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Abstract—The paper aims at making online forecast
of electrical load at the MV-LV transformer level. Op-
timal management of the Plug-in Electric Vehicles (PEV)
charging requires the forecast of the electrical load for
future hours. The forecasting module needs to be online
(i.e update and make forecast for the future hours, every
hour). The inputs to the predictor are historical electrical
and weather data. Various data driven machine learning
algorithms are compared to derive the most suitable model.
The results indicate that an online forecasting method
has an error between 2-5% for the future 24-hour. The
decentralized management system works well with the
forecasting data.

Index Terms—Short term load forecasting, smart gird,
plug-in electric vehicles, support vector machines, machine
learning.

I. INTRODUCTION

Environmental issues have been a challenging
concern all over the world, particularly the green-
house gas emission and air pollution. Plug-in Elec-
tric Vehicles (PEV) as a new environmental friendly
transportation alternative, have been emerging solu-
tions to meet these concerns in recent years [1],
[2]. Firstly, PEV can improve the air quality by
reducing road transport emissions. Furthermore, in
an intelligent energy management system, PEV can
be assumed as a distributed energy storage , which
is useful to balance the load curve by charging the
battery when it is in low demand and discharging
it towards the grid at peak time. Additionally, its
energy storage potential can compensate the inter-
mittency of renewable energy such as the wind and
solar power. It is also useful to enhance grid power
quality [3], [4].
Nevertheless, all benefits are not viable without

an advanced flexible energy management system.
Otherwise, non-managed PEV load may cause ab-
normal voltage levels, highly unbalanced loading for
the three phase distribution transformers, and other
power quality issues. With the PEV technologies
getting more mature, optimal load management be-
comes a key element to take full advantage of PEV
benefits. In the past few years, many approaches
have been proposed concerning this research issue.
Authors of [5] propose a centralized approach which
controls the PEV charging directly. The PEV aggre-
gator acts as the charging service provider (CSP),
individual charging schedules for each PEVs are
considered in the charging control. Additionally,
some methods of combining PEV load scheduling
with wind power integration have been proposed.
In [6], the objective is to control the PEV charging
scheduling to meet the wind power production.
These methods depend mostly on the wind power
and PEV load forecast. In [7], a PEV charging algo-
rithm is proposed following users price preferences.
This algorithm takes both server side and user side
into consideration. It puts up a pricing policy with
simple bidding strategy considering aggregators pre-
dicted charging and desired load profile. Following
a game theory approach in [8], a decentralized
optimization frame is defined. A local Dynamic Pro-
gramming (DP) algorithm for PEV load scheduling
is proposed, taking into account the desired states
of charge, power consumption limitation, charging
power limitation. Defining PEVs as players in an N-
person non-cooperative potential game, a PEV uses
the DP algorithm in order to define the best response
that corresponds to optimizing its payoff, given that



schedules of other PEVs (other players) are fixed.
The payoffs for the potential game are formulated
by an objective function that reduces the variance
of the total load profile.
The paper is organized as follows. Section II
presents the PEV decentralized management algo-
rithm proposed in [4]. In Sect. III, different clas-
sic forecasting algorithms are introduced and com-
pared. Section IV describes online learning model
applied in this paper. In Sect. V, a comparison of the
performance of different learning algorithms, and
testing results with a real data are presented and
analyzed. Section VI provides some conclusions and
perspectives.

II. PEV DECENTRALIZED MANAGEMENT
SYSTEM

Given that this paper is based on the algorithm
of paper [4], a detailed introduction is given in
this part. It proposes a PEV load management
algorithm by applying a dynamics proper of the
evolutionary game theory, known as the Mixed
Strategist Dynamics (MSD). Besides, by introduc-
ing some analogies and applying the Maximum
Entropy Principle (MEP), two objective functions
are formulated: entropy measurements on the total
load distribution and the local load distributions.
The entropy maximization for local load distribu-
tions can preserve the batteries state of health; the
entropy maximization for the total load distribution
is intended to balance the transformer load curve
to the greatest extent by shaving the peak and
filling in the valley. A trade-off among them can be
decided by the PEV owners convenience. Thus in
the scheduling process, PEV owners have more right
to determine how much they participate in, which
can be economically incentivized by the utility grid
manager tariff policy.
The decentralized management algorithm is de-
scribed in Fig. 1. There exist two main actors: PEV
and aggregator in the load management system.

A. The role of PEV

Each PEV is equipped with a local MSD algo-
rithm, which manipulates its own load distribution.
Once it has received new information from the
aggregator, its charging power schedule is updated.
Once the algorithm reaches the limiting amount of

Fig. 1: Description of the decentralized MSD algo-
rithm. With some important parameters as follow, λ
is sum of total load and PEV distribution load; Ki

is pure strategies, αi is trade-off parameter; sociini
and socides are initial and desired states of charge of
PEV respectively. All the other parameters can be
referred to [4].

iterations or meets a convergence criterion, the new
profile is sent back to the aggregator.

B. The role of aggregator

It is the manager of the approach. It collects
the load schedules from from PEVs and updates
the total load distribution. Then, it redistributes
the updated information of total load to PEVs
under the transformer of the distribution system.
To emphasize, the updating process is based on
both the PEVs load schedules and the short time
forecast of total transformer. The aggregator should
continually receive and send updated information
to each of the PEVs. The optimization algorithm
depends strongly on the performance of the intrinsic
load forecasting. In this paper, different forecasting



methods are studied and tested for the convenience
of the distributed optimization algorithm.

III. SHORT TERM LOAD FORECASTING

The problem of forecasting has been a subject
of research for a considerable number of years. The
workability of a technique depends on its simplicity
and comprehensibility of the model being used.
Forecasting has been used in a number of domains,
at first, one needs to look into the domain of
load forecasting at the grid level and review the
approaches used. In this section, a brief summary
of load forecasting models is provided and subse-
quently the model used for transformer level load is
discussed in details. Load forecasts can be divided
broadly into three categories:

1) Short term forecasts: From one hour to one
week.

2) Medium term forecasts: From a week to a
year.

3) Long-term forecasts: Longer than a year.
The problem of online transformer level forecasting
falls in the short-term load forecasting (STLF) cate-
gory. Some of the state of the art approaches used in
STLF are highlighted in [9]. The approaches are not
independent of each other but rather complementary.
An important aspect of forecasting algorithms is
that the simpler models are more popular among
utilities, of course without being trivial. The features
of a forecasting algorithm depend on the business
needs. The challenge is not only to be technical but
analytical in the approach to build a proper model
of forecasting tool.

A. Similar-day approach
This approach is based on searching historical

data for days within one, two, or three years with
similar characteristics to the day of forecast. Similar
characteristics include weather, day of the week,
and the date for example. In the case of a load
forecasting, the load of the similar day is taken as
a forecast [9].
This process is simple to comprehend but in relevant
cases it can outperformed more complex mathemat-
ical approaches. It also must be mentioned that,
though this method is simple, it is not trivial and
requires a good understanding of the domain of
interest.

B. Regressive methods
For electric load forecasting, regression methods

are usually used to model the relationship of loads
consumption and other factors such as weather,
day type, and customer class. [10] presents several
regression models for the next day peak forecasting.
The linear regression is one of the basic models for
forecasting and more complex algorithm (Decision
tree learner, Support vector machines) use it as the
base model. For a time series (X) The basic uni-
variate regression can be expressed by the following
equation:

Xt+1 = a1Xt+a2Xt−1+a3Xt−2+· · ·+awXt−w (1)

where, ω is the lag length and a is the coeffi-
cient which needs to be evaluated. The goal during
training is to minimize the sum of the squared
errors to fit a straight line to a set of data points.
The multivariate linear regression is used in this
application.

C. Time series
Time series methods are based on the assumption

that the data have an internal structure, such as
autocorrelation, trend, or seasonal variation. In par-
ticular ARMA, ARIMA and ARIMAX are the most
used classical time series methods [11]. The idea
of the time series approach is based on the under-
standing that a load pattern is nothing more than a
time series signal with seasonal, weekly, and daily
periodicities. Generally, techniques in time series
approach work well unless there is an abrupt change
in the environmental or sociological variables which
are believed to affect load pattern. Our work takes
into account the time series approaches using a data
driven discriminative learning method.

D. Expert systems
Expert systems incorporate rules and procedures

used by human experts in the field of interest into
software. From that knowledge, these software are
able to automatically make forecasts without human
assistance. Knowledge-based expert system for the
short-term load forecasting have already been suc-
cessfully deployed in the world, for example for
the Taiwan power system [12]. In this example,
operators knowledge and the hourly observations of
system loads along with weather parameters were



taken into consideration. Our model also proposes
a general model which takes temporal behavior
patterns into consideration.

E. The K-Nearest Neighbors classifier, KNN

The KNN classifier is an instance based learning
method where the classification function is approx-
imated by a majority vote of the neighbors using
a distance metric. K is the number of neighbors
which is calculated using cross-validation. The func-
tion is approximated locally and all computation is
deferred until classification. Typically, the Euclidean
distance is used as distance function. The mech-
anism of KNN is quite simple. For any new data
instance, the attributes of the new case is compared
with all the previously seen cases or instances in the
training database. The comparison is typically based
on a distance measurements. The nearest instances
or cases in the training database are evaluated based
on the distance metric. The new instance is assigned
to the class of the majority of neighboring instances
(process of classification). Mathematically, for any
instance xi in the database of size n×x, the distance
is expressed as:

d(xi) = min
j
d(xi, x) with j ∈ {1, · · · , n} (2)

The key point here is the use of the proper distance
metric. The default metric is the Euclidean distance,
which is calculated on the normalized value of
the attributes. The Euclidean distance is a standard
metric to calculate the distance between two vectors
X , Y . It is given by the following equation:

dE(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2 (3)

where n is the total number of points and x, y
are the corresponding points representing the vector
(X, Y ).

F. Decision Tree Learner, DTL

The decision tree consists of nodes where a
logical decision has to be made. Branches are con-
nected according to the result of these decisions.
For each node of the tree, one attribute of the data is
selected that most effectively splits its set of samples
into subsets enriched in one class or the other.
Following a path of nodes and branches constitute

a sequence through a decision tree that reaches
to a final decision. The DTL algorithms represent
one of the preferred choices for load forecast as
described in [13]. Indeed, decision trees are rule
based and the built model is easy to visualize. A
good quantitative measure of the significance of
an attribute is a statistical property called informa-
tion gain. It measures how well a given attribute
separates the training examples according to their
target classification. This measure is used to select
among the candidates attributes at each step while
the decision tree is growing. The attribute presenting
the highest normalized information gain is chosen
to make the decision.
The metric used in practice is the gain ratio which
corrects the information gain by taking the intrinsic
information of a split into account. Then, the al-
gorithm applies it recursively on the sub-lists. The
M5P ( [14]) algorithm is used from and the param-
eter is optimized using parameter section algorithm
during training.
The DTL usually leads to a good understanding
of the significant features for the load forecast.
Based on the disparity measurement, the attribute
with the highest normalized information gain is
chosen as the root of the decision tree. Information
gain is measured in bits and is given a probability
distribution, the information required to predict an
event is the distribution’s entropy, given by:

S(p1, p2, . . . , pn) = −p1 log(p1)− · · · − pn log(pn)
(4)

G. Support Vector Machines, SVM

Support vector machines perform a non-linear
mapping (by kernel functions) of the data into a
higher dimensional feature space. Then the algo-
rithm uses simple linear functions to create linear
decision boundaries in the new space. SVM model
can be used to predict daily load demand, for ex-
ample for the next month [15]. The SVM algorithm
is a powerful tool for data classification described
in [16]. The first major step of a SVM classifica-
tion is to build a decision plane that separates a
set of objects with different class memberships. It
guarantees the best function to distinguish between
members of classes by maximizing the margin be-
tween them. The maximal margin hyper-planes al-
low the best generalization abilities and thus the best



classification performances on the training dataset.
This procedure requires finding the solution of the
following optimization problem:

min
w,b,ξ

(
1

2
wTw + C

l∑
i=1

ξi

)
(5)

subject to

{
yi
(
wTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0
(6)

with l the total number of sub-sequences, w the
normal vector of the hyper-plane, b the offset of the
hyper-plane, C the penalty parameter of the error
term ξ and φ the kernel function.
The second major step is to choose the kernel
function of the algorithm. The Radial Basis function
kernel gave the better performance in the tests (not
presented). For two groups i and j, the training vec-
tors xi and xj are mapped to a higher dimensional
space by the kernel function φ defined as:{

K(xi, xj) ≡ φ(xi)
Tφ(xj)

K(xi, xj) = exp
(
−γ||xi − xj||2

)
; γ > 0

(7)

where γ is a parameter of the kernel. A grid-search
has been conducted on the parameters C. The SVM
algorithm is computationally more expensive than
rule based algorithms such as DTL. The Sequen-
tial Minimal Optimization (SMO) implementation
of [14] is used with a grid search for parameter
optimization during training. There has been other
works using the hierarchical structure of gird load
to make innovative forecast [17].

IV. THE ONLINE LEARNING MODEL

A stepwise outline of the future usage forecast
implementation is enumerated below. These steps
can be cycled on a predefined time period, trans-
forming a discriminative learning algorithm into an
online learning model.

1) All the power values are obtained as input at
a 1-hour sampling.

2) Sub-sequences are generated using temporal
sliding window with a window size of 24
units.

3) The temporal data (hour, date) and meteoro-
logical data (temperature, humidity) are used
as input for each next forecast.

Fig. 2: Proposed method at a given time instance
[18].

4) The discriminative learner (e.g. Svm) with the
generated features as inputs and the future
hour consumption as output are trained.

5) The model is learned iteratively and is tested
in an online learning procedure (cycling this
process to the first item once again).

Fig. 2 describes the principle of the proposed model.
At every sampled time instance, the future 24-hour
is foretasted in an iterative process. The inputs to
the model can be categorized thereby :

• The consumption at the transformer level each
hour for the previous 24 hours.

• The time of event and meteorological informa-
tion.

The inputs to the system are shown in the Fig.
2 for a given time instance (hour H). At each
time instance the system predicts the coming hour
and then the window is shifted one hour for the
next forecast. The input stream consists of the
consumption of the past load sequence. The initial
step is to populate the sliding window with suffi-
cient historical data that aims at creating a single
test instance to start the closed loop forecasting
process for the future time steps. The subsets of
the original time series are then shifted in time
creating thereby the sub-sequences and preserving
time dependency among sub-sequences. Instances
containing these sub-sequences are finally presented
as standard propositional instances to the classifi-
cation algorithm. This process is illustrated in the
Fig. 3. As the variables in each sub-sequence are
considered as independent the time dependency is
lost. The temporal sliding window principle injects
back this dependency among the sub-sequences.
Once the classifier produces a forecast for the next
time step, this classified value moves into the sliding



Fig. 3: Data representation in a standard propositional learning format.

time window as the most recent value of the target
and the oldest value in the window falls out. Another
test instance is then created from the history window
and the next time step is classified. This is also
known in the literature as “closed loop forecasting”.
Once the classifier is trained, it only needs to be
“primed” each time for classifying future instances.
Two additional remarks have to be made at that
point. First, this methodology results in a high
amount of data which is processed subsequently
at the forecasting stage. Second, a significant con-
straint is that the states of the loads of the previous
hours are sequential. This information is known only
after the availability of the previous events. Then,
it is only possible to predict the Hour (H + 1)
if we have all the needed information about the
Hour H . On the other hand the time of event
and meteorological information (temperature and
humidity) are available for future time instances
and are relatively independent of the current time.
Furthermore, the time of event is expressed as two
periodic variable: hour of the day and day of the
week.
This way to consider the time allows to take into
account the periodic nature of human behavior. Note
that we could have also added the week of the year,
or the season of the year, etc. Focusing on a daily
forecast, taking too much time related inputs would
not have changed the results.

V. RESULTS

The results are presented in two parts. Firstly,
different forecasting methods are compared to ascer-
tain the most suitable algorithm for such application
and the performance. Finally, the forecast result at
24-hour future step is used for the underlying PEV
scheduling application. The data is measured on a
distribution transformer from SOREA utility grid
company in the region of Savoie, France.

A. Performance of forecasting algorithms

A comparison of 1-step ahead errors of four
classic learning algorithms are listed in TABLE
I. Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are two of most widely
used parameters to evaluate the forecasting per-
formance. From the comparison, it can be seen
that the forecasting algorithm SVM has the smallest
error. The experiments in section V-B are conducted
with the above forecasting algorithm. 1-step ahead
forecasting result of SVM algorithm is shown in Fig.
4.

B. PEV optimization performance

MSD decentralized optimizing algorithm intro-
duced in section II simulates a real-time system,
thereby, 24-hour future forecasting results should be
updated per hour to realize a real-time optimization.
Each PEVs’ arrival and departure time are defined
with statistically modeled random values. The num-
ber of PEVs in current time is shown in Fig. 5.



TABLE I: Comparison of 1-step ahead errors of four
classic learning algorithms

Algorithms MAE RMSE

Linear regression 2.1204 2.787

KNN 3.4173 4.5554

DTL 1.9946 2.6354

SVM 1.7986 2.4433

Fig. 4: 1-step ahead forecasting results with SVM
forecasting algorithm. The red curve is the actual
data measured on a distribution transformer, the blue
curve is the 1-step ahead forecasting results on the
base of actual history data.

The 24-hour optimization performance using the
actual history and forecasting data respectively are
presented in Fig. 6. The comparison results show the
optimizing algorithm works well with forecasting
data, which nearly has the same performance as the
actual data.

VI. CONCLUSION

The paper addresses the online forecasting of
active load at the transformer level for the electrical
vehicle charging application. The future forecast of
24-hour load at 1-hour step is modeled. This method
is tested for a real French database of 1-month
duration. The results indicate that Support Vector
Machine for regression performance is better among
the algorithms compared. The error for the future
24-hour is between 2 to 5% and result indicate
that the underlying EV optimization performance re-
mains approximately similar. The forecasting meth-
ods may be enhanced by using other contextual
factors and data from previous years which were
not available for this work.

Fig. 5: Number of PEVs in current time.

(a)

(b)

Fig. 6: Example of 24-hour optimization curves with
actual history data and forecasting data, trade-off
factor is set 0.95 and iteration times are equal to
50. Fig.6(a) is a zoom to part of Fig.6(b).
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