,
optimizing KL risk estimators lead to closed-form expressions under the assumption that all the
entries of the data matrix Y are strictly positive.
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The case of estimators with rank one under Gamma noise. Consider again the case of esti-
mators with rank 1, i.e., let s = {1}, and let X̂

1
= σ̃1ũ1ṽ

t
1 denote the PCA approximation of

rank 1 of X. If all the entries of the matrix Y are strictly positive, by the Perron-Frobenius
theorem, all the entries of the first singular vectors ũ1 and ṽ1 are strictly positive. Therefore, all
the entries of X̂

1
belong to the set X =]0,+∞[, and we can consider X̂

1
w = X̂

{1}
w = w1σ̃1ũ1ṽ

t
1

as defined in (2.16) instead of (2.17). Assuming L > 2 for the SUKLS formula to hold, it follows
by simple calculations that

SUKLS(θ̂
1

w) =

n∑
i=1

m∑
j=1

(L− 1)w1

X̂
1
ij

Y ij
−mnL log (w1)− L log

(
X̂

1
ij

Y ij

)
− Lmn

+ (1 + |m− n|)w1 + 2w1

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

.

Hence, by differentiating the above expression with respect to w1 and as it is monotonic on both
sides of its unique minimum, the optimal value of w1 ∈ [0, 1] minimizing SUKLS(θ̂

1

w) is given by

w1(Y ) = min

1,

L− 1

Lmn

n∑
i=1

m∑
j=1

X̂
1
ij

Y ij
+

1

Lmn

1 + |m− n|+ 2

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

−1 ,
which yields the shrinking rule (1.11) stated in the introduction of this paper. Note that it is
not possible to obtain, in a closed-form, the optimal value of the weight w1 that minimizes the
criterion GSURE(θ̂

1

w).

The case of estimators with rank one under Poisson noise. Using again that all the as-
sumption that the entries of Y are positive, we can consider (by the Perron-Frobenius theorem)
X̂

1
w = X̂

{1}
w = w1σ̃1ũ1ṽ

t
1 as defined in (2.16) instead of (2.17). Then, the PURE formula (2.12)

and Proposition 2.3 apply to the estimator θ̂
1

w = log
(
X̂

1
w

)
which yield to

PURE(θ̂
1

w) = w2
1σ̃

2
1 − 2

n∑
i=1

m∑
j=1

Y ijw1σ̃
(ij)
1 ũ

(ij)
1,i ṽ

(ij)
1,j ,

and PUKLA(θ̂
1

w) =

n∑
i=1

m∑
j=1

w1X̂
1
ij − Y ij

(
log (w1) + log

(
σ̃

(ij)
1 ũ

(ij)
1,i ṽ

(ij)
1,j

))
,

where X̂
1
ij = σ̃1ũ1,iṽ1,j , σ̃

(ij)
1 is the largest singular value of the matrix Y − eietj , and ũ

(ij)
1

(resp. ṽ(ij)
1 ) denotes its left (resp. right) singular vectors. Therefore, by differentiating the above

expression with respect to w1 and as it is monotonic on both sides of its unique minimum, an
optimal value for w1 ∈ [0, 1] which minimizes PURE(θ̂

1

w) is given by

w1(Y ) = min

1,
1

σ̃2
1

n∑
i=1

m∑
j=1

Y ij σ̃
(ij)
1 ũ

(ij)
1,i ṽ

(ij)
1,j

 .
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However, this optimal shrinking rule cannot be used in practice since evaluating the values of
σ̃

(ij)
1 , ũ

(ij)
1 , ṽ

(ij)
1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m is not feasible from a computational point of view

for large values of n and m. Nevertheless, a fast algorithm to find a numerical approximation of
the optimal value w1(Y ) is proposed in Section 5.

To the contrary, using again that all the X̂
1
ij are positive by the Perron-Frobenius theorem,

the value of w1 ∈ [0, 1] minimizing PUKLA(θ̂
1

w) is

w1(Y ) = min

1,

∑n
i=1

∑m
j=1 Y ij∑n

i=1

∑m
j=1 X̂

1
ij

 ,
which is straightforward to compute. This corresponds to the shrinkage rule (1.12) given in the
introduction.

3 Gaussian spiked population model

In this section, we restrict our analysis to the Gaussian spiked population model and the asymp-
totic setting introduced in Definition 1.1.

3.1 Asymptotic location of empirical singular values

We summarize below the asymptotic behavior of the singular values of the data matrix Y =∑min(n,m)
k=1 σ̃kũkṽ

t
k in the Gaussian spiked population model.

In the case where X = 0, it is well known [AGZ10, BS10] that the empirical distribution
of the singular values of Y = W (with τ = 1√

m
) converges, as n → +∞, to the quarter circle

distribution if c = 1 and to its generalized version if c < 1. This distribution is supported on the
compact interval [c−, c+] with

c± = 1±√c

where c+ is the so-called bulk (right) edge.
When X 6= 0 has a low rank structure, the asymptotic behavior of the singular values of

Y = X +W is also well understood [BN12, DS07, SN13], and generalizations to noise matrix
W whose distribution is orthogonally invariant have also been recently considered in [BN12].
Below, we recall some of these results that will be needed in this paper. To this end, let us
introduce the real-valued function ρ defined by

ρ (σ) =

√
(1 + σ2)(c+ σ2)

σ2
for any σ > 0.

Then, the following result holds (see e.g. Theorem 2.8 in [BN12] and Proposition 9 in [SN13]).

Proposition 3.1. Assume that Y = X + W is a random matrix sampled from the Gaussian
spiked population model with τ = 1√

m
and X =

∑r∗

k=1 σkukv
t
k. Then, for any fixed k ≥ 1, one
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has that, almost surely,

lim
n→+∞

σ̃k =

{
ρ (σk) if k ≤ r∗ and σk > c1/4,
c+ otherwise.

Moreover,

lim
n→+∞

σ̃min(n,m) = c−.

In what follows, we shall also use the relation

1

σ2
=
ρ2(σ)− (c+ 1)−

√
(ρ2(σ)− (c+ 1))2 − 4c

2c
that holds for any σ > c1/4, (3.1)

which is a consequence of e.g. the results in Section 3.1 in [BN12].

3.2 Existing asymptotically optimal shrinkage rules

Below, we briefly summarize some results in [GD14a] and [Nad14] on the construction of asymp-
totically optimal spectral estimators. Let

X̂
f

= f(Y ) =

min(n,m)∑
k=1

fk(σ̃k)ũkṽ
t
k (3.2)

be a given smooth spectral estimator, and consider the standard squared error SE(X̂
f
,X) =

‖X̂f −X‖2F as a measure of risk. The set of spectral functions minimizing SE(X̂
f
,X) is given

by fk(σ̃k) = ũtkXṽk, for 1 ≤ k ≤ min(n,m). However, it cannot be used in practice since X is
obviously unknown. A first alternative suggested in [GD14a] and [Nad14] is to rather study the
asymptotic risk

SE∞(X̂
f
) = lim

n→∞
SE(X̂

f
,X) (in the almost sure sense) (3.3)

in the Gaussian spiked population model. Then, it is proposed in [GD14a] and [Nad14] to find
an asymptotically optimal choice of f by minimizing SE∞(X̂

f
) among a given class of smooth

spectral functions. The results in [GD14a] show that, among spectral estimators of the form
X̂

η
=
∑min(n,m)

k=1 η(σ̃k)ũkṽ
t
k, where η : R+ → R+ is a continuous shrinker such that η(σ) = 0

whenever σ ≤ c+, an asymptotically optimal shrinkage rule is given by the choice

η∗(σ) =

{
1
σ

√
(σ2 − (c+ 1))2 − 4c if σ > c+,

0 otherwise.
(3.4)

In [Nad14], it is proposed to consider spectral estimators of the form X̂
δ

=
∑r

k=1 δkũkṽ
t
k where

δ1, . . . , δr are positive weights. By Theorem 2.1 in [Nad14], it follows that, if σk > c1/4 for all
1 ≤ k ≤ r with r ≤ r∗, then the weights which minimize SE∞(X̂

δ
) over Rr+ are given by

δ∗k = δk(σk) =
σ4
k − c

σk

√
(1 + σ2

k)(c+ σ2
k)
, for all 1 ≤ k ≤ r. (3.5)
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In what follows, the shrinkage rules (3.4) and (3.5) are shown to be equivalent, and they
will serve as a reference of asymptotic optimality. It should be stressed that the estimators in
[GD14a] and [Nad14] are not equivalent. Indeed, the method in [Nad14] requires an estimate
of the rank, while the approach in [GD14a] applies the same shrinker to all empirical singular
values. Nevertheless, the shrinkage function that is applied to significant singular values (either
above the bulk edge in [GD14a] or up to a given rank in [Nad14]) is the same.

3.3 Asymptotic behavior of data-driven estimators based on SURE

Following the principle of SURE, a second alternative to choose a smooth spectral estimator
of the form (3.2) is to study the problem of selecting a set of functions (fk)1≤k≤min(n,m) that

minimize an unbiased estimate of MSE(X̂
f
,X) = E

[
‖X̂f −X‖2F

]
. For any 1 ≤ i ≤ m and

1 ≤ j ≤ n, we recall that fij(Y ) denotes the (i, j)-th entry of the matrix X̂
f

= f(Y ). Under
the condition that

E
[
|Y ijfij(Y )|+

∣∣∣∣∂fij(Y )

∂Y ij

∣∣∣∣] < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. (3.6)

it follows from the results in [CSLT13] (or equivalently from Proposition 2.1 for Gaussian noise
with τ2 = 1/m) that

SURE
(
X̂

f
)

= −n+ ‖f(Y )− Y ‖2F +
2

m
div f(Y ), (3.7)

is an unbiased estimate of MSE(X̂
f
,X), where the divergence div f(Y ) admits the closed-form

expression (2.11). The SURE formula (3.7) has been used in [CSLT13] to find a data-driven value
for λ = λ(Y ) in the the case of singular values shrinkage by soft-thresholding which corresponds
to the choice

fk(σ̃k) = (σ̃k − λ)+, for all 1 ≤ k ≤ min(n,m).

We study now the asymptotic behavior of the SURE formula (3.7). To this end, we shall
use Proposition 3.1, but we will also need the following result (whose proof can be found in the
Appendix) to study some of the terms in expression (2.11) of the divergence of f(Y ).

Proposition 3.2. Assume that Y = X + W is a random matrix sampled from the Gaussian
spiked population model with τ = 1√

m
and X =

∑r∗

k=1 σkukv
t
k. Then, for any fixed 1 ≤ k ≤ r∗

such that σk > c1/4, one has that, almost surely,

lim
n→+∞

1

n

n∑
`=1; 6̀=k

σ̃k
σ̃2
k − σ̃2

`

=
1

ρ (σk)

(
1 +

1

σ2
k

)
.

In what follows, we restrict our analysis to the following class of spectral estimators (the
terminology in the definition below is borrowed from [GD14a]).

18



Definition 3.1. Let X̂
f

= f(Y ) =
∑min(n,m)

k=1 fk(σ̃k)ũkṽ
t
k be a smooth spectral estimator. For

a given 1 ≤ r ≤ min(n,m), the estimator f is said to be a spectral shrinker of order r that
collapses the bulk to 0 if{

fk(σ) = 0 whenever σ ≤ c+ and 1 ≤ k ≤ r,
fk(σ) = 0 for all σ ≥ 0 and k > r.

The reason for restricting the study to spectral estimators such that fk(σ̃k) = 0 whenever
σ̃k < c+ is linked to the choice of the active set s∗ (1.8) of singular values in the Gaussian case,
as detailed in Section 4. Now, for a spectral shrinker X̂

f
of order r that collapses the bulk to 0,

we study the asymptotic behavior of the terms in expression (3.7) that only depend on f , namely

SURE
(
X̂

f
)

=
r∑

k=1

(fk(σ̃k)− σ̃k)2 + 2
(

1− n

m

) r∑
k=1

fk(σ̃k)

σ̃k
+

2

m

r∑
k=1

f ′k(σ̃k)

+4
n

m

r∑
k=1

fk(σ̃k)

 1

n

n∑
`=1;`6=k

σ̃k
σ̃2
k − σ̃2

`

 (3.8)

The reason for studying SURE
(
X̂

f
)
is that finding an optimal shrinkage rule that minimizes

SURE
(
X̂

f
)
is equivalent to minimizing expression (3.8) over spectral shrinkers of order r that

collapses the bulk to 0, since SURE
(
X̂

f
)
− SURE

(
X̂

f
)

= −n+
∑n

k=r+1 σ̃
2
k for such X̂

f
.

Then, using Proposition 3.1, Proposition 3.2, and the assumption that the fk’s are continu-
ously differentiable functions on R+, we immediately obtain the following result.

Lemma 3.1. Assume that Y = X +W is a random matrix sampled from the Gaussian spiked
population model with τ = 1√

m
and X =

∑r∗

k=1 σkukv
t
k. Let X̂

f
be a spectral shrinker of order

r ≤ r∗ that collapses the bulk to 0, such that each function fk, for 1 ≤ k ≤ r, is continuously
differentiable on ]c+,+∞[. Moreover, assume that σk > c1/4 for all 1 ≤ k ≤ r. Then, one has
that, almost surely,

lim
n→+∞

SURE
(
X̂

f
)

=
r∑

k=1

(fk(ρ(σk))− ρ(σk))
2 + 2fk(ρ(σk))

(
σ2
k(1 + c) + 2c

σ2
kρ(σk)

)
(3.9)

Asymptotically optimal shrinkage of singular values. Thanks to Lemma 3.1, one may
determine an asymptotic optimal spectral shrinker as the one minimizing limn→+∞ SURE

(
X̂

f
)
.

For this purpose, let us define the class of estimators

X̂
r
w =

r∑
k=1

wkσ̃k11{σ̃k>c+}ũkṽ
t
k, (3.10)

where 1 ≤ r ≤ r∗ is a given integer, and the wk’s are positive weights. In practice, the estimator
X̂

r
w is computed by replacing the bulk edge c+ by its approximation cn,m+ = 1+

√
n
m in eq. (3.10).
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For moderate to large values of n and m, the quantities c+ and cn,m+ are very close, and this
replacement does not change the numerical performances of X̂

r
w.

Then, provided that σk > c1/4 for all 1 ≤ k ≤ r, it follows from Lemma 3.1 that

lim
n→+∞

SURE
(
X̂

r
w

)
=

r∑
k=1

ρ2(σk)(wk − 1)2 + 2wk

(
σ2
k(1 + c) + 2c

σ2
k

)
.

Differentiating the above expression with respect to each weight wk leads to the following choice
of asymptotically optimal weights

w∗k = 1− σ2
k(1 + c) + 2c

σ2
kρ

2(σk)
for all 1 ≤ k ≤ r. (3.11)

Therefore, if the singular values of the matrix X to be estimated are sufficiently large (namely
σk > c1/4 for all 1 ≤ k ≤ r), by using Proposition 3.1 and eq. (3.11), one has that an asymptoti-
cally optimal spectral shrinker of order r ≤ r∗ is given by the choice of functions

f∗k (ρ(σk)) =

{ (
1− σ2

k(1+c)+2c

σ2
kρ

2(σk)

)
ρ(σk) if ρ(σk) > c+,

0 otherwise,
for all 1 ≤ k ≤ r. (3.12)

Using, the relation (3.1) one may also express the asymptotically optimal shrinking rule (3.12)
either as a function of ρ(σk) only,

f∗k (ρ(σk)) =

{
1

ρ(σk)

√
(ρ2(σk)− (c+ 1))2 − 4c if ρ(σk) > c+,

0 otherwise.
(3.13)

or as function of σk only (using that ρ(σk) > c+ is equivalent to σk > c1/4),

f∗k (ρ(σk)) =

{
σ4
k−c

σk
√

(1+σ2
k)(c+σ2

k)
if σk > c1/4,

0 otherwise.
(3.14)

Therefore, for spectral shrinker of order r, we remark that the shrinkage rule (3.13) coincides
with the rule (3.4) which has been obtained in [GD14a]. Similarly, when the quantity f∗k (ρ(σk))
is expressed as a function of σk only in (3.14), then we retrieve the shrinking rule (3.5) derived
in [Nad14]. Therefore, it appears that minimizing either the asymptotic behavior of the SURE,
that is limn→+∞ SURE

(
X̂

f
)
, or the limit of SE risk (3.3) leads to the same choice of an

asymptotically optimal spectral estimator.

Data-driven shrinkage of empirical singular values. From the results in Section 2.3, the
principle of SURE minimisation leads to the following data-driven choice of spectral shrinker of
order r that collapses the bulk to 0

X̂
r
w =

r∑
k=1

fk(σ̃k)ũkṽ
t
k, (3.15)
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where fk(σ̃k) = wk(Y )σ̃k11{σ̃k>c+}, for all 1 ≤ k ≤ r, with wk(Y ) given by (2.18). From Propo-
sition 3.1 and Proposition 3.2 it follows that, if σk > c1/4, then, almost surely,

lim
n→+∞

fk(σ̃k) =

(
1− σ2

k(1 + c) + 2c

σ2
kρ

2(σk)

)
ρ(σk), for all 1 ≤ k ≤ r ≤ r∗.

Therefore, the data-driven spectral estimator X̂
r
w (3.15) asymptotically leads to the optimal

shrinking rule of singular values given by (3.12) which has been obtained by minimizing the
asymptotic behavior of the SURE.

Note that when τ 6= 1/
√
m, it suffices to replace the condition σ̃k > c+ by σ̃k > τ(

√
m+
√
n)

in the definition of X̂
r
w, which yields the shrinking rule (1.13) stated in the introduction of this

paper.

4 Estimating active sets of singular values in exponential families

In this section, we propose to formulate a new Akaike information criterion (AIC) to select
an appropriate set of singular values over which a shrinkage procedure might be applied. To
this end, we shall consider the estimator X̃

s
=
∑

k∈s σ̃kũkṽ
t
k defined for a subset s ⊆ I =

{1, 2, . . . ,min(n,m)}, and we address the problem of selecting an optimal subset s? from the
data Y .

In the case of Gaussian measurements, the shrinkage estimators that we use in our numerical
experiments are of the form X̂

f
=
∑

k∈s? fk(σ̃k)ũkṽ
t
k where

s? = {k ; σ̃k > cn,m+ } with cn,m+ = 1 +

√
n

m
,

for some (possibly data-dependent) shrinkage functions fk. The set s? is based on the knowledge
of an approximation cn,m+ of the bulk edge c+. Thanks to Proposition 3.1, the bulk edge c+

is interpreted as the threshold which allows to distinguish the locations of significant singular
values in the data from those due to the presence of additive noise. Interestingly, the following
result shows that the active set s? may be interpreted through the prism of model selection using
the minimisation of a penalized log-likelihood criterion.

Proposition 4.1. Assume that Y = X +W where the entries of W are iid Gaussian variables
with zero mean and standard deviation τ = 1/

√
m. Then, we have

s∗ = arg min
s⊆I

m‖Y − X̃s‖2F + 2|s|pn,m with pn,m =

(
1

2

(√
m+

√
n
)2)

, (4.1)

where X̃
s

=
∑

k∈s σ̃kũkṽ
t
k for s ∈ I = {1, 2, . . . ,min(n,m)}, and |s| is the cardinal of s.

Proof. We remark that Y − X̃s
=
∑

k/∈s σ̃kũkṽ
t
k. It results that

m‖Y − X̃s‖2F + 2|s|pn,m = m
∑
k/∈s

σ̃2
k + 2|s|pn,m =

n∑
k=1

{
mσ̃2

k if k /∈ s
2pn,m otherwise . (4.2)
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Using that
√

2pn,m/m = cn,m+ , it follows that the set s? = {k ; σ̃k > cn,m+ } is by definition such
that k ∈ s? if and only if 2pn,m < mσ̃2

k. Therefore, by (4.2), the criterion s 7→ m‖Y − X̃s‖2F +
2|s|pn,m is minimum at s = s? which concludes the proof.

In the model Y = X+W , where the entries ofW are iid Gaussian variables with zero mean
and variance τ2, it is well known that the degrees of freedom (DOF) of a given estimator X̂ is
defined as

DOF(X̂) =
1

τ2

n∑
i=1

m∑
j=1

Cov(X̂ij ,Y ij) =
1

τ2

n∑
i=1

m∑
j=1

E[X̂ijW ij ].

The DOF is widely used in statistics to define various criteria for model selection among a
collection of estimators, see e.g. [Efr04]. In low rank matrix denoising, the following proposition
shows that it is possible to derive the asymptotic behavior of the DOF of spectral estimators.

Proposition 4.2. Assume that Y = X + W is a random matrix sampled from the Gaussian
spiked population model with τ = 1√

m
and X =

∑r∗

k=1 σkukv
t
k. Let X̂

f
be a spectral shrinker of

order r ≤ r∗ that collapses the bulk to 0, such that each function fk, for 1 ≤ k ≤ r, is continuously
differentiable on ]c+,+∞[. Moreover, assume that σk > c1/4 for all 1 ≤ k ≤ r. Then, one has
that, almost surely,

lim
n→+∞

1

m
DOF(X̂

f
) =

r∑
k=1

fk(ρ(σk))

ρ(σk)

(
1 + c+

2c

σ2
k

)
.

Proof. Thanks to the derivation of the SURE in [Ste81] and formula (2.11) on the divergence of
spectral estimators, one has that

DOF(X̂
f
) = E

[
div X̂

f
]

= E

|m− n| r∑
k=1

fk(σ̃k)

σ̃k
+

r∑
k=1

f ′k(σ̃k) + 2

r∑
k=1

fk(σ̃k)

n∑
`=1;`6=k

σ̃k
σ̃2
k − σ̃2

`

 .
By Proposition 3.1, Proposition 3.2, and our assumptions on the fk’s, one has that, almost surely,

lim
n→+∞

1

m
div X̂

f
=

r∑
k=1

fk(ρ(σk))

ρ(σk)

(
1 + c+

2c

σ2
k

)
.

which completes the proof.

Hence, in the Gaussian spiked population model, by Proposition 4.2 and using that σ2
k >
√
c

for all 1 ≤ k ≤ r, it follows that if s ⊆ {1, . . . , r} then

lim
n→+∞

1

m
DOF(X̃

s
) = |s|

(
1 + c+

2c

σ2
k

)
≤ |s|

(
1 +
√
c
)2

= |s|c2
+. (4.3)

Hence, the quantity 2|s|
(

1
2 (
√
m+

√
n)

2
)
is asymptotically an upper bound of DOF(X̃

s
) (when

normalized by 1/m) for any given set s ⊆ {1, . . . , r}.
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Let us now consider the more general case where the entries of Y are sampled from an
exponential family. To the best of our knowledge, extending the notion of the bulk edge to non-
Gaussian data sampled from an exponential family has not been considered so far in the literature
on random matrices and low rank perturbation model. Therefore, except in the Gaussian case,
it is far from being trivial to find an appropriate threshold value c̄ to define an active set in the
form s̄ = {k ; σ̃k > c̄}.

Nevertheless, to select an appropriate active set of singular values, we introduce the following
criterion that is inspired by the previous results on the DOF of the estimator X̃

s
in the Gaussian

case and the statistical literature on the well known AIC for model selection [Aka74].

Definition 4.1. The AIC associated to X̃
s

=
∑

k∈s σ̃kũkṽ
t
k is

AIC(X̃
s
) = −2 log q(Y ; X̃

s
) + 2|s|pn,m with pn,m =

1

2

(√
m+

√
n
)2

. (4.4)

where |s| is the cardinal of s, and q(Y ; X̃
s
) =

∏n
i=1

∏m
j=1 q(Y ij ; X̃

s
ij) is the likelihood of the data

in the general form (2.1) at the estimated parameters Xij = X̃
s
ij.

In the above definition of AIC(X̃
s
), the quantity 2|s|pn,m is an approximation of the degree

of freedom of X̃
s
, i.e., of the numbers of its free parameters as it is justified by Proposition 4.2

in the case of Gaussian measurements. The AIC allows us to define an optimal subset of active
variables as

s∗ = arg min
s⊆I

AIC(X̃
s
).

For Gaussian measurements, Proposition 4.1 gives the value of the optimal set s∗ in a closed-form.
Following the arguments in Section 2.3, for Gamma or Poisson measurements and for a given

subset s, we consider the estimator

X̃
s
ε = max

[∑
k∈s

σ̃kũkṽ
t
k, ε

]
, (4.5)

when ε > 0 is an a priori value to satisfy the positivity constraint on the entries of an estimator
in this setting. However, contrary to the case of Gaussian noise, the search of an optimal subset
s? ⊂ arg min

s⊆I
AIC(X̃

s
ε) becomes a combinatorial problem in this context. In our numerical

experiments, we thus choose to construct an approximation s̃ of s? with a greedy search strategy
that reads as follows

s̃ = I \
{
k ∈ I ; AIC(X̃

I\{k}
ε ) ≤ AIC(X̃

I
ε )
}
. (4.6)

For Gaussian measurements, s̃ = s? since the optimisation problem (4.6) becomes separable.
In our numerical experiments, we have found that s̃ selects a relevant set of active singular values
which separates well the structural content of X while removing most of the noise component.
Further details are given in Section 5 below.
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For Gaussian noise, the computation of the active set s∗ of singular values may also be
interpreted as a way to estimate the unknown rank r∗ of the signal matrix X. In this setting,
one has that s? = {k ; σ̃k > cn,m+ } which suggests the choice

r̂ = max{k ; σ̃k > cn,m+ }, (4.7)

as an estimator of r∗.
There exists an abundant literature of the problem of estimating the rank of an empirical

covariance matrix for the purpose of selecting the appropriate number of significant components
to be kept in PCA or factor analysis. It is much beyond the scope of this paper to give an
overview of this topic. We point to the review in [Jol02] for a summary of existing methods to
determine the number of components in PCA that are grouped into three categories: subjective
methods, distribution-based test tools, and computational procedures. For recent contributions
in the matrix denoising model (1.1) with Gaussian noise, we refer to the works [CTT14, GD14b]
and references therein. For example for Gaussian data with know variance τ2 = 1/m, Eq. (11)
in [GD14b] on optimal hard thresholding of singular values suggest to take

r̂ = max{k ; σ̃k > λ(c)}, with λ(c) =

√
2(c+ 1) +

8c

(c+ 1) +
√
c2 + 14c+ 1

, (4.8)

as a simple method to estimate the rank. It should be remarked that the problem of estimating
the true rank r∗ of X in model (1.1) is somewhat ill-posed as, in the Gaussian spiked population
model, Proposition 3.1 implies that one may only expect to estimate the so-called effective rank
reff = max{k ; σk > c1/4} (see e.g. Section II.D in [Nad14]).

In our numerical experiments, we shall compare different choices for the active set of singular
values of the form ŝ = {1, . . . , r̂} where r̂ is either given by (4.7), (4.8), or by the “oracle choices”
r̂ = r∗ and r̂ = reff .

Other methods based on hypothesis testing [CTT14] could be used for rank estimation in the
Gaussian model (1.1), but it is beyond the purpose of this paper to give a detailed comparison.

For Poisson or Gamma noise, it is more difficult to interpret the computation of s∗ as a way
to estimate the rank ofX since, in our numerical experiments, we have found that the cardinality
of s∗ is generally not equal to max{k ; k ∈ s∗}. Moreover, to the best of our knowledge, there
is not so much work on the estimation of the true rank of a noisy matrix beyond the Gaussian
case. Therefore, we have not included a numerical comparison with other methods for the choice
of the active set of singular values in these two cases.

5 Numerical experiments

In this section, we assess of the performance of data-driven srhinkage rules under various numer-
ical experiments involving Gaussian, Gamma and Poisson measurements.

24



5.1 The case of a signal matrix of rank one

We consider the simple setting where the rank r∗ of the matrix X is known and equal to one
meaning that

X = σ1u1v
t
1,

where u1 ∈ Rn and v1 ∈ Rm are vectors with unit norm that are fixed in this numerical
experiment, and σ1 is a positive real that we will let varying. We also choose to fix n = m = 100,
and so to take c = n

m = 1 and c+ = 2. For the purpose of sampling data from Gamma and Poisson
distribution, we took singular vectors u1 and v1 with positive entries. The i-th entry (resp. j-th
entry) of u1 (resp. v1) is chosen to be proportional to 1− (i/n− 1/2)2 (resp. 1− (j/m− 1/2)2).
Let Y =

∑min(n,m)
k=1 σ̃kũkṽ

t
k be an n×m matrix whose entries are sampled from model (2.1) and

then satisfying E[Y ] = X.

Gaussian measurements

We first consider the case of Gaussian measurements, where Y = X + W with E[W ij ] = 0,
Var(W ij) = τ2 with τ = 1√

m
. In this context, we compare the following spectral shrinkage

estimators:

• Rank-1 PCA shrinkage

X̂
1

= σ̃1ũ1ṽ
t
1,

• Rank-1 SURE-driven soft-thresholding

X̂
1
soft = σ̂1ũ1ṽ

t
1 with σ̂1 = (σ̃1 − λ(Y ))+,

• Rank-1 asymptotically optimal shrinkage proposed in [Nad14] and [GD14a]

X̂
1
∗ = σ̂1ũ1ṽ

t
1 with σ̂1 =

√
σ̃2

1 − 4 11{σ̃1>2},

• Rank-1 SURE-driven weighted estimator that we have derived in Section 2.3

X̂
1
w = σ̂1ũ1ṽ

t
1 with σ̂1 =

(
1− 1

σ̃2
1

(
1

m
+

2

m

n∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

))
+

σ̃111{σ̃1>2},

where the above formula follows from the results in Section 3.3 using that c = 1 and c+ = 2
in these numerical experiments, and where, for the soft-thresholding, the value λ(Y ) > 0 is
obtained by a numerical solver in order to minimize the SURE. As a benchmark, we will also
consider the oracle estimator X1

∗ that performs shrinkage by using the knowledge of the true
singular-value σ1 defined as

X1
∗ = σ̂1ũ1ṽ

t
1 with σ̂1 =

√
ρ(σ1)2 − 4 11{ρ(σ1)>2}
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which corresponds to the asymptotically optimal shrinking rule (3.13) as a function of ρ(σk) in
the setting c = 1 and c+ = 2. Note that form the formula above ŵ1 = σ̂1/σ̃1 is necessary in the
range [0, 1] for all considered estimators.

In Figure 1, we compare the estimated singular-values σ̂1 and the estimated weights ŵ1 =
σ̂1/σ̃1 as functions of σ1 for the four aforementionned estimators. Because all estimators are
subject to noise variance, we display, for all estimators, the median values and the 80% confidence
intervals obtained from M = 100 noise realizations. It can be seen that the median curves for
the eigenvelues and the weights of X̂

1
w and X̂

1
∗ coincide (up to variations that are slightly larger

for the former) which is in agreement with the asymptotic analysis of shrinkage rules that has
been carried out in Section 3.3. Spectral estimator obtained by SURE-driven soft-thresholding
also leads to an optimal shrinkage rule.

In Figure 2, for each of the four spectral estimators above, we display for M = 100 noise
realizations, as functions of σ1, the following normalized MSE

NMSE(X̂) =
‖X̂ −X‖2F
‖X‖2F

.

The normalized MSE of the estimators X̂
1
soft, X̂

1
∗ and X̂

1
w are the same for values of σ1 larger than

c1/4 = 1, and they only differ for values of σ1 close or below the threshold c1/4 = 1 (corresponding
to values of ρ(σ1) below the bulk edge c+ = 2). More remarkably, above c1/4 = 1, they offer
similar NMSE values to the oracle shrinkage estimatorX1

∗, not only in terms of median but also in
terms of variability, as assessed by the confidence intervals. The performances of the estimator X̂

1

(standard PCA) are clearly poorer. These numerical experiments also illustrate that, for finite-
dimensional low rank matrix denoising with r∗ = 1, data-driven spectral estimators obtained by
minimizing a SURE criterion achieve performances that are similar to asymptotically optimal
shrinkage rules.

Gamma and Poisson distributed measurements

Let us now consider the case where the entries of Y ij ≥ 0 of the data matrix Y are independently
sampled from a Gamma or Poisson distribution with mean Xij > 0. To satisfy the constraint
that the estimators must be matrices with positive entries, we consider estimators of the form
(2.17). In this context, we compare the following spectral shrinkage estimators, set for ε = 10−6,
as:

• Rank-1 PCA shrinkage

X̂
1

= max
[
σ̃1ũ1ṽ

t
1, ε
]
,

• Rank-1 GSURE/SUKLS/PURE/PUKLA-driven soft-thresholding

X̂
1
soft = max

[
σ̂1ũ1ṽ

t
1, ε
]

with σ̂1 = (σ̃1 − λ(Y ))+,
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Figure 1: The case of Gaussian measurements with m = n = 100. Estimated first
singular value σ̂1 as a function of the true underlying one σ1, for (a) our proposed
estimator X̂

1

w, (b) the soft-thresholding X̂
1

soft and (c) the asymptotical one X̂
1

∗. All
of them are compared to the first singular value σ̃1 of Y 1 and the one of the oracle
asymptotical estimatorX1

∗. (c,d,e) Same but for the corresponding weight ŵ1 = σ̂1/σ̃1.
Curves have been computed on M = 100 noise realizations, only the median and an
80% confidence interval are represented respectively by a stroke and a shadded area of
the same color.

• Rank-1 GSURE/SUKLS/PURE/PUKLA-driven weighted estimator

X̂
1
w = max

[
σ̂1ũ1ṽ

t
1, ε
]

with σ̂1 = w1(Y )σ̃111{1∈s̃},

where s̃ is the approximated active subset as defined in Section 4. For the soft-thresholding, the
value λ(Y ) > 0 is obtained by a numerical solver in order to minimize either the GSURE or the
SUKLS criterion (in the Gamma case) and either the PURE or the PUKLA criterion (in the
Poisson case). The weight w1(Y ) ∈ [0, 1] is obtained by a numerical solver in order to minimize
the GSURE and the PURE, as described in Section B. According to Section 2.3, the weight
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Figure 2: Same as Fig. 1 but for the normalized MSE of the corresponding estimators.

w1(Y ) ∈ [0, 1], minimizing the SUKLS criterion, has the following closed-form formula

w1(Y ) = min

1,

L− 1

Lmn

n∑
i=1

m∑
j=1

X̂
1
ij

Y ij
+

1

Lmn

(
1 + 2

n∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

)−1 ,
and for the PUKLA criterion, we have

w1(Y ) = min

1,

∑n
i=1

∑m
j=1 Y ij∑n

i=1

∑m
j=1 X̂

1
ij

 .
To evaluate the performances of these estimators, we perform again a study involving M = 100
noise realizations.

In the Gamma case with shape parameter L = 3, results are reported in Figure 3 where σ1

ranges from 0.1 to 5. In the Poisson case, results are reported in Figure 4. To generate data
from a Poisson distribution with mean value X = σ1u1v

t
1, we took σ1 ranging from 25 to 400.

In this context, the entries Xi,j are in average ranging from 0.25 to 4. When σ1 = 25, about
78% of the entries of Y are 0 and 20% are equals to 1 which correspond to an extreme level of
noise, while when σ1 = 400, the entries of Y concentrate around 4 with a standard deviation of
2 which correspond to a simpler noisy setting.

In these experiments, it can be seen that all the data-dependent spectral estimators achieve
comparable results with really small errors in terms of MSE and MKL risks. Their performances
are similar to X̂

1
= σ̃1ũ1ṽ

t
1 meaning that optimizing either SURE-like criteria leads to a spectral

estimator closed to correspond to matrix denoising by ordinary PCA. However, unlike the Gamma
case, it might be observed in the Poisson case that when reaching a stronger noise level, i.e, for
small value of σ1, the NMSE of all estimator increases as the denoising problem becomes more
challenging. Nevertheless, only the weight of X̂

1
w driven by PUKLA does not present a drop wich

allows reaching a slightly smaller MKLA. In the Gamma case, the noise level being proportional
to the signal level, the NMSE/MKLS remain constant for all σ1.
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Figure 3: The case of Gamma measurements with m = n = 100. (a) Estimated first
eigenvalue σ̂1 as a function of the true underlying one σ1 for our proposed estimator X̂

1

w

and the soft-thresholding X̂
1

soft when both are guided by the GSURE. Both of them
are compared to the first singular value σ̃1 of Y 1. Same but for (b) the corresponding
weights ŵ1 = σ̂1/σ̃1, (c) the NMSE risk and (d) the MKLS risk. (e-h) Exact same
esperiments but when our proposed estimator and the soft-thresholding are both guided
by SUKLS. Curves have been computed onM = 100 noise realizations, only the median
and an 80% confidence interval are represented respectively by a stroke and a shadded
area of the same color.

Finally, it should be remarked that a comparison with the asymptotically optimal shrinkage
rule X̂

1
∗ proposed in [Nad14] and [GD14a] for Gaussian noise with variance τ2 = 1

m is not
realistic in the case of Gamma or Poisson measurements. Indeed, as remark in [GD14a], to
use the estimator X̂

1
∗ in a Gaussian model with homoscedastic variance τ2 6= 1

m , one may take
the estimator X̂

1
∗ =
√
mτf∗1 (σ̃1/(

√
mτ))ũ1ṽ

t
1. However, this clearly means that the approach in

[Nad14] and [GD14a] requires the knowledge of the variance of the entries Y ij of the data matrix
Y which is not possible for Gamma or Poisson measurements as either Var(Y ij) = X2

ij/L or
Var(Y ij) = Xij in these settings.

While all estimators behave similarly in the rank 1 setting, we will see in the next section
that they can significantly differ when the rank is let to be larger than 2.
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Figure 4: The case of Poisson measurements with m = n = 100. (a) Estimated first
eigenvalue σ̂1 as a function of the true underlying one σ1 for our proposed estimator
X̂

1

w and the soft-thresholding X̂
1

soft when both are guided by the PURE. Both of them
are compared to the first singular value σ̃1 of Y 1. Same but for (b) the corresponding
weights ŵ1 = σ̂1/σ̃1, (c) the NMSE risk and (d) the MKLA risk. (e-h) Exact same
esperiments but when our proposed estimator and the soft-thresholding are both guided
by PUKLA. Curves have been computed on M = 100 noise realizations, only the
median and an 80% confidence interval are represented respectively by a stroke and a
shadded area of the same color.

5.2 The case of a signal matrix of rank larger than two

We now consider the more complex an realistic setting where the rank r∗ of the matrix X is
unknown and potentially larger than two, i.e.,

X =

r∗∑
k=1

σkukv
t
k,

where uk ∈ Rn and vk ∈ Rm are vectors with unit norm that are fixed in this numerical
experiment, and σk are positive real values also fixed in this experiment. We also choose to fix
n = 100 and m = 200, while the true rank is r∗ = 9 as shown by the red curve in Figure 5(i).
Again, let Y =

∑min(n,m)
k=1 σ̃kũkṽ

t
k be an n ×m matrix whose entries are sampled from model

(2.1) and then satisfying E[Y ] = X.
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Figure 5: (a) Zoom on a 100 × 200 noise-free matrix and (e) a single realization of
corrupted version by Gaussian noise (τ = 80). (b,c) Oracle soft-thresholdingXsoft and
data-driven soft-thresholding X̂soft. (d) PCA full rank X̂

rmax , i.e., rmax = min(n,m).
(f,g,h) Oracle full rank approximation Xrmax

w , and data-driven full rank estimation
X̂
rmax

w and X̂
rmax

∗ . (i) Their corresponding singular values. (j) NMSE of the various
approximations as a function of the rank r. (k) Same but without knowledge the bulk
edge, namely c+ = 0. (l,m,n) Same when the active set of singular values is of the form
ŝ = {1, . . . , r̂} where r̂ is either given by r̂ = r∗ (oracle/true rank), r̂ = reff (effective
rank) or by (4.8). In all the figures, the solid curves correspond to oracle estimators
and the dashed curves correspond to data-driven estimators, obtained over M = 1, 000
noise realizatrions. The grey areas represent a 80% confidence interval.
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Gaussian distributed measurements

We first consider the case of Gaussian measurements, where Y = X + W with E[W ij ] = 0,
Var(W ij) = τ2 with τ = 1√

m
. In the following numerical experiments, we study the behavior of

the spectral estimator:

• PCA shrinkage

X̂
r

=

r∑
k=1

σ̃kũkṽ
t
k 11{k ≤ r̂},

• SURE-driven soft-thresholding

X̂soft =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = (σ̃k − λ(Y ))+,

• Asymptotically optimal shrinkage proposed in [Nad14] and [GD14a]

X̂
r
∗ =

r∑
k=1

σ̂kũkṽ
t
k with σ̂k =

1

σ̃k

√(
σ̃2
k − (c+ 1)

)2 − 4c 11{k ≤ r̂},

• SURE-driven weighted estimator that we have derived in Section 2.3

X̂
r
w =

r∑
k=1

σ̂kũkṽ
t
k with σ̂k =

(
1− 1

σ̃2
k

(
k

m
+

2

m

n∑
`=2

σ̃2
k

σ̃2
k − σ̃2

`

))
+

σ̃k11{k ≤ r̂},

where r ∈ [1,min(n,m)], and for the soft-thresholding, the value λ(Y ) > 0 is obtained
by a numerical solver in order to minimize the SURE. Otherwise specified, we consider
r̂ = max{k ; σ̃k > cn,m+ }, i.e., an estimator of the rank using knowledge of the bulk edge
c+ ≈ cn,m+ , hence, 11{k ≤ r̂} = 11{σ̃k>cn,m

+ }. As discussed in Section 4, we compare, in these exper-
iments, the influence of rank estimation by analyzing the performances of the same estimators
when either r̂ = rmax = min(n,m) (i.e. without knowledge the bulk edge, namely c+ = 0),
r̂ = r∗ (oracle/true rank), r̂ = reff (effective rank [Nad14]) or by (4.8) (from hard-thresholding
of singular values in [GD14b]).

In order to assess the quality of SURE as an estimator of the MSE, we also compare the
aforementioned approach with their oracle counterparts given by

Xsoft =

min(m,n)∑
k=1

σ̂kũkṽ
t
k with σ̂k = (σ̃k − λoracle(Y ))+, and

Xr
w =

r∑
k=1

σ̂kũkṽ
t
k with σ̂k = ṽtkXũk,
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where λoracle(Y ) minimizes the squared error SE (non-expected risk) over the sets and soft-
thresholding approximations respectively. Note that Xr

w and Xsoft are ideal approximations of
X that cannot be used in practice but serve as benchmarks to evaluate the performances of the
data-driven estimators X̂

r
, X̂soft, X̂

r
∗ and X̂

r
w. In order to shed some light on the variance of

these estimators, and indirectly on the variance of the SURE, we perform this experiments over
M = 1000 independent realizations of Y .

The results are reported on Figure 5. For an estimator of the rank given either by r̂ =
max{k ; σ̃k > cn,m+ } (knowledge of the bulk edege), r̂ = r∗ (oracle/true rank), r̂ = reff (effective
rank) or by (4.8), it can be observed that X̂

r
w, X̂

r
∗ andX

r
w achieve comparable performances for

all r ∈ [1,min(m,n)] even though the two first do not rely on the unknown matrix X. Similarly
X̂soft and Xsoft achieve also comparable performances showing again that the SURE accurately
estimates the MSE. In terms of error bands for the NMSE, X̂

r
w, X̂

r
∗ and X

r
w outperform X̂soft

and Xsoft provided that r is large enough. Moreover, the performance of X̂
r
w plateaus to its

optimum when the rank r becomes large. This allows us to choose r = min(n,m) when we do
not have a priori on the true or effective rank.

Interestingly, Fig. 5.(k) shows that when the above estimators are used without the knowledge
of the bulk edge (i.e. by taking cn,m+ = 0 in their computation instead of cn,m+ = 1 +

√
n
m , which

corresponds to the choice r̂ = rmax = min(n,m)), the performance of X̂
r
w actually decreases

when the rank r becomes too large. Indeed, it is clear from Fig. 5.(k), that the the error band of
the NMSE of X̂

r
w becomes much larger as the rank r increases. This illustrates that the SURE

suffers from estimation variance in the case of over parametrization when r becomes too large,
and thus it cannot be used to estimate jointly a too large number of weights. Therefore, the
knowledge of an appropriate estimator r̂ of the rank (e.g. using the bulk edge) seems to provide
a relevant upper bound on the number of weights that can be jointly and robustly estimated
with the SURE.

Gamma and Poisson measurements

Let us now consider the case where the entries of Y ij > 0 of the data matrix Y are independently
sampled from a Gamma or Poisson distribution with meanXij > 0. We again consider estimators
of the form (2.17). In this context, we compare the following spectral shrinkage estimators, set
for ε = 10−6, as:

• PCA shrinkage

X̂
r

=

r∑
k=1

max
[
σ̃kũkṽ

t
k, ε
]

with σ̂k = σ̃k11{k∈s̃},

• GSURE/SUKLS/PURE/SUKLA driven soft-thresholding

X̂soft =

min(m,n)∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = (σ̃k − λ(Y ))+,
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Figure 6: (a) A single realization of corrupted version by Gamma noise (L = 80)
with zoom on a 100 × 200 matrix. (b,c,d,e) Oracle soft-thresholding Xsoft and data-
driven soft-thresholding X̂soft respectively for SEη, GSURE, KLS and SUKLS. (f)
PCA X̂

rmax with full rank approximation i.e. rmax = min(n,m). (g,h,i,j) Oracle full
rank approximationXrmax

w , and data-driven full rank estimation X̂
rmax

w respectively for
SEη, GSURE, KLS and SUKLS. (k) Their corresponding singular values averaged over
M = 100 noise realizations. (l,m) NMSE averaged over M = 100 noise realizations as
a function of the rank r with and without using the active set. (n,o) Same but with
respect to MKLS.
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Figure 7: (a) A single realization of corrupted version by Poisson noise with zoom
on a 100 × 200 noise-free matrix (b,c,d,e) Oracle soft-thresholding Xsoft and data-
driven soft-thresholding X̂soft respectively for SE, PURE, KLA and PUKLA. (f) PCA
X̂
rmax with full rank approximation i.e. rmax = min(n,m). (g,h,i,j) Oracle full rank

approximation Xrmax
w , and data-driven full rank estimation X̂

rmax

w respectively for SE,
PURE, KLA and PUKLA. (k) Their corresponding singular values averaged over 200
noise realizations. (l,m) NMSE averaged over 200 noise realizations as a function of the
rank r with and without using the active set. (n,o) Same but with respect to MKLA.
(Matrix entries are displayed in log-scale for better visual assessment.)
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• GSURE/SUKLS/PURE/SUKLA driven weighted estimator

X̂
r
w =

r∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = wk(Y )σ̃k11{k∈s̃},

where r ∈ [1,min(n,m)], and s̃ is the approximated active subset as defined in Section 4. For the
soft-thresholding, the value λ(Y ) > 0 is obtained by a numerical solver in order to minimize either
the GSURE or the SUKLS criterion (in the Gamma case) and either the PURE or the PUKLA
criterion (in the Poisson case). As shown in Section 2.3, in the case of Gamma (resp. Poisson)
measurements, the value of wk(Y ) for k ∈ s̃ which minimizes the GSURE (resp. PURE) or the
SUKLS (resp. PUKLA), cannot be obtained in closed form. As an alternative, we adopt a greedy
one-dimensional optimization strategy starting from the matrix σ̃1ũ1ṽ

t
1 and next updating the

weights w` sequentially by starting ` = 1 to ` = min(n,m), with the constraint that, for all ` /∈ s̃,
the weight w` is set to zero. To this end, we resort to one-dimensional optimization techniques in
the interval [0, 1] using Matlab’s command fminbnd. This strategy is used for GSURE, SUKLS,
PURE and PUKLA by evaluating them as described in Section B. As in the Gaussian setting,
we compare this spectral estimators with their oracle counterparts given by

Xsoft =

min(m,n)∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = (σ̃k − λoracle(Y ))+, and

Xr
w =

r∑
k=1

max
[
σ̂kũkṽ

t
k, ε
]

with σ̂k = woracle
k (Y )σ̃k11{k∈s̃}.

where woracle
k (X) and λoracle(Y ) minimizes one of the objective SEη, KLS, SE or KLA (non-

expected risks) over the set of matrices sharing with Y the same r first left and right singular
vectors, and soft-thresholding approximations respectively. Note again that Xr

w and Xsoft are
ideal approximations of X that cannot be used in practice but serve as benchmarks to evaluate
the performances of the data-driven estimators X̂

r
w and X̂soft.

The results for the Gamma noise are reported on Figure 6. As in the Gaussian setting, it
can be observed that X̂

r
w and Xr

w achieve comparable performances, as well as X̂soft and Xsoft

showing that the GSURE (resp. SUKLS) accurately estimates the MSEη (resp. KLS). Visual
inspection of the restored matrices tends to show that the estimators driven by MSEη or GSURE
produce less relevant results compared to KLS or SUKLS, as confirmed by the curves of NMSE
and MKLS. Performance in terms of NMSE also illustrates that minimizers of SEη do not
coincides with those of SE. As in the Gaussian setting, X̂

r
w andXr outperform X̂soft, Xsoft and

standard PCA X̂
r
provided that r is large enough. Moreover, the performance of X̂

r
w obtained

with KL objectives plateaus to its optimum when the rank r becomes large. Again, this allows
us to choose r = min(n,m) when we do not have a priori on the true rank r?.

The results for the Poisson noise are reported on Figure 7. The conclusions are similar to the
Gaussian and Gamma cases. Obviously, the NMSE is smaller for approximations that minimizes
SE (or PURE) than for those minimizing KLA (or PUKLA). However, visual inspection of the
obtained matrices tends to demonstrate that minimizing such objectives might be less relevant
than minimizing KL objectives. In this setting, the performance of X̂

r
w is on a par with the one
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of X̂soft based on PUKLA. In fact, for other choices of matricesX, X̂
r
w based on PUKLA might

improve, in terms of MKLS, much more on X̂soft, and might improve not as much on X̂
r
w based

on PURE. Nevertheless, whatever X, we observed that X̂
r
w driven by PUKLA always reaches

at least as good performance in terms of MKLS as the best of X̂
r
w driven by SE and X̂soft.

Fig. 6.(m), Fig. 6.(o), Fig. 7.(m) and Fig. 7.(o) show that when the above estimators are
used without the active set (i.e., by choosing s̃ = [1,min(n,m]), the performance of X̂

r
w actually

decreases when the rank r becomes too large. As in the Gaussian setting, this can be explained
by the fact that the GSURE, SUKLS, PURE and PUKLA suffer from estimation variance in the
case of over parametrization, hence, they cannot be used to estimate jointly a too large number
of weights. The active set s̃ (in the same manner as the bulk edge) seems to provide a relevant
selection of the weights that can be jointly and robustly estimated in a data driven way.

5.3 Signal matrix with equal singular values and increasing rank

We finally propose to highlight potential limitations of our approach in the situation where the
rank r∗ of the matrix X =

∑r∗

k=1 σkukv
t
k is let growing and all positive singular values σk of X

are equal, namely

Y =
r∗∑
k=1

σkukv
t
k +W with σk = γc1/4n,m for all 1 ≤ k ≤ r∗, (5.1)

where uk ∈ Rn and vk ∈ Rm are vectors with unit norm that are fixed, cn,m = n
m and W

is centered random matrix whose entries are iid Gaussian variables with variance τ2 = 1/m.
We again choose to fix n = 100 and m = 200, while the true rank is r∗ let growing from 1 to
min(n,m) in the following numerical experiments. The constant γ is chosen to be larger than
1. Hence, eq. (5.1) corresponds to the Gaussian spiked population model in the setting where
all positive singular values are equal and larger than the threshold c1/4

n,m. The choice σk = γc
1/4
n,m

with γ > 1 is motivated by the results from Proposition 3.1.
For a given value of the true rank r∗, we performed experiments involving M = 1000 real-

izations from model (5.1) to compare the NMSE of the estimators by oracle soft-thresholding
Xsoft, data-driven soft-thresholding X̂soft, PCA full rank X̂

rmax i.e. rmax = min(n,m), oracle
full rank approximationXrmax

w , and data-driven full rank estimation X̂
rmax

w and X̂
rmax

∗ . All these
estimators have been introduced in Section 5.2.

In Figure 8, we report the results of numerical experiments by displaying errors bars of the
NMSE of these estimators as functions of the true rank r∗. For low values of the true rank
(r∗ ≤ 20), the data-driven estimators X̂

rmax

w (our approach) and X̂
rmax

∗ (shrinkage rule from
[GD14a]) achieve the best performances that are similar in term of median value of the NMSE.
However, our approach has some limitations with respect to the performances of the estimator
from [GD14a] or data-driven soft-thresholding [CSLT13] in the setting where the signal matrix
has equal positive singular values and when its rank is increasing. Moreover, the error bands
of the NMSE for our approach becomes significantly larger than those of the other data-driven
estimators when the true rank r∗ increases. This illustrates that SURE minimization leads to
estimators with a high variance in the case of over parametrization, that is, when there exists a
large number of significant singular values in the signal matrix.
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Figure 8: Comparison of NMSE as a function of the true rank r∗ in model (5.1) for
different values of γ for the estimator by oracle soft-thresholding Xsoft, data-driven
soft-thresholding X̂soft, PCA full rank X̂

rmax i.e. rmax = min(n,m), oracle full rank
approximation Xrmax

w , and data-driven full rank estimation X̂
rmax

w and X̂
rmax

∗ . The
active set set of singular values is of the form ŝ = {1, . . . , r̂} where r̂ = max{k ; σ̃k >
cn,m+ } is an estimator of the rank using knowledge of the bulk edge c+ ≈ cn,m+ (a),
(d), (g) Median value of the NMSE of the various estimators over M = 1000 Gaussian
noise realizations in model (5.1) as a function of the true rank r∗. (b), (c), (e), (f),
(h), (i) The grey areas represent error bands of the NMSE of data-driven and oracle
estimators.
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A Proof of the main results

A.1 Proof of Proposition 3.2

Let us first introduce some notation and definitions to be used in the proof. For all 1 ≤ ` ≤ n,
let λ̃` be the eigenvalues of Y Y t namely λ̃` = σ̃2

` . For a fixed 1 ≤ k ≤ r∗ such that σk > c1/4,
let us introduce the complex-valued function gk defined by

gk(z) =
1

n

n∑
`=1; 6̀=k

1

z − λ̃`
for z ∈ C \ supp(µk),

where supp(µk) =
{
λ̃`; 1 ≤ ` ≤ n, ` 6= k

}
is the support of the random measure µk =

1
n

∑n
`=1; 6̀=k δλ̃` on R+, where δλ denotes the Dirac measure at λ. It is clear that

gk(z) =

∫
1

z − λdµk(λ).

The main difficulty in the proof is to show that, almost surely,

lim
n→+∞

gk(σ̃
2
k) =

1

ρ2 (σk)

(
1 +

1

σ2
k

)
,

which is the purpose of what follows.
For a matrix A ∈ Rn×m (with n ≤ m), we denote its singular values by σ1(A) ≥ σ2(A) ≥

. . . ≥ σn(A) ≥ 0. Hence, one has that σ̃` = σ`(Y ) for all 1 ≤ ` ≤ n. Now, we recall that
Y = X +W where X is a fixed matrix of rank r∗ and W is a random matrix with iid entries
sampled from a Gaussian distribution with zero mean and variance 1

m . The first step in the proof
is to show that the random measure µk behaves asymptotically as the almost sure limit of the
empirical spectral measure µWW t of the Wishart matrix WW t. By definition, the eigenvalues
of WW t are λ`(W ) = σ2

` (W ) for all 1 ≤ ` ≤ n and µWW t is thus defined as

µWW t =
1

n

n∑
`=1

δλ`(W ).

It is well know (see e.g. Theorem 3.6 in [BS10]) that, once m = mn ≥ n and limn→+∞
n
m = c

with 0 < c ≤ 1, then, almost surely, the empirical spectral measure µWW t converges weakly to
the so-called Marchenko-Pastur distribution µMP which is deterministic and has the following
density dµMP (λ)

dλ = 1
2πcλ

√
(c2

+ − λ)(λ− c2
−) 1I[c2−,c2+](λ). We recall that such a convergence can

also be characterized through the so-called Cauchy or Stieltjes transform which is defined for
any probability measure µ on R as

∀z ∈ C outside the support of µ, gµ(z) =

∫
1

z − λdµ(λ).

By eq. (3.3.2) in [BS10], one obtains that, almost surely,

lim
n→∞

∫
1

z − λdµWW t(λ) = gMP (z) for any z ∈ C \ R, (A.1)
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where gMP is the Cauchy transform of µMP and

gMP (z) =

∫
1

z − λdµMP (λ) =
z − (1− c)−

√
(z − (c+ 1))2 − 4c

2cz
for all z ∈ C \ [c2

−, c
2
+].

Moreover, by Proposition 6 in [PL03], the convergence (A.1) is uniform over any compact subset
of C \ R.

Then, it follows from the so-called Weyl’s interlacing inequalities (see e.g. Theorem 3.1.2 in
[HJ91]) that for all 1 ≤ ` ≤ n

σ`+r∗(W ) ≤ σ`(Y ) ≤ σ`−r∗(W ), (A.2)

with the convention that σk(W ) = −∞ if k > n and σk(W ) = +∞ if k ≤ 0. Thanks to
the results that have been recalled above on the asymptotic properties of µWW t , one may use
inequalities (A.2) to prove that, almost surely, the random measure µk converges weakly to
the Marchenko-Pastur distribution µMP . Under the assumptions of Proposition 3.2 and using
Proposition 3.1, it can be shown that there exists ηk > 0 such that, almost surely and for all
sufficiently large n

λ̃` /∈ Kk := [ρ2(σk)− ηk, ρ2(σk) + ηk]

for any 1 ≤ ` ≤ n with ` 6= k. Now, recall that the support supp(µk) of the random measure µk
is
{
λ̃`; 1 ≤ ` ≤ n, ` 6= k

}
, and that supp(µMP) = [c2

−, c
2
+]. Hence, for all sufficiently large n, one

has that

supp(µk) ∩Kk = ∅ and supp(µMP) ∩Kk = ∅.
Therefore, thanks to the weak convergence of µk to µMP and using Ascoli’s Theorem, one may
prove that

lim
n→∞

sup
z∈Kk

|gk(z)− gMP (z)| = 0 almost surely. (A.3)

Thanks to our assumptions, one has that, almost surely, limn→+∞ σ̃
2
k = ρ2 (σk) by Proposition

3.1. Hence, almost surely and for all sufficiently large n, one has that σ̃2
k ∈ Kk and so

|gk(σ̃2
k)− gMP (ρ2 (σk))| ≤ sup

z∈Kk

|gk(z)− gMP (z)|+ |gMP (σ̃2
k)− gMP (ρ2 (σk))|.

Therefore, using the uniform convergence (A.3) of gk to gMP and the continuity of gMP at
z = ρ2 (σk), one obtains that, almost surely,

lim
n→+∞

gk(σ̃
2
k) = gMP (ρ2 (σk)) =

1

ρ2 (σk)
× ρ2 (σk)− 1 + c−

√
(ρ2 (σk)− (c+ 1))2 − 4c

2c
.

Since gk(σ̃2
k) = 1

n

∑n
`=1; 6̀=k

1
σ̃2
k−σ̃

2
`
, using the above equation and relation (3.1), it follows imme-

diately that gMP (ρ2 (σk)) = 1
ρ2(σk)

(
1 + 1

σ2
k

)
so that, almost surely,

lim
n→+∞

1

n

n∑
`=1; 6̀=k

σ̃k
σ̃2
k − σ̃2

`

= lim
n→+∞

σ̃kgk(σ̃
2
k) = ρ (σk) gMP (ρ2 (σk)) =

1

ρ (σk)

(
1 +

1

σ2
k

)
,

which completes the proof.
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A.2 A technical result to prove SURE-like formulas

We recall the key lemma needed to prove the SURE-like formulas in an exponential family in
the continuous case. Similar results have already been formulated in different papers in the
literature, see e.g. the review proposed in [Del15].

Lemma A.1. Let Y ∈ Rn×m be a random matrix whose entries Y ij are independently sampled
from the continuous exponential family (2.2) in canonical form (that is the distribution of Y ij is
absolutely continuous with respect to the Lebesgue measure dy on R). Suppose that the function
h is continuously differentiable on Y = R. Let 1 ≤ i ≤ n and 1 ≤ j ≤ m, and denote by
Fij : Rn×m → R a continuously differentiable function such that

E [|Fij(Y )|] < +∞. (A.4)

Then, the following relation holds

E [θijFij(Y )] = −E
[
h′(Y ij)

h(Y ij)
Fij(Y ) +

∂Fij(Y )

∂Y ij

]
.

Proof. Using the expression (2.2) of the pdf of the random varibles Y ij , one has that

E [θijFij(Y )] =

∫
Rn×m

Fij(Y )h(yij)θij exp (θijyij −A(θij)) dyij

n∏
1≤k≤n
1≤`≤m

(k,`)6=(i,j)

p(yk`;θk`) dyk`.

where Y = (yk`)1≤k≤n,1≤`≤m. Thanks to condition (A.4), it follows that∫
Rn×m

Fij(Y )h(yij) exp (θijyij −A(θij)) dyij

n∏
1≤k≤n
1≤`≤m

(k,`)6=(i,j)

p(yk`;θk`) dyk` < +∞. (A.5)

Therefore, given that θij exp (θijyij −A(θij)) =
∂ exp(θijyij−A(θij))

∂yij
, an integration by part and

eq. (A.5) imply that

E [θijFij(Y )] = −
∫
Rn×m

∂Fij(Y )h(yij)

∂yij
exp (θijyij −A(θij)) dyij

n∏
1≤k≤n
1≤`≤m

(k,`) 6=(i,j)

p(yk`;θk`) dyk`.

Now, since ∂Fij(Y )h(yij)
∂yij

= h′(yij)Fij(Y ) +
∂Fij(Y )
∂yij

h(yij), we finally obtain that

E [θijFij(Y )] = −E
[
h′(Y ij)

h(Y ij)
Fij(Y ) +

∂Fij(Y )

∂Y ij

]
,

which completes the proof.
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A.3 Proof of Proposition 2.1

We remark that

MSE(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

(
E
[
|θ̂fij(Y )|2 − 2θij θ̂

f

ij(Y )
]

+ θ2
ij

)
. (A.6)

Using Lemma A.1 with Fij(Y ) = θ̂
f

ij(Y ) and condition (2.4), it follows that

E
[
θij θ̂

f

ij(Y )
]

= E
[
h′(Y ij)

h(Y ij)
θ̂
f

ij(Y )

]
+ E

∂θ̂fij(Y )

∂Y ij

 . (A.7)

Then, by definition (2.2) of the exponential family, we remark that

E
[
h′′(Y ij)

h(Y ij)

]
=

∫
R
h′′(yij) exp (θijyij −A(θij)) dyij .

Hence, using an integration by parts twice, we arrive at

E
[
h′′(Y ij)

h(Y ij)

]
= θ2

ij

∫
R
h(yij) exp (θijyij −A(θij)) dyij = θ2

ij . (A.8)

To complete the proof, it suffices to insert equalities (A.7) and (A.8) into (A.6).

A.4 Proof of Proposition 2.2

Thanks to eq. (2.8), one has that

MKLS(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E
[
θ̂
f

ij(Y )A′(θ̂
f

ij(Y ))− θijA′(θ̂
f

ij(Y ))−A(θ̂
f

ij(Y ))
]

+A(θij).

(A.9)

Using Lemma A.1 with Fij(Y ) = A′(θ̂
f

ij(Y )) and condition (2.9), it follows that

E
[
θijA

′(θ̂
f

ij(Y ))
]

= −E
[
h′(Y ij)

h(Y ij)
A′(θ̂

f

ij(Y ))

]
− E

∂θ̂fij(Y )

∂Y ij
A′′(θ̂

f

ij(Y ))

 . (A.10)

Thus, inserting equality (A.10) into (A.9) implies that

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f

ij(Y ) +
h′(Y ij)

h(Y ij)

)
A′(θ̂

f

ij(Y ))−A(θ̂
f

ij(Y ))

)
+

n∑
i=1

m∑
j=1

A′′(θ̂
f

ij(Y ))
∂θ̂

f

ij(Y )

∂Y ij
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is an unbiased estimator of MKLS(θ̂
f
,θ) − ∑n

i=1

∑m
j=1A(θij). Now recall that fij(Y ) =

η−1
(
θ̂
f

ij(Y )
)

and that A′(θ̂
f

ij(Y )) = η−1
(
θ̂
f

ij(Y )
)

by Assumption 2.1. Therefore, ∂fij(Y )

∂Y ij
=

A′′(θ̂
f

ij(Y ))
∂θ̂

f
ij(Y )

∂Y ij
, and thus

SUKLS(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f

ij(Y ) +
h′(Y ij)

h(Y ij)

)
A′(θ̂

f

ij(Y ))−A(θ̂
f

ij(Y ))

)
+

n∑
i=1

m∑
j=1

∂fij(Y )

∂Y ij
,

which completes the proof.

A.5 Proof of Proposition 2.3

Thanks to the expression (2.14) of the MKLA risk for data sampled from a Poisson distribution,
it follows that

MKLA(θ̂
f
,θ) +

n∑
i=1

m∑
j=1

Xij −Xij log (Xij) =
n∑
i=1

m∑
j=1

E
[
X̂

f
ij −Xij log

(
X̂

f
ij

)]
In the case of Poisson data, one has that exp (θij) = Xij and h(Y ij−1)

h(Y ij)
= Y ij . Therefore, by

applying Hudson’s Lemma 2.1 with Fij(Y ) = log
(
X̂

f
ij

)
, it follows that

E

 n∑
i=1

m∑
j=1

Xij log
(
X̂

f
ij

) = E

 n∑
i=1

m∑
j=1

Y ij log
(
fij(Y − eietj)

) ,
which completes the proof.

B Implementation details

We discuss below an algorithmic approach to find data-driven spectral estimators.
First, we discuss on how to compute data-driven spectral estimators from the expression of

risk estimators. For SUKLS in continuous exponential families, and for SURE in the Gaussian
case only, eq. (3.7) and (2.10) provide respectively a closed-form solution that can be evaluated
in linear time O(nm). On the contrary, the computations of GSURE (beyond the Gaussian
case), PURE and PUKLA, given respectively in eq. (2.6), (2.12) and (2.15), cannot be evaluated
in reasonable time. They rely respectively on the computation of the divergence div θ̂

f
(Y ),∑∑

Y ijfij(Y − eietj) and
∑∑

Y ij log
(
fij(Y − eietj)

)
. Without further assumptions, such

quantities requires O(n2m2) operations in general. A standard approach for the computation
of the divergence, suggested in [Gir89, RBU08], is to unbiasedly estimate it with Monte-Carlo
simulations by sampling the following relation

div θ̂
f
(Y ) = Eδ

[
tr

(
δt
∂θ̂

f
(Y )

∂Y
δ

)]
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at random directions δ ∈ Rn×m satisfying E[δ] = 0, E[δiδi] = 1 and E[δiδj ] = 0. Following
[Del15], a similar first order approximation can be used for the other two quantities as

∑∑
Y ijfij(Y − eietj) ≈

∑∑
Y ij

[
fij(Y )− δi,j

(
∂f(Y )

∂Y
δ

)
i,j

]
, and

∑∑
Y ij log

(
fij(Y − eietj)

)
≈
∑∑

Y ij log

[
fij(Y )− δi,j

(
∂f(Y )

∂Y
δ

)
i,j

]

where the entries of δ should be chosen Bernoulli distributed with parameter p = 0.5. The
advantage of these three approximations is that they can be computed in linear time O(nm) by
making use of the results of [LS01, SS03, Ede05, CSLT13, DVP+12] that provide an expression
for the directional derivative given by

∂f(Y )

∂Y
δ = Ũ(D + S +A)Ṽ

t
(B.1)

where Ũ and Ṽ are the matrices whose columns are ũk and ṽk, and D, S and A are n × m
matrices defined, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, as

Di,j = δ̄i,j ×
{
f ′i(σ̃i) if i = j
0 otherwise,

Si,j =
δ̄i,j + δ̄j,i

2
×
{

0 if i = j
fi(σ̃i)−fj(σ̃j)

σ̃i−σ̃j otherwise,

Ai,j =
δ̄i,j − δ̄j,i

2
×
{

0 if i = j
fi(σ̃i)+fj(σ̃j)

σ̃i+σ̃j
otherwise,

where σ̃k and fk(σ̃k) are extended to 0 for k > min(n,m) and δ̄ = Ũ
t
δṼ ∈ Rn×m.
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