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A convex relaxation for sparse low-rank Nyström approximation of large scale kernel-matrices

We propose a convex relaxation for the sampling problem related to the Nyström approximation of large kernel-matrices. We consider a weighted-Nyström scheme and exploit the relation between the convex quadratic form induced by the squaredkernel discrepancy and the Nyström approximation error. Sparsity of the sampling can be achieved through an 1 -type regularisation of the cost or by enforcing an 1 -type constraint to the minimisation problem; in the constrained case, the problem can in particular be interpreted as a penalised one-class SVM with respect to the squared-kernel. We demonstrate the ability of the proposed approach to lead to accurate sparse low-rank Nyström approximations of large kernel-matrices while remaining computationally tractable.

Motivations

In the non-sparse case and for the direct "naive" approach, the amount of computations required to perform the eigendecomposition of a N × N (symmetric and positive) matrix K scale as O(N 3 ), and therefore becomes quickly intractable when N increases. A common alternative consists in carrying out the eigendecomposition of a principal submatrix of K with size n < N , and then expanding the result back up to dimension N ; by analogy with the integral operators framework, this scheme is usually referred as the Nyström method, see [START_REF] Williams | Using the Nyström method to speed up kernel machines[END_REF].

In order to draw parallels between our study and the frameworks of integral operators and kernelbased methods, we more particularly assume that K is a kernel-matrix. More precisely, we introduce a general space X and consider a symmetric and positive kernel K : X × X → R. For a set S = {x k } N k=1 of N points in X , let K i,j = K(x i , x j ) be the i, j-th entry of K. We denote by H the RKHS associated with the kernel K(•, •).

Selecting columns of the matrix K can be viewed as performing the product KV, where V is a N × N diagonal matrix with diagonal entries 0 or 1; in the same way, considering VK amounts to selecting rows of K. Such a sampling matrix V satisfies V 2 = V, and the underlying principal submatrix of K can be written as V 1/2 KV 1/2 = VKV. The binary nature of the diagonal entries of V implies that the search for a "good" {0, 1}-sampling matrix is generally a difficult combinatorial problem. One may refer to, e.g., [START_REF] Drineas | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF][START_REF] Smale | Geometry on probability spaces[END_REF][START_REF] Kumar | Sampling techniques for the Nyström method[END_REF][START_REF] Wang | Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling[END_REF][START_REF] Wang | Efficient algorithms and error analysis for the modified Nyström method[END_REF][START_REF] Anderson | Spectral gap error bounds for improving CUR matrix decomposition and the Nyström method[END_REF] (and references therein) for an overview of Nyström sampling strategies and their impact on the eigendecomposition approximation.

A relaxation of the selection problem can be introduced by considering V = diag(υ), with υ = (υ 1 , • • • , υ N ) T 0 (that is υ is a column vector and υ i 0 is the i-th diagonal entry of the diagonal matrix V). As detailed in Section 3, for a given vector ω ∈ R N , ω > 0 (see Section 2.4), our criterion for the computation of υ is based on a regularised or constrained minimisation of the convex quadratic form D(υ) = 1 2 (ωυ) T S(ωυ),

where S = K * K (Hadamard product) is the kernel-matrix for the (symmetric and positive) squaredkernel K 2 (x, y) = K(x, y) 2 and S. In the "{0, 1}-sampling case", i.e., when the entries of υ are all 0 or 1, and for ω = 1 (with 1 = (1, • • • , 1) T ∈ R N ), the following (trivial) Lemma 1.1 illustrates that D(υ) is directly related to the squared Frobenius norm of the difference between the kernel-matrix K and its sparse Nyström approximation VKV (which is a classical criterion for kernel-matrix Nyström approximation, see, e.g., [START_REF] Drineas | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF]). Lemma 1.1. If ω = 1 and if the components of υ are all 0 or 1, then the components of ωυ are also all 0 or 1 and therefore

(ω -υ) T S(ω -υ) = K -VKV 2 
F
, where • F stands for the Frobenius norm.

For general υ 0 (and any ω > 0), by introducing the notion of squared-kernel discrepancy (see Definition 2.1 and Theorem 2.1) and by interpreting (weighted) kernel-matrices as discrete measure integral operators (Section 2), we further highlight the strong connection between D(υ) and the Nyström problem. In Section 3, we discuss how sparsity in discrepancy-based Nyström sampling can be achieved through 1 -type regularisation or by enforcing an 1 -type constraint to the underlying convex minimisation problem (defining a one-class SVM, see Section 3.3); numerical considerations are also adressed. Section 4 is devoted to experiments and Section 5 concludes.

2 Notations, recalls and theoretical motivations

Integral operators

Assume that X is a measurable space, and that the RKHS H consists of measurable functions on X (we also assume that the kernel K(•, •) is measurable). We denote by M the set of all measures on X and introduce

T (K) = µ ∈ M X K(x, x)dµ(x) = τ µ < +∞ . For µ ∈ T (K), we have K(•, •) ∈ L 2 (µ ⊗ µ) and H is continuously included in L 2 (µ) (i.e., for all h ∈ H, h ∈ L 2 (µ) and h 2 L 2 (µ) τ µ h 2 H ). We then define, for f ∈ L 2 (µ) and x ∈ X , T µ [f ](x) = X K(x, t)f (t)dµ(t), so that T µ [f ] ∈ H and, for h ∈ H, (h|T µ [f ]) H = (h|f ) L 2 (µ)
, see for instance [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF] for more details. The operator T µ is symmetric and positive on L 2 (µ). We introduce the closed linear subspaces

H 0µ = h ∈ H h L 2 (µ) = 0 and H µ = H ⊥ H 0µ , so that H = H µ ⊥ + H 0µ (orthogonal decomposition).
We denote by {λ k |k ∈ I + µ } the at most countable set of all strictly positive eigenvalues of T µ , and let ϕ k ∈ L 2 (µ) be their associated eigenfunctions, normalised for L 2 (µ). For k ∈ I + µ , let

ϕ k = 1 λ k T µ [ ϕ k ] ∈ H be the canonical extension of ϕ k , so that { √ λ k ϕ k |k ∈ I + µ } is an orthonormal basis (o.n.b.) of the subspace H µ of H. The reproducing kernel of H µ (for the Hilbert structure of H) is K µ (x, y) = k∈I + µ λ k ϕ k (x)ϕ k (y) and τ µ = k∈I + µ λ k 0.

Hilbert-Schmidt norm and squared-kernel discrepancy

In view of Section 2.1, for µ ∈ T (K), the operator T µ can also be interpreted as an operator on H (with a slight abuse of notation, we keep the same notation for "T µ viewed as an operator on L 2 (µ)", and "T µ viewed as an operator on H"). In both cases, T µ is an Hilbert-Schmidt operator.

For an o.n.b. {h k |k ∈ I} of H, we recall that K(x, y) = k∈I h k (x)h k (y) (with I a general index set), so that the Hilbert-Schmidt norm of the operator T µ on H then verifies

T µ 2 HS,H = k∈I T µ [h k ] 2 H = k∈I T µ [h k ] h k L 2 (µ) = K 2 L 2 (µ⊗µ) = k∈I + µ λ 2 k .
In the same way, for ν ∈ T (K), the Hilbert-Schmidt inner product (for operators on H) verifies

T µ T ν HS,H = k∈I T µ [h k ] T ν [h k ] H = K 2
L 2 (µ⊗ν) . Definition 2.1. For µ and ν ∈ T (K), the squared-kernel discrepancy between µ and ν is

D K 2 (µ, ν) = T µ -T ν 2 HS,H = K 2 L 2 (µ⊗µ) + K 2 L 2 (ν⊗ν) -2 K 2 L 2 (µ⊗ν) .
The terminology "discrepancy" is motivated by the analogy with the notion of "kernel discrepancy" used for instance in [START_REF] Damelin | A walk through energy, discrepancy, numerical integration and group invariant measures on measurable subsets of Euclidean space[END_REF]. By definition, D K 2 (µ, ν) appears as a "measure of the similarity" between the operators T µ and T ν on H; in particular, D K 2 (µ, µ) = 0.

Squared-kernel discrepancy and Nyström approximation error

The following Theorem 2.1 further highlights the connection between the squared-kernel discrepancy and the error induced by the approximation of T µ (the "true" integral operator) by T ν (the approximate operator).

Theorem 2.1. Let µ and ν ∈ T (K) be such that

H ν ⊂ H µ (i.e., for h ∈ H, h L 2 (µ) = 0 implies h L 2 (ν) = 0). Let { √ λ k ϕ k |k ∈ I + µ } be the o.n.b. basis of H µ defined T µ , and { √ θ l ψ l |l ∈ I + ν } be the o.n.b. of H ν defined by T ν . We have D K 2 (µ, ν) = k∈I + µ λ k T µ [ϕ k ] -T ν [ϕ k ] 2 H
(1)

= k∈I + µ λ 2 k + k∈I + µ l∈I + ν θ 2 l -2λ k θ l √ λ k ϕ k √ θ l ψ l 2 H . (2) 
In addition,

k∈I + µ λ k T µ [ϕ k ] -T ν [ϕ k ] 2 L 2 (µ) τ µ D K 2 since h 2 L 2 (µ) τ µ h 2 H for all h ∈ H.
Proof. The proof is trivial and directly follows from the properties discussed in Sections 2.1 and 2.2.

In particular, remark that

H ν ⊂ H µ implies T µ [h] = T ν [h] = 0 for all h ∈ H 0,µ . We also recall that, for h ∈ H, P Hν [h] = l∈I + ν θ l ψ l (ψ l |h) H is the orthogonal projection from H onto H ν .
When H ν ⊂ H µ (with µ fixed), by minimising D K 2 (µ, ν), we aim at minimising, for the RKHS norm, λ k ϕ k -T ν [ϕ k ] for all k ∈ I + µ , while putting more emphasis on the approximation of the eigenpairs with largest eigenvalues (the eigenvalues λ k somehow playing the rule of penalisation weights). However, under the only condition H ν ⊂ H µ , D K 2 (µ, ν) is minimal for ν = µ (meaning that the best approximation of T µ is T µ itself); in order to avoid this trivial solution, one may add additional feasibility constraints for ν, or add a regularisation term to the cost D K 2 (µ, ν). By analogy with spectral truncation, one possibility is to, for instance, penalise τ ν = trace(T ν ), see Section 3.

Discrete measures and kernel matrices

Let µ = N k=1 ω k δ x k be a discrete measure, with ω = (ω 1 , • • • , ω N ) T ∈ R N , ω k > 0, where δ x k is the Dirac measure at x k . We have µ ∈ T (K), and for f ∈ L 2 (µ) and x ∈ X , T µ [f ](x) = N k=1 ω k K(x, x k )f (x k ) = k T (x)Wf , with W = diag(ω), k(x) = K(x 1 , x), • • • , K(x N , x) T and f = (f (x 1 ), • • • , f (x N )) T ∈ R N .
We can identify the Hilbert space L 2 (µ) with the space R N endowed with the inner product

(•|•) W ,
where for x and y ∈ R N , (x|y 

) W = x T Wy; this way, f ∈ L 2 (µ) is assimilated to f ∈ R N ,
Λ = diag(λ 1 , • • • , λ N ) and P = (v 1 | • • • |v N ). The vectors {v 1 , • • • , v N } form
an orthonormal basis of the Hilbert space R N , W , i.e., P T WP = Id N , the N × N identity matrix. In particular, we have K = PΛP T , with P T P = W -1 . For λ k > 0, the canonical eigenfunctions of T µ are given by ϕ k = 1 λ k k T Wv k . For general ω, the matrix KW is non-symmetric and performing its direct diagonalisation may be problematic numerically. However, classically, since

KWv k = λ k v k , then W 1/2 KW 1/2 W 1/2 v k = λ k W 1/2 v k . The symmetric matrix W 1/2 KW 1/2
defines a symmetric and positive operator on R N , Id N with eigenvalues λ k and normalised eigenvectors W 1/2 v k .

3 Convex relaxation for optimal Nyström approximation of kernel-matrices 3.1 Regularised or constrained squared-kernel discrepancy minimisation

Let µ = N k=1 ω k δ x k and ν = N k=1 υ k δ x k
be discrete measures supported by S, with ω > 0 and υ 0 (so that H ν ⊂ H µ for any υ); we have

D K 2 (µ, ν) = (ω -υ) T S(ω -υ),
where S is the kernel-matrix for the squared-kernel K 2 (•, •) and S.

As already observed, since D K 2 (µ, µ) = 0, the minimisation of the squared-kernel discrepancy alone is not interesting. In addition, we aim at obtaining an as sparse as possible vector υ. andα 0, we introduce the regularised squared-kernel discrepancy minimisation problem (the factor 1 /2 is added for simplification purpose)

For d = (d 1 , • • • , d N ) T ∈ R N , d > 0,
minimise υ 0 D α (υ) = 1 2 (ω -υ) T S(ω -υ) + αd T υ. (3) 
Since υ 0, the term d T υ can be interpreted as a weighted 1 -regularisation (α is the regularisation parameter). For appropriate α, we can thus expect a solution υ * α for (3) to be sparse (see, e.g., [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF]). In practice, we may reasonably assume that

K(x k , x k ) > 0 for all k ∈ {1, • • • , N } (indeed, if K(x, x) = 0, then h(x) =
0 for all h ∈ H, so that there is, roughly speaking, "nothing to learn" in such a point x). By analogy with spectral truncation, the choice d k = K(x k , x k ) then appears as relatively interesting since it leads to d T υ = trace(T ν ) (and trace(T µ ) = d T ω); in this case, we use the notation d = diag(K).

The following Lemma 3.1 recalls trivial properties verified by problem (3) (in particular, the last two assertions follow directly from the first-order optimality condition). Lemma 3.1. Denote by υ * α a solution for (3), we have:

(i) for α = 0, υ * α = ω, (ii) if α max k [Sω] k /d k , then υ * α = 0 (with [Sω] k the k-th component of Sω), (iii) for all α 0, we have 0 αd T υ * α αd T ω -(ω -υ * α ) T S(ω -υ * α ).
In view of Lemma 3.1-(iii), we can equivalently consider the problem, for ρ ∈ [0, 1], minimise υ 0

D(υ) = 1 2 (ω -υ) T S(ω -υ) subject to d T υ = ρd T ω, (4) 
with solution denoted by υ * ρ . Indeed, for a given α 0, if ρ verifies d T υ * α = ρd T ω, then we obviously have υ * ρ = υ * α . As an interesting feature, problem (4) can be efficiently solved thanks to "kernelised" (i.e., without matrix storage) sparse descent direction QP solvers, like for instance the vertex-exchange strategy, see [10, Chap. 9] and Section 3.4.1. Interestingly, problem (4) can also be related to a one-class SVM, as discussed in Section 3.3.

Nyström approximation

Assume that ν = N k=1 υ k δ x k , υ 0, is an optimal measure for one of the problems described in Section 3.1, with d > 0 and for a regularisation parameter α or ρ (i.e., υ is solution of (3) or ( 4)).

We introduce the index set I = {i|υ i > 0} and let n = card(I) be the number of strictly positive components of υ; we have in particular ν = i∈I υ i δ xi . Following Section 2.3, the strictly positive eigenvalues {θ k |k ∈ I + ν } of T ν and their associated canonically extended eigenfunction ψ k ∈ H (normalised for L 2 (ν)) can be easily obtained from the eigendecomposition of the "appropriate"

n × n (symmetric) principal submatrix [V 1/2 KV 1/2 ] I,I .

Approximate eigenvalues and eigenfunctions.

For all l ∈ I + ν , we introduce the approximate eigenfunctions ϕ l = ψ l / ψ l L 2 (µ) ; so that, as for the "true" eigenfunctions ϕ k of T µ , we have ϕ l L 2 (µ) = 1. In Section 4, we evaluate the quality of the approximate eigenfunction by computing

Υ l = ϕ l |T µ [ ϕ l ] L 2 (µ) / T µ [ ϕ l ] L 2 (µ) ∈ [0, 1].
The more Υ l is close to 1, the more ϕ l is close to be a true eigenfunction of T µ . Thus, for Υ l ≈ 1, λ l = T µ [ ϕ l ] L 2 (µ) appears as a relevant approximation of λ l = T µ [ϕ l ] L 2 (µ) . Notice that computing T µ [ ϕ l ] consists in a (kernelised) matrix-vector product (i.e., O(N 2 ) complexity) and is therefore relatively costly; this operation may nevertheless be parallelised. Remark 3.1. Let κ 0 be such that τ ν = κτ µ ; by analogy with [START_REF] Williams | Using the Nyström method to speed up kernel machines[END_REF], if κ > 0 (i.e., υ = 0), for l ∈ I + ν , we may introduce the (numerically inexpensive) rescaled eigenvalues λl = θ l /κ, so that l∈I + ν λl = τ µ (we may also try to use a corrected factor κ c taking into account that we approximate only the n ν largest eigenvalues of T µ , with n ν the number of strictly positive eigenvalues of T ν ).

Analogy with one-class SVM

Let F be the RHKS associated with the squared-kernel K 2 (•, •). Following [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF], for ρ > 0, problem (4) can be interpreted as the dual formulation of a squared-kernel one-class discrepancy-SVM, that is, for g ∈ F and γ ∈ R, minimise

g,γ 1 
2 g 2 F + (g|g ω ) F -γ subject to g(x k ) γ[d k /(ρd T ω)] for all k ∈ {1, • • • , N }, (5) 
where

g ω (x) = N k=1 ω k K 2 (x, x k ). If υ *
ρ is solution of (4), then the solution of ( 5) is given by g

* ρ (x) = N k=1 [υ * ρ -ω] k K 2 (x, x k ) and γ * ρ = (υ * ρ ) T S(υ * ρ -ω).
By introducing the change of variable ǧ = g + g ω ∈ F, we also obtain (up to an additive constant)

minimise ǧ,γ 1 2 ǧ 2 F -γ subject to ǧ(x k ) -g ω (x k ) γ[d k /(ρd T ω)] for all k ∈ {1, • • • , N }, (6) 
which is an equivalent formulation for (5), with solution ǧ *

ρ (x) = N k=1 [υ * ρ ] k K 2 (x, x k ). Remark 3.2. Since, for all x ∈ X , K 2 (x, •)
0, g ω and ǧ * ρ may somehow be interpreted as (kernel-based) density functions. Remark 3.3. To further pursue the analogy with one-class SVMs, it may be possible to introduce a classical "slack-variables type relaxation" in problems ( 5) and [START_REF] Guélat | Some comments on Wolfe's "away step[END_REF]. More precisely, we may consider ξ = (ξ 1 , • • • , ξ N ) T ∈ R N (with potentially, depending on the considered loss, ξ k 0), and then define the relaxed constraints g(x k ) γ[d k /(ρd T ω)]ξ k while penalising ξ in the cost (e.g., 1 or 2 -loss). The relation between the induced squared-kernel one-class SVMs and the Nyström approximation may deserve further investigations.

Numerical considerations

Probability simplex-restricted QP

For ρ > 0, we can define the change of variable υ = Rυ, with R = diag(r), r = (r 1 , • • • , r N ) T = d/(ρd T ω); this way, problem ( 4) is turned into (up to an additive constant)

minimise υ C( υ) = 1 2 υ T A υ -b T υ subject to υ 0 and 1 T υ = 1, (7) 
with A = R -1 SR -1 and b = R -1 Sω. We refer to [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF] as the canonical QP for the constrained squared-kernel discrepancy minimisation (4); in practice, we shall always solve this QP. Since A i,j = K 2 (x i , x j )/r i r j , any entry of A can be easily obtained from the only knowledge of the squaredkernel K 2 (•, •), the set S and the vector r, so that A may not necessarily be stored ("kernelised solver"). Since ω is non-sparse, for large N , the computation of b is computationally demanding (O(N 2 ) complexity), but may be parallelised. Once b is computed, the gradient ∇C( υ) = A υb can be easily obtained for any sparse feasible υ.

The extreme points of the polytope defined by the constraints in [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF] are {e i } N i=1 , with e i the i-th element of the canonical basis of R N (that is [e i ] i = 1, all the other components being equal to zero). For a given feasible υ, let J υ = {k| υ k > 0} be the index set of all strictly positive components of υ. An iteration of the vertex-exchange algorithm consists in searching (O(N ) complexity)

i * = argmin i [∇C( υ)] i and j * = argmax j∈J υ [∇C( υ)] j ,
defining the sparse descent direction δ = e i *e j * (i.e., weight is transfered from the j * -th to the i * -th component of υ), and the step size is then classically obtained by line search. In particular, since δ is sparse, optimal step size and the gradient update are numerically inexpensive (the gradient update for instance involves only two columns of A); making the kernelised vertex-exchange strategy a good candidate to scale up to large N . Denoting by υ * a solution to [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF], the convergence of the vertex-exchange algorithm can be easily verified (see, e.g., [START_REF] Guélat | Some comments on Wolfe's "away step[END_REF]) by simply remarking that

C( υ) -C( υ * ) -(e i * -υ) T ∇C( υ) -(e i * -e j * ) T ∇C( υ),
and these inequalities can also be used to check distance from optimality. In Section 4, the QP solver accuracy is indicated by = ( υe i * ) T ∇C( υ) (Frank-Wolfe error bound).

Enhancing sparsity through components fusion

Let υ be a (approximate) solution to problem [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF] with n strictly positive components, and let

I = {i| υ i > 0}.
In practice (see Section 4), we observe that an interesting sampling location can sometimes be highlighted by a cluster of components of υ. The detection of such clusters may allow for improving the Nyström sampling sparsity without inducing a significant degradation of the eigenpairs approximation. In what follows, we discuss two simple greedy heuristics consisting in sequentially fusing pairs of components of υ.

For i and j ∈ I (we assume i = j and n > 1), we define υ {i,j} = υ + υ j (e ie j ), i.e., υ {i,j} has n -1 strictly positive components, the i-th component of υ having absorbed the j-th ({i, j}-fusion).

We have C( υ {i,j} ) = C( υ) + 1 2 υ 2 j (e ie j ) T A(e ie j ) + υ j (e ie j ) T ∇C( υ). We can then search for the fusion associated with the smallest value of C( υ {i,j} ), with i = j. Depending on n and the computational power at disposal, we may either:

-fusion: search for the best pair (i * , j * ) ∈ I × I, with i = j (O(n 2 ) complexity), or -weak-fusion: fix j * = argmin j∈I υ j and search the best i * ∈ I\{j} (O(n) complexity), and we then obtain an "optimal" {i * , j * }-fusion for υ. We next update υ ← υ {i * ,j * } , I, n and ∇C( υ), and we may potentially iterate this way until n = 1.

We thus obtain a sequence { υ 0 , υ 1 , • • • } where υ 0 is our approximate solution for [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF], υ 1 results from the fusion of two components of υ 0 , etc. Finally, instead of considering the Nyström approximation induced by υ 0 , we may consider an as sparse as possible fused solution υ f while checking that C( υ f ) is still close enough to C( υ 0 ); see Section 4 for an illustration.

Experiments

Two-dimension example

We assume that S consists of the N = 2016 first points of a uniform Halton sequence on [-1, 1] 2 and we consider the Gaussian kernel K(x, y) = exp(-xy 2 ), where xy is the Euclidean norm; we use = 1/0.16 (in order to obtain a spectrum with relatively fast decay). We consider the constrained formulation (4) with ω = 1/N and d = diag(K). We also add 1e-14 to the diagonal of the canonical QP matrix A in order to enforce its positivity.

Figure 1 shows the (approximate) solution υ * to problem [START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF] with ρ = 0.8; υ * has 165 strictly positive components. The support of υ * has an intersting "4 concentric squares" structure which can be related to a "scattered" 8 × 8 square-grid shape (the degradation is in particular induced by the irregular distribution of S). In particular, the fused vector υ * 101 has 64 strictly positive components and exhibits a clear 8 × 8 grid structure. We have C( υ * ) ≈ -0.02 and C( υ 101 ) -C( υ * ) ≈ 0.00015.

The eigenpairs approximation accuracy for the Nyström approximations induced by υ * and υ 101 (Figure 1) is illustrated in Figure 2 (see Section 3.2). In view of the values of Υ k , in both case, we obtain remarkably accurate approximations of the eigenpairs of T µ associated with the largest eigenvalues (we have Υ k ≈ 1 for all k 20). We also observe that, although slightly less accurate than the one obtained from υ * , the result obtained from the fused solution υ 101 is still satisfying.

For comparison purpose, Figure 3 illustrates the efficiency scores Υ k (i.e., eigen-direction approximation) for three Nyström approximations based on uniform random samples of size n rand = 300, 800 and 1613 ≈ N ρ. More precisely, we consider a sampling matrix V = diag(υ rand ) where the components of υ rand are 0 or 1, the n rand components equal to 1 being selected uniformly at random, see for instance [START_REF] Williams | Using the Nyström method to speed up kernel machines[END_REF]. As expected, the approximation obtained through squared-kernel discrepancy minimisation appears appealing in terms of accuracy and sparsity. The relation between ρ ∈ [0, 1] and the number of strictly positive components of υ * ρ is illustrated in Figure 4; we recall that for ρ = 0, υ * ρ = 0 and for ρ = 1, υ * ρ = ω. As a result of the fast decay of the spectrum of T µ , we observe that even for large values of ρ, υ * ρ remains relatively sparse. 

MiniBooNE data set

We consider the standardised entries of the MiniBooNE dataset [START_REF] Lichman | UCI Machine Learning Repository[END_REF] (without labels), so that S consists of 129 596 points in R 50 ; the main motivation behind this example is to illustrate the ability of the approach to potentially tackle relatively large scale problems. We use a Gaussian kernel (same expression as in Section 4.1) with = 1/64, ω = 1/N and d = diag(K), and we also add 1e-11 to the diagonal of the canonical QP matrix A. Notice that = 1/64 belongs to the range of good parameters for the SVM classification of this dataset (also, in order to have a chance to obtain accurate sparse low-rank approximations, we need the decay of the spectrum of T µ to be sufficiently fast).

For ρ = 0.8, the (approximate) solution υ * has 4856 strictly positive components ( = 2.46e-7 and C( υ * ) ≈ -0.127) and leads to a noticeably accurate sparse approximation of the more relevant eigenpairs of T µ , see Figure 5. 

Conclusion

We proposed a convex relaxation for sparse low-rank Nyström approximation of large kernel-matrices based on the notion of squared-kernel discrepancy. From a methodological point view, the obtained sampling scheme is deterministic, numerically scalable and enjoys an optimality property. The approach draws parallels between operator theory, SVMs and density estimation that may deserve further investigations. Also, questions relative to the impact on sparsity and accuracy of the regularisation parameter α or ρ, depending on the formulation considered, remain to be studied: relation with the decay of the spectrum, regularisation paths, etc. (and, to a lesser extent, impact of the fusion step). Finally, we have to explore the relevancy of the so obtained approximations in the framework of kernel-based learning (see, e.g., [START_REF] Cortes | On the impact of kernel approximation on learning accuracy[END_REF]).
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 1 Figure1: Left: solution υ * for problem[START_REF] Hastie | Statistical Learning with Sparsity: the Lasso and Generalizations[END_REF] with ρ = 0.8 and d = diag(K); the grey crosses represent the points in S and the filled dots are the strictly positive components of υ * (surface is proportional to υ * k ). Middle: vector υ j obtained after 101 pairwise-fusions of υ * (the diamonds indicates the initial support of υ * ). Right: increase of the cost for the 150 first optimal fusions.

Figure 2 :

 2 Figure 2: Eigenpairs approximation accuracy for the Nyström approximations induced by the solutions υ * and υ 101 presented in Figure 1.

Figure 3 :

 3 Figure 3: Eigen-directions approximation accuracy for the Nyström approximations induced by three uniform random samples of size n rand .

Figure 4 :

 4 Figure 4: Number of strictly positive components of υ * ρ for various values of ρ, all the canonical QP solutions have accuracy of at least = 5e-9.

Figure 5 :

 5 Figure 5: For the MiniBooNE dataset, eigendirection approximation accuracy for the Nyström approximations induced by υ * for ρ = 0.8 ( = 2.46e-7). Right: eigenvalues estimators.
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