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ABSTRACT

We describe an algorithm for the reconstruction of the
equilibrium in a Tokamak from discrete magnetic mea-
surements. In order to solve this inverse problem we
first use toroidal harmonics to compute Cauchy bound-
ary conditions on a fixed closed contour. Then we use
these Cauchy boundary conditions to solve a non-linear
source identification problem.

1. INTRODUCTION

In this paper we are interested in the numerical recon-
struction of the quasi-static equilibrium of a plasma in
a Tokamak [1]. The state variable of interest in the
modelization of such an equilibrium under the axisym-
metric assumption is the poloidal flux ψ(r, z) which is
related to the poloidal magnetic field by the relation

B =
1

r
∇ψ⊥ in the cylindrical coordinate system (r, z).

A poloidal cross section of a Tokamak and the dif-
ferent domains and contours are shown on Fig. 1. The
domain Ω0 contains the poloidal field coils (PFcoils)
domains ΩCi

and the plasma domain Ωp. It is assumed
that Ω0 does not include any ferromagnetic structure
and thus the poloidal flux satisfies the elliptic PDE

−∆∗ψ = j (1)

where the differential operator

∆∗. =
∂

∂r
(

1

µ0r

∂.

∂r
) +

∂

∂z
(

1

µ0r

∂.

∂z
),

is linear and j is the toroidal component of the local
current density.

In Ω0 \ {Ωp
⋃

ΩCi
} the current is null (j = 0), in

the PFcoils ΩCi
it is supposed to be known (j = Ii/Si,

Si is the surface of coil ΩCi
and Ii the total intensity

of the current) and in the plasma Ωp it is unknown but
takes the form

j = rp′(ψ) +
1

µ0r
(ff ′)(ψ) (2)

In Ωp Eq. (1) is called the Grad-Shafranov equation
and p′ and ff ′ are unknown functions to be identified.
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Figure 1: Poloidal cross section of a Tokamak.

The plasma domain is unknown, Ωp = Ωp(ψ). It is
a free boundary problem in which the plasma boundary
is defined either by its contact with the limiter ΓL (as
in Fig. 1) or as a magnetic separatrix (hyperbolic line
with an X-point).

In order to achieve the numerical reconstruction of
the equilibrium the main inputs we have are magnetic
measurements taken at several locations surrounding
the vacuum vessel (see Fig. 1): B probes measure the
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local value of the poloidal magnetic field and flux loops
measure the local value of the flux ψ.

The method we propose can be divided into two
main steps described in the next section.

2. NUMERICAL METHOD

In a first step we solve Eq. (1) in Ω0 \Ωp using an ana-
lytic solution and a fit to the magnetic measurements.
The goal is to transform the set of discrete measure-
ments into Cauchy conditions for ψ on a fixed contour
Γ. This latter defines a domain Ω of boundary Γ and
containing the plasma (see Fig. 1). In a second step
the value of ψ on Γ is used as a Dirichlet boundary con-
dition to solve numerically Eq. (1) in Ω, whereas the
remaining Neumann boundary condition on Γ is used
simultaneously for the identification of the unknown
functions p′ and ff ′.

2.1. Step 1 - Compute Cauchy conditions on Γ

Each of the PFcoils is modelized by a sum of filaments
of current [3]. Using the analytic expression of the
Green function of the operator ∆∗ and the additivity
property we can substract from ψ and from the mag-
netic measurements the effects of the PFcoils.

In the domain Ω0 \ Ωp the resulting corrected flux
then satisfies −∆∗ψ = 0. Using a system of toroidal
coordinates with center C inside the plasma domain
and a separation of variable technique, any solution
of this equation can be shown to be equal to a series
of toroidal harmonic functions Tn [5, 6]. Numerically
these harmonics can be accurately evaluated [4] and the
flux can be efficiently approximated using a truncated

series, ψ =

N
∑

n=1

anTn. The coefficients an are com-

puted by a least-square fit to the modified magnetic
measurements. A regularization term can be added
to the least-square cost function for example imposing
some regularity on a circular contour surrounding the
center of the toroidal coordinates system.

Finally one can evaluate (ψ, ∂nψ) on the contour Γ
and thus provide Cauchy conditions (g, h) to the reso-
lution of the problem in the domain Ω.

2.2. Step 2 - Reconstruction in Ω

The Dirichlet boundary condition g is used to solve the
boundary value problem:






−∆∗ψ = λ[
r

R0
A(ψ̄) +

R0

r
B(ψ̄)]χΩp(ψ) in Ω

ψ = g on Γ
(3)

where the unknown functions A and B are related to
p′ and ff ′, ψ̄ is a normalized flux, and λ and R0 are
normalizing coefficients. The Neumann boundary con-
dition is used to identify A and B by minimizing the

cost function J(A,B) =

∫

Γ

(∂nψ − h)2ds+ R where R

is a Tikhonov regularization term.
An iterative strategy involving a finite element method

for the resolution of the direct problem (3) and an op-
timisation procedure for the identification of the non-
linearity is proposed [2]. It is important to achieve
this identification within a few ms so as to be able in
the future to control the current profile in real time.
The main ideas are: pre-computation of the inverse
of the finite element stiffness matrix and of all the el-
ements that are not modified by the non-linearities,
Picard iterations for these non-linearities, reduction of
the functions to be identified in small dimension basis
and least-square resolution by normal equations.

3. CONCLUSION

The method presented here has led to the development
of a software, EQUINOX, which enables to follow in
real-time the quasi-static evolution of the plasma equi-
librium in any Tokamak. It has already been validated
on TORE SUPRA (the CEA-EURATOM Tokamak at
Cadarache), JET (Joint European Torus) or ITER con-
figurations.
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