
HAL Id: hal-01323114
https://hal.science/hal-01323114

Submitted on 30 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Mobile Agent Verifiable Problems
Evangelos Bampas, David Ilcinkas

To cite this version:
Evangelos Bampas, David Ilcinkas. On Mobile Agent Verifiable Problems. Latin American Theoretical
Informatics Symposium (LATIN 2016), Apr 2016, Ensenada, Mexico. pp.123-137, �10.1007/978-3-662-
49529-2_10�. �hal-01323114�

https://hal.science/hal-01323114
https://hal.archives-ouvertes.fr

On Mobile Agent Veri�able Problems

⋆

Evangelos Bampas and David Il
inkas

CNRS & Univ. Bordeaux, LaBRI, UMR 5800, F-33400, Talen
e, Fran
e

{evangelos.bampas, david.il
inkas}�labri.fr

Abstra
t. We
onsider de
ision problems that are solved in a distributed

fashion by syn
hronous mobile agents operating in an unknown, anony-

mous network. Ea
h agent has a unique identi�er and an input string

and they have to de
ide
olle
tively a property whi
h may involve their

input strings, the graph on whi
h they are operating, and their parti
-

ular starting positions. Building on re
ent work by Fraigniaud and Pel

[LATIN 2012, LNCS 7256, pp. 362�374℄, we introdu
e several natural

new
omputability
lasses allowing for a �ner
lassi�
ation of problems

below co-MAV or MAV, the latter being the
lass of problems that are

veri�able when the agents are provided with an appropriate
erti�
ate.

We provide in
lusion and separation results among all these
lasses. We

also determine their
losure properties with respe
t to set-theoreti
 op-

erations. Our main te
hni
al tool, whi
h is of independent interest, is

a new meta-proto
ol that enables the exe
ution of a possibly in�nite

number of mobile agent proto
ols essentially in parallel, similarly to the

well-known dovetailing te
hnique from
lassi
al
omputability theory.

1 Introdu
tion

1.1 Context and motivation

The last few de
ades have seen a surge of resear
h interest in the dire
tion

of studying
omputability- and
omplexity-theoreti
 aspe
ts for various mod-

els of distributed
omputing. Signi�
ant examples of this trend in
lude the

investigation of unreliable failure dete
tors [5,6℄, as well as wait-free hierar-

hies [14℄. A more re
ent line of work studies the impa
t of randomization and

non-determinism in what
on
erns the
omputational
apabilities of the LOCAL
model [9,12℄, as well as the impa
t of identi�ers in the same model [10,11℄. A

di�erent approa
h
onsiders the
hara
terization of problems that
an be solved

under various notions of termination dete
tion or various types of knowledge

about the network in message-passing systems [1,2,3,4,17℄. Finally, a re
ent work

fo
uses on the
omputational power of teams of mobile agents [13℄. Our work

lies in this latter dire
tion.

⋆
This work was partially funded by the ANR proje
ts DISPLEXITY (ANR-11-BS02-

014) and MACARON (ANR-13-JS02-002). This study has been
arried out in the

frame of the �Investments for the future� Programme IdEx Bordeaux � CPU (ANR-

10-IDEX-03-02).

The mobile agent paradigm has been proposed sin
e the 90's as a
on
ept

that fa
ilitates several fundamental networking tasks in
luding, among others,

fault toleran
e, network management, and data a
quisition [15℄, and has been of

signi�
ant interest to the distributed
omputing
ommunity (see, e.g., the re
ent

surveys [7,16℄). As su
h, it is highly pertinent to develop a
omputability theory

for mobile agents, that
lassi�es di�erent problems a

ording to their degree

of (non-)
omputability, insofar as we are interested in really understanding the

omputational
apabilities of groups of mobile agents.

In this paper, we
onsider a distributed system in whi
h
omputation is per-

formed by one or more deterministi
 mobile agents, operating in an unknown,

anonymous network. Ea
h agent has a unique identi�er and is provided with an

input string, and they have to
olle
tively de
ide a property whi
h may involve

their input strings, the graph on whi
h they are operating, and their parti
ular

starting positions. One may argue about the usefulness of developing a theory

spe
i�
ally for mobile agent de
ision problems. We believe that, apart from its

inherent theoreti
al interest, su
h a study is bound to yield intermediate results,

tools, intuitions, and te
hniques that will prove useful when one moves on to

onsider from a
omputability/
omplexity point of view other, perhaps more

traditional, mobile agent problems, su
h as exploration, rendezvous, pattern for-

mation, et
. One su
h tool is the proto
ol that we develop in this paper, whi
h

enables the interleaving of the exe
utions of a possibly in�nite number of mobile

agent proto
ols.

1.2 Related work

In [13℄, Fraigniaud and Pel
 introdu
ed two natural
omputability
lasses, MAD

and MAV, as well as their
ounterparts co-MAD and co-MAV. The
lass MAD,

for �Mobile Agent De
idable�, is the
lass of all mobile agent de
ision problems

whi
h
an be de
ided, i.e., for whi
h there exists a mobile agent proto
ol su
h

that all agents a

ept in a �yes� instan
e, while at least one agent reje
ts in a �no�

instan
e. On the other hand, the
lass MAV, for �Mobile Agent Veri�able�, is the

lass of all mobile agent de
ision problems whi
h
an be veri�ed. More pre
isely,

in a �yes� instan
e, there exists a
erti�
ate su
h that if ea
h agent re
eives its

dedi
ated pie
e of it, then all agents a

ept, whereas in a �no� instan
e, for every

possible
erti�
ate, at least one agent reje
ts. Certi�
ates are for example useful

in appli
ations in whi
h repeated veri�
ations of some property are required.

Fraigniaud and Pel
 proved in [13℄ that MAD is stri
tly in
luded in MAV, and

they exhibited a problem whi
h is
omplete forMAV under an appropriate notion

of ora
le redu
tion.

In [8℄, Das et al. fo
us on the
omplexity of distributed veri�
ation, rather

than on its
omputability. In fa
t, their model di�ers in several aspe
ts. First

of all, the networks in whi
h the mobile agents operate are not anonymous, but

ea
h node has a unique identi�er. This greatly fa
ilitates symmetry breaking, a

entral issue in anonymous networks. On the other hand though, the memory

of the mobile agents is limited. Indeed, in [8℄, the authors study the minimal

amount of memory needed by the mobile agents to distributedly verify some

2

MADsMAV co-MAVMAVs co-MAVs

co-MAD MAD

teamsize

degree degree

degreeγ degreeγtreesize

allemptyallempty

mineven

Fig. 1. Containments between
lasses below MAV and co-MAV with
orresponding

illustrative problems. Class and problem de�nitions are summarized in Tables 1 and 2,

respe
tively.

lasses of graph properties. Again, the studied properties are di�erent from the

ones studied here and in [13℄, sin
e they do not depend on the mobile agents

or their starting positions. However, they may depend on labels that nodes
an

possess in addition to their unique identi�ers.

1.3 Our
ontributions

We introdu
e several new mobile agent
omputability
lasses whi
h play a key

role in our endeavor for a �ner
lassi�
ation of problems belowMAV and co-MAV.

The
lasses MADs and MAVs are stri
t versions of MAD and MAV, respe
tively,

in whi
h unanimity is required in both �yes� and �no� instan
es. Furthermore, we

onsider the
lass co-MAV′ (and its
ounterpart MAV′) of mobile agent de
ision

problems that admit a
erti�
ate for �no� instan
es, while retaining the system-

wide a

eptan
e me
hanism of MAV.

We perform a thorough investigation of the relationships between the newly

introdu
ed and pre-existing
lasses. As a result, we obtain a
omplete Venn

diagram (Figure 1) whi
h illustrates the tight inter
onne
tions between them.

We take
are to pla
e natural de
ision problems (in the mobile agent
ontext)

in ea
h of the
onsidered
lasses. Among other results, we obtain a
ouple of

fundamental, previously unknown, in
lusions whi
h
on
ern pre-existing
lasses:

MAD ⊆ co-MAV and co-MAD ⊆ MAV.

We
omplement our results with a
omplete study of the
losure properties of

these
lasses under the standard set-theoreti
 operations of union, interse
tion,

and
omplement. The various
lass de�nitions together with the
orresponding

losure properties are summarized in Table 1.

The main te
hni
al tool that we develop and use in the paper is a new meta-

proto
ol that enables the exe
ution of a possibly in�nite number of mobile agent

proto
ols essentially in parallel. This
an be seen as a mobile agent
omputing

analogue of the well-known dovetailing te
hnique from
lassi
al re
ursion theory.

Proofs are omitted due to la
k of spa
e.

3

Table 1. Overview of mobile agent de
idability and veri�ability
lasses and their
lo-

sure properties. The notation yes (resp. no) means that all agents a

ept (resp. reje
t).

Similarly, ıyes (resp. Ùno) means that at least one agent a

epts (resp. reje
ts).

De�nition Closure Properties

�yes� instan
es �no� instan
es Union Interse
. Compl.

MADs (∀
erti�
ate:) yes (∀
erti�
ate:) no ✓ ✓ ✓

MAD (∀
erti�
ate:) yes (∀
erti�
ate:) Ùno ✗ ✓ ✗

co-MAD (∀
erti�
ate:) ıyes (∀
erti�
ate:) no ✓ ✗ ✗

MAVs ∃
erti�
ate: yes ∀
erti�
ate: no ✓ ✓ ✗

co-MAVs ∀
erti�
ate: yes ∃
erti�
ate: no ✓ ✓ ✗

MAV ∃
erti�
ate: yes ∀
erti�
ate: Ùno ✗ ✓ ✗

co-MAV ∀
erti�
ate: ıyes ∃
erti�
ate: no ✓ ✗ ✗

MAV′ ∃
erti�
ate: ıyes ∀
erti�
ate: no ✓ ✓ ✗

co-MAV′ ∀
erti�
ate: yes ∃
erti�
ate: Ùno ✓ ✓ ✗

2 Preliminaries

The graphs in whi
h the mobile agents operate are undire
ted,
onne
ted, and

anonymous. The edges in
ident to ea
h node v (ports) are assigned distin
t

lo
al port numbers (also
alled labels) from {1, . . . , dv}, where dv is the degree

of node v. The port numbers assigned to the same edge at its two endpoints do

not have to be in agreement.

We
onventionally �x a binary alphabet Σ = {0, 1}. In view of the natural

bije
tion between binary strings and N whi
h maps a string to its rank in the

quasi-lexi
ographi
 order of strings (shorter strings pre
ede longer strings, the

rank of the empty string ε being 0), we will o

asionally treat strings and nat-

ural numbers inter
hangeably. If x and y are strings, then 〈x, y〉 stands for any
standard en
oding as a string of the pair of strings (x, y).

If x is a list, then |x| is the length of x and xi is the i-th element of x. If f is

a fun
tion that
an be applied to the elements of x, then we will use the notation

f(x) =
(

f(x1), . . . , f(x|x|)
)

. In the same spirit, if x and y are equal-length lists

of strings, then 〈x,y〉 stands for the list
(

〈x1, y1〉 , . . . ,
〈

x|x|, y|y|
〉)

.

We denote by Σ0
1 the set of re
ursively enumerable (or Turing-a

eptable)

de
ision problems, Π0
1 = co-Σ0

1, and ∆0
1 = Σ0

1 ∩ Π0
1. ∆

0
1 is exa
tly the set of

Turing-de
idable problems.

2.1 Mobile agent
omputations

A mobile agent proto
ol is modeled as a deterministi
 Turing ma
hine. Mobile

agents are modeled as instan
es of a mobile agent proto
ol (i.e.,
opies of the

orresponding deterministi
 Turing ma
hine) whi
h move in an undire
ted,
on-

ne
ted, anonymous graph with port labels. Ea
h mobile agent is provided ini-

tially with two input strings: its ID, denoted by id, and its input, denoted by x.

4

By assumption, in any parti
ular exe
ution of the proto
ol, the ID of ea
h agent

is unique. The exe
ution of a group of mobile agents on a graph G pro
eeds in

syn
hronous steps. At the beginning of ea
h step, ea
h agent is provided with an

additional input string, whi
h
ontains the following information: (i) the degree

of the
urrent node u, (ii) the port label at u through whi
h the agent arrived

at u (or ε if the agent is in its �rst step or did not move in the previous step), and

(iii) the
on�guration of all other agents whi
h are
urrently on u. Then, ea
h
agent performs a lo
al
omputation and eventually halts by a

epting or reje
t-

ing, or it moves through one of the ports of u, or remains at the same node. We

assume that all lo
al
omputations take the same time and that edge traversals

are instantaneous. Therefore, the exe
ution is
ompletely syn
hronous.

Let M be a mobile agent proto
ol, G be a graph, id be a list of distin
t

IDs, s be a list of nodes of G, and x be a list of strings su
h that |id| = |s| =
|x| = k > 0. We denote by M(id, G, s,x) the exe
ution of k
opies of M ,

the i-th
opy starting on node si and re
eiving as inputs the ID idi and the

string xi. The tuple (id, G, s,x) is
alled the impli
it input. Similarly, we denote

by M(id, x; id, G, s,x) the personal view of the exe
ution of M on the impli
it

input, as experien
ed by the agent with ID id and input x. We distinguish be-

tween the expli
it input (id, x), whi
h is provided to the agent at the beginning

of the exe
ution, and the impli
it input, whi
h may or may not be dis
overed

by the agent in the
ourse of the exe
ution.

Given an impli
it input, we write M(id, x; id, G, s,x) = yes (resp. no) if the

agent with expli
it input (id, x) a

epts (resp. reje
ts) duringM(id, G, s,x). Fur-
thermore, we write M(id, G, s,x) 7→ yes (resp. no), if ∀i M(idi, xi; id, G, s,x) =
yes (resp. no), and M(id, G, s,x) 7→ ŷes (resp.

ıno), if all agents halt and for

some i M(idi, xi; id, G, s,x) = yes (resp. no).

2.2 Mobile agent de
ision problems

De�nition 1 ([13℄). A mobile agent de
ision problem on anonymous graphs

is a set Π of instan
es (G, s,x), where G is a graph, s is a non-empty list of

nodes of G, and x is a list of strings with |x| = |s|, whi
h satis�es the following

losure property: For every G and for every automorphism α of G that preserves

port numbers, (G, s,x) ∈ Π if and only if (G,α(s),x) ∈ Π.

1

We will refer to instan
es whi
h belong to a problem Π as �yes� instan
es

of Π . Instan
es that do not belong to Π will be
alled �no� instan
es of Π .

The
omplement Π of a mobile agent de
ision problem Π is the problem Π =
{(G, s,x) : |s| = |x| and (G, s,x) 6∈ Π}.2 Some examples of de
ision problems

are shown in Table 2.

1

Note that this
losure property is synta
ti
ally di�erent from the one used in [13℄

due to notational di�eren
es, but the two are equivalent.

2

It is easy to
he
k that if Π is a de
ision problem, then Π also satis�es the
losure

property of De�nition 1. Therefore, Π is also a de
ision problem.

5

Table 2. De�nitions of some mobile agent de
ision problems that we use in the rest

of the paper.

alone = {(G, s,x) : |s| = 1}
allempty = {(G, s,x) : ∀i xi = ε}
consensus = {(G, s,x) : ∀i, j xi = xj}
degree = {(G, s,x) : ∀i ∃v dv = xi}
degreeγ = {(G, s,x) : G
ontains a node of degree γ} (for γ ≥ 1)
mineven = {(G, s,x) : mini xi is even}
path = {(G, s,x) : G is a path}
teamsize = {(G, s,x) : ∀i xi = |s|}
treesize = {(G, s,x) : ∀i G is a tree of size xi}

De�nition 2 ([13℄). A de
ision problem Π is mobile agent de
idable if there

exists a proto
ol M su
h that for all instan
es (G, s,x): if (G, s,x) ∈ Π then

∀id M(id, G, s,x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ıno.
The
lass of all de
idable problems is denoted by MAD.

De�nition 3 ([13℄). A de
ision problem Π is mobile agent veri�able if there

exists a proto
ol M su
h that for all instan
es (G, s,x): If (G, s,x) ∈ Π then

∃y ∀id M(id, G, s, 〈x,y〉) 7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s,
〈x,y〉) 7→ıno. The
lass of all veri�able problems is denoted by MAV.

When there is no room for
onfusion, we will use the term
erti�
ate both

for the string y provided to an agent and for the
olle
tion of
erti�
ates y

provided to the group of agents. If we need to distinguish between the two, we

will refer to y as a
erti�
ate ve
tor. Finally, if X is a
lass of mobile agent

de
ision problems, then co-X = {Π : Π ∈ X}.

Remark 1. Note that in [13℄, only de
idable (in the
lassi
al sense) mobile agent

de
ision problems were taken into
onsideration. As a result, it was by de�nition

the
ase that MAD and MAV were both subsets of ∆0
1. For the purposes of this

work, we do not impose this
onstraint.

3 Mobile Agent De
idability Classes

A problem Π is in co-MAD if and only if it
an be de
ided by a mobile agent

proto
ol in a sense whi
h is dual to that of De�nition 2: If the instan
e is in Π ,

then at least one agent must a

ept, whereas if the instan
e is not in Π , then

all agents must reje
t. We will
onsider one more su
h variant in the form of the

�stri
t�
lass MADs. A problem belongs to this
lass if it
an be solved in su
h a

way that every agent always outputs the
orre
t answer.

De�nition 4. A de
ision problem Π is in MADs if and only if there exists a pro-

to
ol M su
h that for all instan
es (G, s,x): if (G, s,x) ∈ Π then ∀id M(id, G, s,
x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ no.

6

By de�nition, MADs is a subset of both MAD and co-MAD and it is easy to

he
k that MADs = co-MADs. Moreover, all of these
lasses are subsets of ∆0
1,

sin
e a
entralized algorithm, provided with an en
oding of the graph and the

starting positions, inputs, and IDs of the agents,
an simulate the
orresponding

mobile agent proto
ol and de
ide appropriately. As mentioned in [13℄, path is

an example of a mobile agent de
ision problem whi
h is in ∆0
1 \ MAD, sin
e,

intuitively, an agent
annot distinguish a long path from a
y
le. In fa
t, this

observation yields path ∈ ∆0
1 \ (MAD ∪ co-MAD).

A nontrivial problem in MADs is treesize. The problem was already shown to

be in MAD in [13℄. For the stronger property that treesize ∈ MADs, we need a

modi�
ation of the proto
ol given in [13℄.

Proposition 1. treesize ∈ MADs.

We now show that MAD and co-MAD are stri
t supersets of MADs.

Proposition 2. allempty ∈ MAD \MADs and allempty ∈ co-MAD \MADs.

As we mentioned, MADs is in
luded in both MAD and co-MAD. In fa
t,

MADs = MAD∩ co-MAD. We state this as a theorem without proof, sin
e it
an

be obtained as a
orollary of Theorems 2 and 3, whi
h we will prove in Se
tion 5.

Theorem 1. MADs = MAD ∩ co-MAD.

By Theorem 1, if allempty was in
luded in co-MAD, we would obtain allempty ∈
MADs, whi
h we know to be false. Thus, allempty /∈ co-MAD and we obtain a sep-

aration between MAD and co-MAD. Symmetri
ally, allempty ∈ co-MAD \MAD.

4 Interleaving Multiple Mobile Agent Proto
ols

It is important to have a tool that enables the exe
ution of several mobile agent

proto
ols on the same instan
e, and that also permits the mobile agents to make

de
isions based on the out
omes of these exe
utions. For example, if one were

to give a dire
t proof of Theorem 1 above, one would need a way for the agents

to
oordinate in order to exe
ute both the MAD and the co-MAD proto
ol for a

parti
ular problem, and then, based on the out
ome of these exe
utions, to give

a unanimous
orre
t answer (in the spirit of MADs).

In
lassi
al
omputing, the well known dovetailing te
hnique a
hieves this

interleaving of di�erent
omputations. Classi
al dovetailing pro
eeds in phases:

in phase T , the �rst T steps of the �rst T programs are exe
uted. At this point, an

auxiliary fun
tion is exe
uted, whi
h de
ides, based on these exe
utions, whether

to a

ept, reje
t, or
ontinue with the next phase. Correspondingly, the mobile

agent meta-proto
ol whi
h we propose in this se
tion, pro
eeds in phases: in

phase T , the agents exe
ute the �rst T steps of the �rst T mobile agent proto
ols

and then de
ide whether to a

ept, reje
t, or pro
eed to the next phase. In

the mobile agent
ase, ea
h agent de
ides independently by lo
ally exe
uting

7

a fun
tion, whi
h is given as a parameter to the meta-proto
ol. We
all this

fun
tion a lo
al de
ider.

Still, it may happen that one or more agents halt as a result of exe
uting the

lo
al de
ider, while others de
ide to
ontinue. In su
h a
ase, the exe
ution of

the proto
ols in the next phase
ould be
orrupted be
ause the halted agents no

longer follow the proto
ol. However, these halted agents
an now be regarded

as �xed tokens and the meta-proto
ol uses them in order to
reate a map of

the graph. In fa
t, this is done in su
h a way as to ensure that all non-halted

agents obtain not only the map of the graph but a
tually full knowledge of the

impli
it input. Based on this knowledge, ea
h agent de
ides irrevo
ably whether

to a

ept or reje
t by means of a se
ond fun
tion whi
h is given as a parameter

to the meta-proto
ol, and whi
h we
all a global de
ider.

4.1 Ingredients of the meta-proto
ol

We propose a generi
 meta-proto
ol PN ,f,g, whi
h is parameterized by N , f, g.
The set N is a, possibly in�nite, re
ursively enumerable set of mobile agent

proto
ols. Let Ni, i ≥ 0, denote the i-th proto
ol in su
h an enumeration. The

fun
tions f and g are
omputable fun
tions whi
h represent lo
al
omputations

with the following spe
i�
ations:

Global de
ider: The fun
tion f maps pairs
onsisting of an expli
it and an im-

pli
it input, i.e., tuples of the form (id, x; id, G, s,x), to the set {accept, reject}.
In this
ase, we say that f is a global de
ider. When an agent exe
utes f , it halts
by a

epting or reje
ting a

ording to the out
ome of f .

Lo
al de
ider: The fun
tion g takes as input an expli
it input (id, x) and a list

(H1, . . . , Hσ) of arbitrary length σ, where ea
h Hj is the history of the partial

exe
ution of Nj(id, x; id, G, s,x) for a
ertain number of steps and (id, G, s,x)
is an impli
it input
ommon for all histories H1, . . . , Hσ. The out
ome of g is

one of {accept, reject, continue}. When an agent exe
utes g, it halts in the

orresponding state if the out
ome is accept or reject, otherwise it
ontinues

without halting.

If for every impli
it input (id, G, s,x) and for every T0, there exists a T ≥
T0 and some i su
h that the lo
al
omputation g(idi, xi, H1, . . . , Hmin(T,|N |))
returns either accept or reject, where ea
h Hj is an en
oding of the exe
ution

of Nj(idi, xi; id, G, s,x) for T steps, then we say that g is a lo
al de
ider for N .

The meta-proto
ol uses the following pro
edures Create-Map and Rdv:

Pro
edure Create-Map(R): An agent exe
utes this pro
edure only when it

is on a node whi
h
ontains at least one halted (or idle) agent. Starting from this

node, and treating the halted agent as a �xed mark, it attempts to
reate a map

of the graph assuming that the graph
ontains at most R nodes. More pre
isely,

the agent �rst
reates a map
onsisting in a single node
orresponding to the

marked node r, with dr pending edges with port numbers from 1 to dr. Then,
while there remain some pending edges and there are at most R explored nodes,

the agent explores some arbitrary pending edge as follows. The agent goes to

the known extremity u of the pending edge by using the map and traverses it.

8

It then determines whether its
urrent position v
orresponds to a node of its

map, as follows: For every node w in its map, it
omputes a path in the map

going from w to r and follows the
orresponding sequen
e of port numbers in

the unknown graph, starting from v. If it leads to the marked node, then v = w
and the agent updates its map by linking the pending edges of u and w with the

appropriate port numbers. Otherwise, it retra
es its steps to
ome ba
k to v and

tests a next node w. If all nodes turn out to be di�erent from v, then the agent

goes ba
k to the marked node through u, and updates its map by adding a new

node
orresponding to v, linked to u, and with the appropriate number of new

pending edges. At the end of the pro
edure, the agent either has a
omplete map

of the graph, or knows that the graph has more than R nodes. This pro
edure

takes at most 4R4
steps.

Pro
edure Rdv(R, id): This pro
edure guarantees that a group of k agents

whi
h (a) know the same upper bound R on the number of nodes in the graph,

(b) have distin
t id's {id1, . . . , idk}, and (
) start exe
uting Rdv(R, idi) at the
same time from di�erent nodes si, will all meet ea
h other after �nite time.

Moreover, ea
h agent knows when it has met all other agents exe
uting Rdv,

even without initial knowledge of k.
The Rdv pro
edure uses as a subroutine the following Explore-Ball pro-

edure: An agent exe
uting Explore-Ball(R) attempts to explore the ball of

radius R around its starting node si, assuming an upper bound of R on the

maximum degree of the graph. This is a
hieved by having the agent try ev-

ery sequen
e of length R of port numbers from the set {1, . . . , R}, retra
ing
its steps ba
kward after ea
h sequen
e to return to si. If a parti
ular sequen
e

instru
ts the agent to follow a port number that does not exist at the
urrent

node (i.e., the port number is larger than the degree of the node), then the agent

aborts that sequen
e and returns to si. Attempting all possible sequen
es takes

at most B(R) = 2R · RR
steps. If an agent �nishes earlier, it waits on si un-

til B(R) steps are
ompleted. Therefore, a team of agents that start exe
uting

Explore-Ball(R) at the same time from di�erent nodes are syn
hronized and

ba
k at their starting positions after B(R) steps.
Now, for ea
h bit of idi, the Rdv pro
edure exe
utes the following: If the bit

is 0, the agent waits at si for B(R) steps and then exe
utes Explore-Ball(R),
whereas if the bit is 1, the agent �rst exe
utes Explore-Ball(R) and then

waits on its starting position for B(R) steps. After it exhausts the bits of idi, the
agent exe
utes twi
e Explore-Ball(R). This guarantees that, if the number of

nodes is at most R, then after 2 · (|idi|+ 1) ·B(R) steps, ea
h agent i is lo
ated
at si and has met all other agents exe
uting Rdv. Note that after every integer

multiple of B(R) steps, ea
h agent is lo
ated at its initial node si.

4.2 Des
ription of the meta-proto
ol

The meta-proto
ol PN ,f,g works in phases, whi
h
orrespond to in
reasing values

of a presumed upper bound T on the number of nodes in the graph, the length

of all agent identi�ers, and the
ompletion time of proto
ols N1, . . . , NT . We will

9

no

yes

no

no

yes

yes

yes

no

complete map
of

nodes

Execute

Execute

Dovetail protocols

Attempt map construction
assuming #nodes

and
exchange info

update flags

input is received
idle until implicit

synch

synch

synch

n ≤ T

g

faccompanied
cautious∨

neutralized

mapseeker

T

≤ T

Rdv(n, idi)

accompanied← false

Rdv(2T, idi)

mapseeker← false
cautious← false

T ← T + 1

T ← 1
neutralized← false

Fig. 2. High-level �ow
hart of the meta-proto
ol of Se
tion 4.

say that an agent is idle if it is waiting inde�nitely on its starting node for some

other agent to provide it with the knowledge of the full impli
it input. We will

say that an agent is parti
ipating if it is not halted and not idle. Note that an

agent may halt only as a result of exe
uting one of the de
ider fun
tions f and g.
In ea
h phase T , the agents perform the following a
tions (see also Fig. 2):

Sear
h for nearby starting positions and set �ags. Ea
h parti
ipating agent i
�rst exe
utes Rdv(2T, idi) for at most 2(T + 1)B(2T) steps. By design of Rdv,

this guarantees that agent i will explore its 2T -neighborhood at least on
e and,

in parti
ular, if T ≥ |idi|, then for ea
h other parti
ipating agent, agent i will
explore its 2T -neighborhood at least on
e with that agent staying on its starting

node. If, in the pro
ess, the agent meets any agent, then it sets its accompanied
�ag. It also sets its neutralized �ag if the en
ountered agent is parti
ipating and

it has a lexi
ographi
ally larger ID. If the en
ountered agent is halted or idle,

the agent sets its mapseeker �ag. Finally, if the agent �nds a node with degree

larger than 2T or if the length of its ID is greater than T , it sets its cautious
�ag. All agents syn
hronize at this point.

Mapseeker agents attempt to
reate a map of the graph. Next, ea
h agent i
with the mapseeker �ag set moves to a halted or idle agent whi
h it has found

previously, while exe
uting Rdv in the
urrent phase. Then, it attempts to
reate

a map of the graph by exe
utingCreate-Map(T) and returns to si. Overall, this
takes at most 4T 4+4T steps. Moreover, during the exe
ution of Create-Map,

mapseeker agents
olle
t starting position and input information from all halted

and idle agents that they en
ounter. Meanwhile, non-mapseeker agents wait

for 4T 4 + 4T steps. All agents syn
hronize at this point.

So far, we have a
hieved that, if T ≥ n, where n is the number of nodes in G,
then either no agent is a mapseeker having the full map of G, or all parti
ipating
agents have the mapseeker �ag set and they have the full map of G (Lemma 1

below). If all mapseeker agents have the full map of G and T ≥ n, then ea
h su
h

agent i exe
utes Rdv(n, idi), whi
h guarantees that, �nally, it is lo
ated at si
and has met all other agents exe
uting Rdv. Therefore, after
on
luding the

10

Rdv pro
edure, ea
h mapseeker exe
utes f with full knowledge of the impli
it

input (Lemma 2).

Perform dovetailing. At this point, if no agent is a mapseeker having the full

map of G, the agents exe
ute ea
h of the proto
ols N1, . . . , Nmin(T,|N |) for at

most T steps, and then retra
e ba
kward to si (agents are syn
hronized after

exe
uting ea
h proto
ol). If any of these proto
ols instru
ts an agent to halt,

the agent instead waits until the T -step exe
ution period has �nished, and then

returns to si. If the agent does not have the cautious or accompanied �ags set, it

then exe
utes g(id, x,H1, . . . , Hmin(T,|N |)), where Hj is the history of the T -step
exe
ution of Nj with expli
it input (id, x). Sin
e this pro
ess takes at most 2T 2

steps, all agents that do not halt as a result of exe
uting g are syn
hronized at

the end of the
urrent phase. It is guaranteed that the histories fed to the lo
al

de
ider g
orrespond to
orre
t exe
utions of the
orresponding proto
ols for

impli
it input (id, G, s,x), even though some of the agents may have halted or

be
ome idle in earlier phases (Lemma 3 and Corollary 1).

Neutralized agents be
ome idle. Finally, at the end of the phase, neutralized
agents start waiting for the impli
it input (i.e., they be
ome idle), and when

they re
eive it (from some mapseeker agent), they exe
ute the global de
ider f .

Lemma 1. In ea
h phase, either all or none of the parti
ipating agents (i.e.,

non-halted and non-idle) exe
ute f .

Lemma 2. Any agent that exe
utes f has full knowledge of the impli
it input

(id, G, s,x).

Lemma 3. If an agent i exe
utes g during phase T , then no other agent's start-

ing node is at distan
e 2T or less from si.

By Lemma 3, we obtain following
orollary:

Corollary 1. Any agent i that exe
utes g has histories whi
h
orrespond to the

orre
t histories of Nj(idi, xi; id, G, s,x) for T steps (1 ≤ j ≤ min(T, |N |)), even
though some of the agents may have halted or be
ome idle in earlier phases.

In view of Corollary 1, we
an show that all agents terminate and, in fa
t,

they all terminate on their respe
tive starting nodes.

Lemma 4. Let f be a global de
ider and let g be a lo
al de
ider for N . Then,

ea
h agent halts under the exe
ution PN ,f,g(id, G, s,x) by exe
uting either f
or g. Moreover, ea
h agent i halts on its starting node si.

4.3 Appli
ation of the meta-proto
ol

To summarize, the meta-proto
ol is a generi
 tool that enables us to interleave

the exe
utions of a possibly in�nite set of mobile agent proto
ols. Eventually,

ea
h agent a

epts or reje
ts, based either on the histories of the exe
utions of a

11

number of these proto
ols (by means of the lo
al de
ider), or on full knowledge

of the impli
it input (by means of the global de
ider).

We use the meta-proto
ol in order to pla
e a parti
ular problem in one of

the mobile agent
omputability
lasses of Table 1. A
ommon part of the proofs

onsists in de�ning the list of proto
ols N and suitable de
iders f and g, and
in showing that f and g indeed satisfy the global and lo
al de
ider properties,

respe
tively. This is followed by a part tailored to ea
h parti
ular result, where

we use the properties of the meta-proto
ol (Lemmas 1�4 and Corollary 1) and

the parti
ular de�nitions of f and g, in order to show that agents that exe
ute

PN ,f,g always terminate in the desired state. The desired state is indi
ated by

the
lass in whi
h we wish to pla
e the problem. For example, if we wish to show

that a problem is in MADs, we will have to show that all agents give the
orre
t

answer for all impli
it inputs.

5 Mobile Agent Veri�ability Classes

De�nition 5. A de
ision problem Π is in MAVs if and only if there exists a pro-

to
ol M su
h that for all instan
es (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) 7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) 7→ no.

By de�nition, MAVs ⊆ MAV. Moreover, MAV ⊆ Σ0
1, sin
e a
entralized al-

gorithm
an simulate the MAV proto
ol for all possible
erti�
ate ve
tors (by

lassi
al dovetailing) and a

ept if it �nds a
erti�
ate for whi
h all agents a
-

ept. By taking
omplements, we obtain as well that co-MAVs ⊆ co-MAV ⊆ Π0
1.

There exist several nontrivial problems inMAVs and co-MAVs (Proposition 3).

Furthermore, we
an show that MAV is a stri
t superset of MAVs and, as a

orollary, co-MAV is a stri
t superset of co-MAVs (Proposition 4).

Proposition 3. For any �xed γ ≥ 1, degreeγ ∈ MAVs. Furthermore, consensus ∈
co-MAVs and alone ∈ co-MAVs.

Proposition 4. degree ∈ MAV \ (MAVs ∪ co-MAV).

Proposition 4 also separates MAV from co-MAV. In order to separate Σ0
1

from MAV and Π0
1 from co-MAV, we observe that the teamsize problem, whi
h

is
learly in ∆0
1 = Σ0

1 ∩ Π0
1, is neither in MAV nor in co-MAV.

Proposition 5. teamsize ∈ ∆0
1 \ (MAV ∪ co-MAV).

De
ision problems with �no�
erti�
ates In
lassi
al
omputability, the

lass Π0
1 = co-Σ0

1
an be seen as the
lass of problems that admit a �no�
er-

ti�
ate, i.e.: for �no� instan
es, there exists a
erti�
ate that leads to reje
tion,

whereas for �yes� instan
es, no
erti�
ate
an lead to reje
tion. In this respe
t,

while MAV
an
ertainly be
onsidered as the mobile agent analogue of Σ0
1,

co-MAV is not quite the analogue of Π0
1. Problems in co-MAV indeed admit a

�no�
erti�
ate, but the a

eptan
e me
hanism is reversed: for �no� instan
es,

12

there exists a
erti�
ate that leads all agents to reje
t. This motivates us to

de�ne and study co-MAV′, the
lass of mobile agent problems that admit a �no�

erti�
ate while retaining the MAV a

eptan
e me
hanism, as well as its
om-

plement MAV′. We give the de�nition of MAV′ below.

De�nition 6. A de
ision problem Π is in MAV′ if and only if there exists a pro-

to
ol M su
h that for all instan
es (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) 7→ ŷes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) 7→ no.

By de�nition, it holds that MAVs ⊆ MAV′ and co-MAVs ⊆ co-MAV′. To show

MAV′ = MAVs (and thus co-MAV′ = co-MAVs), we need to �boost� the MAV′ pro-

to
ol so that the agents answer unanimously even in �yes� instan
es. We a
hieve

this by supplying an extra
erti�
ate, whi
h is interpreted as the number of nodes

of the graph. This enables the agents to meet and ex
hange information in �yes�

instan
es, and therefore rea
h a unanimous de
ision. The meta-proto
ol from

Se
tion 4 essentially provides �for free� the ne
essary subroutines for meeting

and ex
hanging information.

Theorem 2. MAV′ = MAVs and co-MAV′ = co-MAVs.

In view of Theorem 2, it follows that MAVs ⊆ MAV∩co-MAV and co-MAVs ⊆
MAV∩ co-MAV. We separate MAV∩ co-MAV from both of these
lasses with the

problem mineven:

Proposition 6. mineven ∈ (MAV ∩ co-MAV) \ (MAVs ∪ co-MAVs).

Conne
tions with the de
idability
lasses We explore the relationships

among the de
idability
lasses of Se
tion 3 and the
lasses de�ned in this se
tion.

From the de�nitions we know that MAD ⊆ co-MAV′, therefore, by Theorem 2,

MAD ⊆ co-MAVs. Similarly, co-MAD ⊆ MAVs. Therefore, sin
e MADs ⊆ MAD ∩
co-MAD, we also have that MADs ⊆ MAVs ∩ co-MAVs.

We show in Theorem 3 that, in fa
t, MADs = MAVs∩co-MAVs. Furthermore,

from the de�nitions and Theorem 2, we have MAD ⊆ MAV ∩ co-MAVs and

co-MAD ⊆ MAVs ∩ co-MAV. We show that these a
tually hold as equalities in

Theorem 4 below. The proof of Theorem 3 (resp. Theorem 4) is based on trying

all possible
ombinations of
erti�
ates for the MAVs (resp. MAV) and co-MAVs

proto
ols. Here, we use the full power of the meta-proto
ol of Se
tion 4 in order

to interleave and syn
hronize this in�nite number of exe
utions.

Theorem 3. MADs = MAVs ∩ co-MAVs.

Theorem 4. MAD = MAV ∩ co-MAVs and co-MAD = MAVs ∩ co-MAV.

Note that it was shown in [13℄ that, if we
onsider de
ision problems that are

de
idable or veri�able by a single agent (thus giving rise to the
lasses MAD1

and MAV1), then it holds that MAD1 = MAV1∩ co-MAV1. Theorems 3 and 4
an

be seen as generalizations of that result to multiagent
lasses.

13

Proposition 7. For any �xed γ ≥ 1, degreeγ ∈ MAVs \ co-MAD and degreeγ ∈
co-MAVs \MAD.

In view of Theorem 4, Proposition 7 yields a separation between MAVs

and co-MAV, as degreeγ ∈ MAVs \ co-MAV, and a separation between co-MAVs

and MAV, as degreeγ ∈ co-MAVs \MAV.

By
ombining the results of this se
tion with the results of Se
tion 3, we

obtain a pi
ture of the relationships among the
lasses below MAV and co-MAV,

as illustrated in Figure 1.

Referen
es

1. Boldi, P., Vigna, S.: An e�e
tive
hara
terization of
omputability in anonymous

networks. In: DISC 2001. LNCS, vol. 2180, pp. 33�47. Springer (2001)

2. Boldi, P., Vigna, S.: Universal dynami
 syn
hronous self-stabilization. Distrib.

Comput. 15(3), 137�153 (2002)

3. Chalopin, J., Godard, E., Métivier, Y.: Lo
al terminations and distributed
om-

putability in anonymous networks. In: DISC 2008. LNCS, vol. 5218, pp. 47�62.

Springer (2008)

4. Chalopin, J., Godard, E., Métivier, Y., Tel, G.: About the termination dete
tion

in the asyn
hronous message passing model. In: SOFSEM 2007. LNCS, vol. 4362,

pp. 200�211. Springer (2007)

5. Chandra, T.D., Hadzila
os, V., Toueg, S.: The weakest failure dete
tor for solving

onsensus. J. ACM 43(4), 685�722 (1996)

6. Chandra, T.D., Toueg, S.: Unreliable failure dete
tors for reliable distributed

systems. J. ACM 43(2), 225�267 (1996)

7. Das, S.: Mobile agents in distributed
omputing: Network exploration. Bull. Eur.

Asso
. Theor. Comput. S
i. EATCS 109, 54�69 (2013)

8. Das S., Kutten S., Lotker Z.: Distributed veri�
ation using mobile agents. In:

ICDCN 2013. LNCS, vol 7730, pp. 330�347. Springer (2013)

9. Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized dis-

tributed de
ision. Distrib. Comput. 27(6), 419�434 (2014)

10. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What
an be de
ided lo
ally

without identi�ers? In: PODC 2013. pp. 157�165. ACM (2013)

11. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impa
t of identi�ers on

lo
al de
ision. In: OPODIS 2012. LNCS, vol. 7702, pp. 224�238. Springer (2012)

12. Fraigniaud, P., Korman, A., Peleg, D.: Towards a
omplexity theory for lo
al

distributed
omputing. J. ACM 60(5), 35 (2013)

13. Fraigniaud, P., Pel
, A.: De
idability
lasses for mobile agents
omputing. In:

LATIN 2012. LNCS, vol. 7256, pp. 362�374. Springer (2012)

14. Herlihy, M.: Wait-free syn
hronization. ACM Trans. Program. Lang. Syst. 13(1),

124�149 (1991)

15. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM

42(3), 88�89 (1999)

16. Markou, E.: Identifying hostile nodes in networks using mobile agents. Bull. Eur.

Asso
. Theor. Comput. S
i. EATCS 108, 93�129 (2012)

17. Yamashita, M., Kameda, T.: Computing fun
tions on asyn
hronous anonymous

networks. Math. Syst. Theory 29(4), 331�356 (1996)

14

	On Mobile Agent Verifiable Problems

