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Highlights

- We propose a simplified model based on 13 markers to estimate the whole body CoM.

- We tested it on quiet standing, gait and balance recovery tasks.

- We also tested a reference (38 markers) and a single-marker method.

- The proposed model is a good compromise between accuracy and simplicity.

- It appears particularly appropriate for balance analysis in dynamic situations.
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ABSTRACT

The extrapolated center of mass ( ), a valuable tool to assess balance stability, involves defining 

the whole body center of mass ( ). However, accurate three-dimensional estimation of the 

is time consuming, a severe limitation in certain applications. In this study, twenty-four 

subjects (young and elderly, male and female) performed three different balance tasks: quiet 

standing, gait and balance recovery. Three different models, based on a segmental method, were 

used to estimate the three-dimensional absolute position during these movements: a 

reference model based on 38 markers, a simplified 13-marker model and a single marker (sacral) 

model.  and  estimations from the proposed simplified model came closer to the 

reference model than estimations from the sacral marker model. It remained accurate for dynamic 

tasks, where the sacral marker model proved inappropriate. The simplified model proposed here 

yields accurate three-dimensional estimation of both the  and the  with a limited 

number of markers. Importantly, using this model would reduce the experimental and post-

processing times for future balance studies assessing dynamic stability in humans.
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INTRODUCTION

Falling is a major health problem for the elderly [1]. Position and velocity of the whole body center of 

mass ( ), combined in the extrapolated center of mass ( ), are essential variables for 

dynamic balance characterization [2–5]. However, measuring these variables is not straightforward.

Usually, a segmental method [6,7] is used to estimate the position of each segmental center of mass 

( ) from regression equations [8–13]. The  is then computed as the weighted sum of the 

. However, correct three-dimensional (3D) estimation of the position and orientation of every 

segment requires placing and tracking numerous skin markers [14,15], which is cumbersome and 

time consuming. This may be a severe limitation in certain applications (e.g. very young, very old 

and/or pathological subjects).

Previous studies suggested methods reducing the number of markers used to estimate the 

movement. Recording only the sacral marker trajectory yields satisfactory estimations of 

relative displacement during gait [16,17]. However, 3D absolute position estimation is limited and 

variability during the movement is high. Applying calibrated punctual masses on specific markers 

gives satisfactory results with a considerably reduced number of markers [18]. However, this method 

is movement- and population-dependent, involving preliminary measurement of the using a 

reference method. Other studies computed the from the double integration of the reaction 

forces [19–22]. But this often-recommended method, based on platform measurements, is not 

suitable for whole body movement capture involving large displacements like gait [23,24].

Our aim was therefore to suggest a method of estimating the  3D trajectory that is: 1) based 

on a reduced marker set; 2) applicable to any type of movement performed by the subject; 3) not

subject to a preliminary calibration process; 4) accurate enough to estimate risk of fall based on the 

.
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MATERIALS and METHODS

1. Experiments

24 healthy adults, 12 young (5 females, 7 males, mean age 24.9, height 1.69 m and BMI 23.3) and 12 

elderly (6 females, 6 males, mean age 76.1, height 1.66 m and BMI 26.4) participated in this study 

approved by the local ethical committee. Subjects were equipped with 39 reflective markers located 

on anatomical landmarks (Figure 1), based on [25]’s palpation method (Table 3 in Appendix) and 

recorded by 8 cameras (Motion Analysis®). Marker trajectories were filtered at 6 Hz with a double 

passed Butterworth filter.

Subjects performed three different tasks: quiet standing with eyes open for 25 seconds (T1); straight 

walk for 10 meters at their comfortable speed (T2); balance recovery task following a waist-pull [26]

(T3). The perturbation, applied anteriorly and horizontally, was a squared signal controlled in force 

(plateau corresponding to 23% of subject’s weight) and duration (200 ms), sufficient to induce 

protective steps [27].

2. Data processing

The 3D position of the  is estimated from skin markers using three different models:

Reference model (REF) is a 16-segment whole-body model built on 38 markers (Figure 1 and 

Table 3 in Appendix). The positions of the with respect to the segmental coordinate 

systems are determined according to regressions from [11,28,29].

Simplified model (SIMP) uses 13 markers to reconstruct 9 segments (Figure 1). The positions 

of the are considered to be at a percentage of the length between proximal and distal 

endpoints (Table 1). These percentages were estimated from [12,13]. Hip joint centers are 

computed using the regression method of [11]. The most distal segments (head, hand and 

foot) are merged with their respective proximal segments (torso, forearm and leg).
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Sacral model (SAC) estimates the position of the as the position of the sacral marker 

offset by a constant vector (170 mm in anteroposterior, 20 mm in mediolateral and 30 mm in 

vertical axes according to [17]).

The position of the  in the horizontal plane is then computed with the method described in [2].

In order to compare predictions by the three models we extracted, for each trial, the mean distance 

( ) between (and ) trajectories estimated by REF, and one of the two other models 

(SIMP or SAC), in 1D (i.e. X, Y or Z axis) or in 3D. For example, the mean distance between the 

 trajectory estimated with REF and SAC models in 3D is:

(1)

where  is the number of recorded images.

For statistics, distances were compared using Kruskal-Wallis non-parametric tests.
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RESULTS

In T1, the mean distances  in  position between REF and the two others models (SIMP and 

SAC) are comparable, with larger values for (Table 2). However, the standard deviations for the 

SAC model are higher than for the SIMP model.

In both tasks T2 and T3, the SIMP model provides an estimate of the  position with a  of 

10 mm, whereas the SAC model  values are three times higher (Table 2). There are no statistical 

differences between groups and, as for T1,  is largely explained by .

Not surprisingly, results for the  are very similar to those of the .
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DISCUSSION

As found in the literature, the SAC model satisfactorily estimates the  position in the static 

task (T1). However, estimation of the 3D absolute position becomes inaccurate in dynamic tasks. This 

is probably due to the torso and upper limb movements, and decreases the relevance of this model 

[22,30]. In particular, the SAC model’s  estimation in mediolateral axis, which is the most 

critical for assessing risk of fall [31], gives five time higher  values than the SIMP model, roughly the 

same as the stability margin reported for normal walking [32]. The SAC model thus appears 

inappropriate to estimate mediolateral stability in dynamic tasks.

Estimations of  and  positions by REF and SIMP models are very close, as they are 

based on the same anthropometric data [11–13,28]. Generally, the greatest error is for , which is 

consistent with the literature [14,17,33]. Moreover, 3D errors with the SIMP model are of the same 

order with marker positioning errors [6] and soft tissue artifact [34].

The proposed simplified marker set resembles that suggested by [22], but differs in including hand 

and foot segments. Moreover, the present model shows a mean 3D error of 10 mm from the 

reference method, based on 24 subjects, both young and elderly males and females. In comparison, 

[22] have a mean 3D error of 30 mm based on 3 young men. This difference in accuracy could be 

explained by differences between our studies, in the reference method chosen (segmental method 

versus platform integration) and/or in the movements performed by the subjects.

In this study, we propose a simplified segmental method using a limited number of skin markers (13) 

that accurately estimates and  trajectories. It reduces experimentation and post-

processing times, is appropriate for studying stability in dynamic situations and works well for 

healthy populations, regardless of age and gender. Representing a trade-off between accuracy and 

simplicity, this model would be useful for estimating  and/or  positions during 
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movement, in particular for balance analysis.
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FIGURE CAPTION

Figure 1: Representation of the three marker sets, adapted from [18]’s picture. Markers used for the 
REF model are presented on the left. Markers used for the SIMP model are presented in the center. 
SAC model is presented on the right. White circles represent markers placed in the back with respect 
to the current position of the picture.
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TABLE 1

Coefficients
Segment Proximal point Distal point

Men Women

Head + Torso Middle of SAT Middle of HJC 0.3705 0.3806

Arm (R & L) SAT HLE 0.5437 0.5664

Forearm + hand (R & L) HLE USP 0.6364 0.6377

Thigh (R & L) HJC FLE 0.4260 0.3812

Leg + foot (R & L) FLE FAL 0.5369 0.5224
Table 1: positions for the SIMP model on longitudinal axis calculated from McConville [12] (for men) and Young [13]
(for women) regression tables. Torso segment includes Thorax, Abdomen and Pelvis. Marker names and abbreviations are 
taken from [25]. SAT = Scapular Acromial Tip. HJC = Hip Joint Center. HLE = Humeral Lateral Epicondyle. USP = Ulnar 
Styloid Process. FLE = Femoral Lateral Epicondyle. FAL = Fibular Apex of Lateral Malleolus. R = Right. L = Left.
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TABLE 2

Mean distance in mm
Young adults Elderly adults

Axis SIMP SAC SIMP SAC
8.2 (3.7) 10.7 (9.0) 9.7 (1.5) 11.0 (6.5)
2.3 (1.7) 3.6 (2.5) 2.8 (2.0) 1.1 (1.6)
1.6 (0.6) 2.5 (4.9) 0.9 (0.6) 1.7 (1.6)Static (T1)

8.6 (2.4) 11.5 (6.7) 10.1 
(2.8)

11.2 (5.6)

8.0 (3.3) 30.7 (7.9)* 8.5 (2.8) 26.2 (3.3)*
2.1 (1.5) 10.8 (6.5)* 2.3 (1.3) 10.2 (8.0)*
0.9 (0.6) 8.3 (5.2)* 1.0 (0.6) 9.5 (7.9)*

Gait (T2)

8.3 (3.2) 33.6 (8.3)* 8.8 (1.9) 29.6 (5.2)*
7.4 (3.5) 23.7 

(10.7)*
9.9 (4.6) 27.1 (6.6)*

2.4 (2.4) 9.8 (6.7)* 2.5 (1.5) 13.5 (7.8)*
1.7 (0.6) 7.2 (7.0)* 1.4 (0.7) 13.5 (9.4)*

Balance Recovery 
(T3)

7.9 (2.9) 26.6 
(11.2)*

10.3 
(2.5)

33.1 (5.7)*

8.1 (3.3) 20.4 
(14.7)*

8.9 (4.2) 25.2 (2.4)*

2.4 (1.6) 13.1 
(10.7)*

2.3 (1.2) 10.1 (8.2)*Gait (T2)

8.5 (2.8) 24.2 
(12.8)*

9.2 (2.8) 27.1 
(10.1)*

7.4 (5.0) 21.2 
(12.9)*

9.7 (4.8) 23.8 
(12.5)*

2.3 (1.6) 16.8 
(12.0)*

2.3 (1.4) 13.8 (8.0)*Balance Recovery 
(T3)

7.8 (3.4) 27.1 
(14.3)*

9.9 (3.5) 27.5 (9.8)*

Table 2 : Mean distances  (standard deviation) of  and estimations between tested models (SIMP and SAC) 
and reference model (REF). * indicates a significant difference (p < 0.001) between SIMP and SAC models. 
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7b. Figure(s)
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