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Abstrat. We onsider deision problems that are solved in a distributed

fashion by synhronous mobile agents operating in an unknown, anony-

mous network. Eah agent has a unique identi�er and an input string

and they have to deide olletively a property whih may involve their

input strings, the graph on whih they are operating, and their parti-

ular starting positions. Building on reent work by Fraigniaud and Pel

[LATIN 2012, LNCS 7256, pp. 362�374℄, we introdue several natural

new omputability lasses allowing for a �ner lassi�ation of problems

below co-MAV or MAV, the latter being the lass of problems that are

veri�able when the agents are provided with an appropriate erti�ate.

We provide inlusion and separation results among all these lasses. We

also determine their losure properties with respet to set-theoreti op-

erations. Our main tehnial tool, whih is of independent interest, is

a new meta-protool that enables the exeution of a possibly in�nite

number of mobile agent protools essentially in parallel, similarly to the

well-known dovetailing tehnique from lassial omputability theory.

1 Introdution

1.1 Context and motivation

The last few deades have seen a surge of researh interest in the diretion

of studying omputability- and omplexity-theoreti aspets for various mod-

els of distributed omputing. Signi�ant examples of this trend inlude the

investigation of unreliable failure detetors [5,6℄, as well as wait-free hierar-

hies [14℄. A more reent line of work studies the impat of randomization and

non-determinism in what onerns the omputational apabilities of the LOCAL
model [9,12℄, as well as the impat of identi�ers in the same model [10,11℄. A

di�erent approah onsiders the haraterization of problems that an be solved

under various notions of termination detetion or various types of knowledge

about the network in message-passing systems [1,2,3,4,17℄. Finally, a reent work

fouses on the omputational power of teams of mobile agents [13℄. Our work

lies in this latter diretion.

⋆
This work was partially funded by the ANR projets DISPLEXITY (ANR-11-BS02-

014) and MACARON (ANR-13-JS02-002). This study has been arried out in the

frame of the �Investments for the future� Programme IdEx Bordeaux � CPU (ANR-

10-IDEX-03-02).



The mobile agent paradigm has been proposed sine the 90's as a onept

that failitates several fundamental networking tasks inluding, among others,

fault tolerane, network management, and data aquisition [15℄, and has been of

signi�ant interest to the distributed omputing ommunity (see, e.g., the reent

surveys [7,16℄). As suh, it is highly pertinent to develop a omputability theory

for mobile agents, that lassi�es di�erent problems aording to their degree

of (non-)omputability, insofar as we are interested in really understanding the

omputational apabilities of groups of mobile agents.

In this paper, we onsider a distributed system in whih omputation is per-

formed by one or more deterministi mobile agents, operating in an unknown,

anonymous network. Eah agent has a unique identi�er and is provided with an

input string, and they have to olletively deide a property whih may involve

their input strings, the graph on whih they are operating, and their partiular

starting positions. One may argue about the usefulness of developing a theory

spei�ally for mobile agent deision problems. We believe that, apart from its

inherent theoretial interest, suh a study is bound to yield intermediate results,

tools, intuitions, and tehniques that will prove useful when one moves on to

onsider from a omputability/omplexity point of view other, perhaps more

traditional, mobile agent problems, suh as exploration, rendezvous, pattern for-

mation, et. One suh tool is the protool that we develop in this paper, whih

enables the interleaving of the exeutions of a possibly in�nite number of mobile

agent protools.

1.2 Related work

In [13℄, Fraigniaud and Pel introdued two natural omputability lasses, MAD

and MAV, as well as their ounterparts co-MAD and co-MAV. The lass MAD,

for �Mobile Agent Deidable�, is the lass of all mobile agent deision problems

whih an be deided, i.e., for whih there exists a mobile agent protool suh

that all agents aept in a �yes� instane, while at least one agent rejets in a �no�

instane. On the other hand, the lass MAV, for �Mobile Agent Veri�able�, is the

lass of all mobile agent deision problems whih an be veri�ed. More preisely,

in a �yes� instane, there exists a erti�ate suh that if eah agent reeives its

dediated piee of it, then all agents aept, whereas in a �no� instane, for every

possible erti�ate, at least one agent rejets. Certi�ates are for example useful

in appliations in whih repeated veri�ations of some property are required.

Fraigniaud and Pel proved in [13℄ that MAD is stritly inluded in MAV, and

they exhibited a problem whih is omplete forMAV under an appropriate notion

of orale redution.

In [8℄, Das et al. fous on the omplexity of distributed veri�ation, rather

than on its omputability. In fat, their model di�ers in several aspets. First

of all, the networks in whih the mobile agents operate are not anonymous, but

eah node has a unique identi�er. This greatly failitates symmetry breaking, a

entral issue in anonymous networks. On the other hand though, the memory

of the mobile agents is limited. Indeed, in [8℄, the authors study the minimal

amount of memory needed by the mobile agents to distributedly verify some
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Fig. 1. Containments between lasses below MAV and co-MAV with orresponding

illustrative problems. Class and problem de�nitions are summarized in Tables 1 and 2,

respetively.

lasses of graph properties. Again, the studied properties are di�erent from the

ones studied here and in [13℄, sine they do not depend on the mobile agents

or their starting positions. However, they may depend on labels that nodes an

possess in addition to their unique identi�ers.

1.3 Our ontributions

We introdue several new mobile agent omputability lasses whih play a key

role in our endeavor for a �ner lassi�ation of problems belowMAV and co-MAV.

The lasses MADs and MAVs are strit versions of MAD and MAV, respetively,

in whih unanimity is required in both �yes� and �no� instanes. Furthermore, we

onsider the lass co-MAV′ (and its ounterpart MAV′) of mobile agent deision

problems that admit a erti�ate for �no� instanes, while retaining the system-

wide aeptane mehanism of MAV.

We perform a thorough investigation of the relationships between the newly

introdued and pre-existing lasses. As a result, we obtain a omplete Venn

diagram (Figure 1) whih illustrates the tight interonnetions between them.

We take are to plae natural deision problems (in the mobile agent ontext)

in eah of the onsidered lasses. Among other results, we obtain a ouple of

fundamental, previously unknown, inlusions whih onern pre-existing lasses:

MAD ⊆ co-MAV and co-MAD ⊆ MAV.

We omplement our results with a omplete study of the losure properties of

these lasses under the standard set-theoreti operations of union, intersetion,

and omplement. The various lass de�nitions together with the orresponding

losure properties are summarized in Table 1.

The main tehnial tool that we develop and use in the paper is a new meta-

protool that enables the exeution of a possibly in�nite number of mobile agent

protools essentially in parallel. This an be seen as a mobile agent omputing

analogue of the well-known dovetailing tehnique from lassial reursion theory.

Proofs are omitted due to lak of spae.
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Table 1. Overview of mobile agent deidability and veri�ability lasses and their lo-

sure properties. The notation yes (resp. no) means that all agents aept (resp. rejet).

Similarly, ıyes (resp. Ùno) means that at least one agent aepts (resp. rejets).

De�nition Closure Properties

�yes� instanes �no� instanes Union Interse. Compl.

MADs (∀ erti�ate:) yes (∀ erti�ate:) no ✓ ✓ ✓

MAD (∀ erti�ate:) yes (∀ erti�ate:) Ùno ✗ ✓ ✗

co-MAD (∀ erti�ate:) ıyes (∀ erti�ate:) no ✓ ✗ ✗

MAVs ∃ erti�ate: yes ∀ erti�ate: no ✓ ✓ ✗

co-MAVs ∀ erti�ate: yes ∃ erti�ate: no ✓ ✓ ✗

MAV ∃ erti�ate: yes ∀ erti�ate: Ùno ✗ ✓ ✗

co-MAV ∀ erti�ate: ıyes ∃ erti�ate: no ✓ ✗ ✗

MAV′ ∃ erti�ate: ıyes ∀ erti�ate: no ✓ ✓ ✗

co-MAV′ ∀ erti�ate: yes ∃ erti�ate: Ùno ✓ ✓ ✗

2 Preliminaries

The graphs in whih the mobile agents operate are undireted, onneted, and

anonymous. The edges inident to eah node v (ports) are assigned distint

loal port numbers (also alled labels) from {1, . . . , dv}, where dv is the degree

of node v. The port numbers assigned to the same edge at its two endpoints do

not have to be in agreement.

We onventionally �x a binary alphabet Σ = {0, 1}. In view of the natural

bijetion between binary strings and N whih maps a string to its rank in the

quasi-lexiographi order of strings (shorter strings preede longer strings, the

rank of the empty string ε being 0), we will oasionally treat strings and nat-

ural numbers interhangeably. If x and y are strings, then 〈x, y〉 stands for any
standard enoding as a string of the pair of strings (x, y).

If x is a list, then |x| is the length of x and xi is the i-th element of x. If f is

a funtion that an be applied to the elements of x, then we will use the notation

f(x) =
(

f(x1), . . . , f(x|x|)
)

. In the same spirit, if x and y are equal-length lists

of strings, then 〈x,y〉 stands for the list
(

〈x1, y1〉 , . . . ,
〈

x|x|, y|y|
〉)

.

We denote by Σ0
1 the set of reursively enumerable (or Turing-aeptable)

deision problems, Π0
1 = co-Σ0

1, and ∆0
1 = Σ0

1 ∩ Π0
1. ∆

0
1 is exatly the set of

Turing-deidable problems.

2.1 Mobile agent omputations

A mobile agent protool is modeled as a deterministi Turing mahine. Mobile

agents are modeled as instanes of a mobile agent protool (i.e., opies of the

orresponding deterministi Turing mahine) whih move in an undireted, on-

neted, anonymous graph with port labels. Eah mobile agent is provided ini-

tially with two input strings: its ID, denoted by id, and its input, denoted by x.
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By assumption, in any partiular exeution of the protool, the ID of eah agent

is unique. The exeution of a group of mobile agents on a graph G proeeds in

synhronous steps. At the beginning of eah step, eah agent is provided with an

additional input string, whih ontains the following information: (i) the degree

of the urrent node u, (ii) the port label at u through whih the agent arrived

at u (or ε if the agent is in its �rst step or did not move in the previous step), and

(iii) the on�guration of all other agents whih are urrently on u. Then, eah
agent performs a loal omputation and eventually halts by aepting or rejet-

ing, or it moves through one of the ports of u, or remains at the same node. We

assume that all loal omputations take the same time and that edge traversals

are instantaneous. Therefore, the exeution is ompletely synhronous.

Let M be a mobile agent protool, G be a graph, id be a list of distint

IDs, s be a list of nodes of G, and x be a list of strings suh that |id| = |s| =
|x| = k > 0. We denote by M(id, G, s,x) the exeution of k opies of M ,

the i-th opy starting on node si and reeiving as inputs the ID idi and the

string xi. The tuple (id, G, s,x) is alled the impliit input. Similarly, we denote

by M(id, x; id, G, s,x) the personal view of the exeution of M on the impliit

input, as experiened by the agent with ID id and input x. We distinguish be-

tween the expliit input (id, x), whih is provided to the agent at the beginning

of the exeution, and the impliit input, whih may or may not be disovered

by the agent in the ourse of the exeution.

Given an impliit input, we write M(id, x; id, G, s,x) = yes (resp. no) if the

agent with expliit input (id, x) aepts (resp. rejets) duringM(id, G, s,x). Fur-
thermore, we write M(id, G, s,x) 7→ yes (resp. no), if ∀i M(idi, xi; id, G, s,x) =
yes (resp. no), and M(id, G, s,x) 7→ ŷes (resp.

ıno), if all agents halt and for

some i M(idi, xi; id, G, s,x) = yes (resp. no).

2.2 Mobile agent deision problems

De�nition 1 ([13℄). A mobile agent deision problem on anonymous graphs

is a set Π of instanes (G, s,x), where G is a graph, s is a non-empty list of

nodes of G, and x is a list of strings with |x| = |s|, whih satis�es the following

losure property: For every G and for every automorphism α of G that preserves

port numbers, (G, s,x) ∈ Π if and only if (G,α(s),x) ∈ Π.

1

We will refer to instanes whih belong to a problem Π as �yes� instanes

of Π . Instanes that do not belong to Π will be alled �no� instanes of Π .

The omplement Π of a mobile agent deision problem Π is the problem Π =
{(G, s,x) : |s| = |x| and (G, s,x) 6∈ Π}.2 Some examples of deision problems

are shown in Table 2.

1

Note that this losure property is syntatially di�erent from the one used in [13℄

due to notational di�erenes, but the two are equivalent.

2

It is easy to hek that if Π is a deision problem, then Π also satis�es the losure

property of De�nition 1. Therefore, Π is also a deision problem.
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Table 2. De�nitions of some mobile agent deision problems that we use in the rest

of the paper.

alone = {(G, s,x) : |s| = 1}
allempty = {(G, s,x) : ∀i xi = ε}
consensus = {(G, s,x) : ∀i, j xi = xj}
degree = {(G, s,x) : ∀i ∃v dv = xi}
degreeγ = {(G, s,x) : G ontains a node of degree γ} (for γ ≥ 1)
mineven = {(G, s,x) : mini xi is even}
path = {(G, s,x) : G is a path}
teamsize = {(G, s,x) : ∀i xi = |s|}
treesize = {(G, s,x) : ∀i G is a tree of size xi}

De�nition 2 ([13℄). A deision problem Π is mobile agent deidable if there

exists a protool M suh that for all instanes (G, s,x): if (G, s,x) ∈ Π then

∀id M(id, G, s,x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ıno.
The lass of all deidable problems is denoted by MAD.

De�nition 3 ([13℄). A deision problem Π is mobile agent veri�able if there

exists a protool M suh that for all instanes (G, s,x): If (G, s,x) ∈ Π then

∃y ∀id M(id, G, s, 〈x,y〉) 7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s,
〈x,y〉) 7→ıno. The lass of all veri�able problems is denoted by MAV.

When there is no room for onfusion, we will use the term erti�ate both

for the string y provided to an agent and for the olletion of erti�ates y

provided to the group of agents. If we need to distinguish between the two, we

will refer to y as a erti�ate vetor. Finally, if X is a lass of mobile agent

deision problems, then co-X = {Π : Π ∈ X}.

Remark 1. Note that in [13℄, only deidable (in the lassial sense) mobile agent

deision problems were taken into onsideration. As a result, it was by de�nition

the ase that MAD and MAV were both subsets of ∆0
1. For the purposes of this

work, we do not impose this onstraint.

3 Mobile Agent Deidability Classes

A problem Π is in co-MAD if and only if it an be deided by a mobile agent

protool in a sense whih is dual to that of De�nition 2: If the instane is in Π ,

then at least one agent must aept, whereas if the instane is not in Π , then

all agents must rejet. We will onsider one more suh variant in the form of the

�strit� lass MADs. A problem belongs to this lass if it an be solved in suh a

way that every agent always outputs the orret answer.

De�nition 4. A deision problem Π is in MADs if and only if there exists a pro-

tool M suh that for all instanes (G, s,x): if (G, s,x) ∈ Π then ∀id M(id, G, s,
x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ no.
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By de�nition, MADs is a subset of both MAD and co-MAD and it is easy to

hek that MADs = co-MADs. Moreover, all of these lasses are subsets of ∆0
1,

sine a entralized algorithm, provided with an enoding of the graph and the

starting positions, inputs, and IDs of the agents, an simulate the orresponding

mobile agent protool and deide appropriately. As mentioned in [13℄, path is

an example of a mobile agent deision problem whih is in ∆0
1 \ MAD, sine,

intuitively, an agent annot distinguish a long path from a yle. In fat, this

observation yields path ∈ ∆0
1 \ (MAD ∪ co-MAD).

A nontrivial problem in MADs is treesize. The problem was already shown to

be in MAD in [13℄. For the stronger property that treesize ∈ MADs, we need a

modi�ation of the protool given in [13℄.

Proposition 1. treesize ∈ MADs.

We now show that MAD and co-MAD are strit supersets of MADs.

Proposition 2. allempty ∈ MAD \MADs and allempty ∈ co-MAD \MADs.

As we mentioned, MADs is inluded in both MAD and co-MAD. In fat,

MADs = MAD∩ co-MAD. We state this as a theorem without proof, sine it an

be obtained as a orollary of Theorems 2 and 3, whih we will prove in Setion 5.

Theorem 1. MADs = MAD ∩ co-MAD.

By Theorem 1, if allempty was inluded in co-MAD, we would obtain allempty ∈
MADs, whih we know to be false. Thus, allempty /∈ co-MAD and we obtain a sep-

aration between MAD and co-MAD. Symmetrially, allempty ∈ co-MAD \MAD.

4 Interleaving Multiple Mobile Agent Protools

It is important to have a tool that enables the exeution of several mobile agent

protools on the same instane, and that also permits the mobile agents to make

deisions based on the outomes of these exeutions. For example, if one were

to give a diret proof of Theorem 1 above, one would need a way for the agents

to oordinate in order to exeute both the MAD and the co-MAD protool for a

partiular problem, and then, based on the outome of these exeutions, to give

a unanimous orret answer (in the spirit of MADs).

In lassial omputing, the well known dovetailing tehnique ahieves this

interleaving of di�erent omputations. Classial dovetailing proeeds in phases:

in phase T , the �rst T steps of the �rst T programs are exeuted. At this point, an

auxiliary funtion is exeuted, whih deides, based on these exeutions, whether

to aept, rejet, or ontinue with the next phase. Correspondingly, the mobile

agent meta-protool whih we propose in this setion, proeeds in phases: in

phase T , the agents exeute the �rst T steps of the �rst T mobile agent protools

and then deide whether to aept, rejet, or proeed to the next phase. In

the mobile agent ase, eah agent deides independently by loally exeuting

7



a funtion, whih is given as a parameter to the meta-protool. We all this

funtion a loal deider.

Still, it may happen that one or more agents halt as a result of exeuting the

loal deider, while others deide to ontinue. In suh a ase, the exeution of

the protools in the next phase ould be orrupted beause the halted agents no

longer follow the protool. However, these halted agents an now be regarded

as �xed tokens and the meta-protool uses them in order to reate a map of

the graph. In fat, this is done in suh a way as to ensure that all non-halted

agents obtain not only the map of the graph but atually full knowledge of the

impliit input. Based on this knowledge, eah agent deides irrevoably whether

to aept or rejet by means of a seond funtion whih is given as a parameter

to the meta-protool, and whih we all a global deider.

4.1 Ingredients of the meta-protool

We propose a generi meta-protool PN ,f,g, whih is parameterized by N , f, g.
The set N is a, possibly in�nite, reursively enumerable set of mobile agent

protools. Let Ni, i ≥ 0, denote the i-th protool in suh an enumeration. The

funtions f and g are omputable funtions whih represent loal omputations

with the following spei�ations:

Global deider: The funtion f maps pairs onsisting of an expliit and an im-

pliit input, i.e., tuples of the form (id, x; id, G, s,x), to the set {accept, reject}.
In this ase, we say that f is a global deider. When an agent exeutes f , it halts
by aepting or rejeting aording to the outome of f .

Loal deider: The funtion g takes as input an expliit input (id, x) and a list

(H1, . . . , Hσ) of arbitrary length σ, where eah Hj is the history of the partial

exeution of Nj(id, x; id, G, s,x) for a ertain number of steps and (id, G, s,x)
is an impliit input ommon for all histories H1, . . . , Hσ. The outome of g is

one of {accept, reject, continue}. When an agent exeutes g, it halts in the

orresponding state if the outome is accept or reject, otherwise it ontinues

without halting.

If for every impliit input (id, G, s,x) and for every T0, there exists a T ≥
T0 and some i suh that the loal omputation g(idi, xi, H1, . . . , Hmin(T,|N |))
returns either accept or reject, where eah Hj is an enoding of the exeution

of Nj(idi, xi; id, G, s,x) for T steps, then we say that g is a loal deider for N .

The meta-protool uses the following proedures Create-Map and Rdv:

Proedure Create-Map(R): An agent exeutes this proedure only when it

is on a node whih ontains at least one halted (or idle) agent. Starting from this

node, and treating the halted agent as a �xed mark, it attempts to reate a map

of the graph assuming that the graph ontains at most R nodes. More preisely,

the agent �rst reates a map onsisting in a single node orresponding to the

marked node r, with dr pending edges with port numbers from 1 to dr. Then,
while there remain some pending edges and there are at most R explored nodes,

the agent explores some arbitrary pending edge as follows. The agent goes to

the known extremity u of the pending edge by using the map and traverses it.
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It then determines whether its urrent position v orresponds to a node of its

map, as follows: For every node w in its map, it omputes a path in the map

going from w to r and follows the orresponding sequene of port numbers in

the unknown graph, starting from v. If it leads to the marked node, then v = w
and the agent updates its map by linking the pending edges of u and w with the

appropriate port numbers. Otherwise, it retraes its steps to ome bak to v and

tests a next node w. If all nodes turn out to be di�erent from v, then the agent

goes bak to the marked node through u, and updates its map by adding a new

node orresponding to v, linked to u, and with the appropriate number of new

pending edges. At the end of the proedure, the agent either has a omplete map

of the graph, or knows that the graph has more than R nodes. This proedure

takes at most 4R4
steps.

Proedure Rdv(R, id): This proedure guarantees that a group of k agents

whih (a) know the same upper bound R on the number of nodes in the graph,

(b) have distint id's {id1, . . . , idk}, and () start exeuting Rdv(R, idi) at the
same time from di�erent nodes si, will all meet eah other after �nite time.

Moreover, eah agent knows when it has met all other agents exeuting Rdv,

even without initial knowledge of k.
The Rdv proedure uses as a subroutine the following Explore-Ball pro-

edure: An agent exeuting Explore-Ball(R) attempts to explore the ball of

radius R around its starting node si, assuming an upper bound of R on the

maximum degree of the graph. This is ahieved by having the agent try ev-

ery sequene of length R of port numbers from the set {1, . . . , R}, retraing
its steps bakward after eah sequene to return to si. If a partiular sequene

instruts the agent to follow a port number that does not exist at the urrent

node (i.e., the port number is larger than the degree of the node), then the agent

aborts that sequene and returns to si. Attempting all possible sequenes takes

at most B(R) = 2R · RR
steps. If an agent �nishes earlier, it waits on si un-

til B(R) steps are ompleted. Therefore, a team of agents that start exeuting

Explore-Ball(R) at the same time from di�erent nodes are synhronized and

bak at their starting positions after B(R) steps.
Now, for eah bit of idi, the Rdv proedure exeutes the following: If the bit

is 0, the agent waits at si for B(R) steps and then exeutes Explore-Ball(R),
whereas if the bit is 1, the agent �rst exeutes Explore-Ball(R) and then

waits on its starting position for B(R) steps. After it exhausts the bits of idi, the
agent exeutes twie Explore-Ball(R). This guarantees that, if the number of

nodes is at most R, then after 2 · (|idi|+ 1) ·B(R) steps, eah agent i is loated
at si and has met all other agents exeuting Rdv. Note that after every integer

multiple of B(R) steps, eah agent is loated at its initial node si.

4.2 Desription of the meta-protool

The meta-protool PN ,f,g works in phases, whih orrespond to inreasing values

of a presumed upper bound T on the number of nodes in the graph, the length

of all agent identi�ers, and the ompletion time of protools N1, . . . , NT . We will
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Fig. 2. High-level �owhart of the meta-protool of Setion 4.

say that an agent is idle if it is waiting inde�nitely on its starting node for some

other agent to provide it with the knowledge of the full impliit input. We will

say that an agent is partiipating if it is not halted and not idle. Note that an

agent may halt only as a result of exeuting one of the deider funtions f and g.
In eah phase T , the agents perform the following ations (see also Fig. 2):

Searh for nearby starting positions and set �ags. Eah partiipating agent i
�rst exeutes Rdv(2T, idi) for at most 2(T + 1)B(2T ) steps. By design of Rdv,

this guarantees that agent i will explore its 2T -neighborhood at least one and,

in partiular, if T ≥ |idi|, then for eah other partiipating agent, agent i will
explore its 2T -neighborhood at least one with that agent staying on its starting

node. If, in the proess, the agent meets any agent, then it sets its accompanied
�ag. It also sets its neutralized �ag if the enountered agent is partiipating and

it has a lexiographially larger ID. If the enountered agent is halted or idle,

the agent sets its mapseeker �ag. Finally, if the agent �nds a node with degree

larger than 2T or if the length of its ID is greater than T , it sets its cautious
�ag. All agents synhronize at this point.

Mapseeker agents attempt to reate a map of the graph. Next, eah agent i
with the mapseeker �ag set moves to a halted or idle agent whih it has found

previously, while exeuting Rdv in the urrent phase. Then, it attempts to reate

a map of the graph by exeutingCreate-Map(T ) and returns to si. Overall, this
takes at most 4T 4+4T steps. Moreover, during the exeution of Create-Map,

mapseeker agents ollet starting position and input information from all halted

and idle agents that they enounter. Meanwhile, non-mapseeker agents wait

for 4T 4 + 4T steps. All agents synhronize at this point.

So far, we have ahieved that, if T ≥ n, where n is the number of nodes in G,
then either no agent is a mapseeker having the full map of G, or all partiipating
agents have the mapseeker �ag set and they have the full map of G (Lemma 1

below). If all mapseeker agents have the full map of G and T ≥ n, then eah suh

agent i exeutes Rdv(n, idi), whih guarantees that, �nally, it is loated at si
and has met all other agents exeuting Rdv. Therefore, after onluding the
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Rdv proedure, eah mapseeker exeutes f with full knowledge of the impliit

input (Lemma 2).

Perform dovetailing. At this point, if no agent is a mapseeker having the full

map of G, the agents exeute eah of the protools N1, . . . , Nmin(T,|N |) for at

most T steps, and then retrae bakward to si (agents are synhronized after

exeuting eah protool). If any of these protools instruts an agent to halt,

the agent instead waits until the T -step exeution period has �nished, and then

returns to si. If the agent does not have the cautious or accompanied �ags set, it

then exeutes g(id, x,H1, . . . , Hmin(T,|N |)), where Hj is the history of the T -step
exeution of Nj with expliit input (id, x). Sine this proess takes at most 2T 2

steps, all agents that do not halt as a result of exeuting g are synhronized at

the end of the urrent phase. It is guaranteed that the histories fed to the loal

deider g orrespond to orret exeutions of the orresponding protools for

impliit input (id, G, s,x), even though some of the agents may have halted or

beome idle in earlier phases (Lemma 3 and Corollary 1).

Neutralized agents beome idle. Finally, at the end of the phase, neutralized
agents start waiting for the impliit input (i.e., they beome idle), and when

they reeive it (from some mapseeker agent), they exeute the global deider f .

Lemma 1. In eah phase, either all or none of the partiipating agents (i.e.,

non-halted and non-idle) exeute f .

Lemma 2. Any agent that exeutes f has full knowledge of the impliit input

(id, G, s,x).

Lemma 3. If an agent i exeutes g during phase T , then no other agent's start-

ing node is at distane 2T or less from si.

By Lemma 3, we obtain following orollary:

Corollary 1. Any agent i that exeutes g has histories whih orrespond to the

orret histories of Nj(idi, xi; id, G, s,x) for T steps (1 ≤ j ≤ min(T, |N |)), even
though some of the agents may have halted or beome idle in earlier phases.

In view of Corollary 1, we an show that all agents terminate and, in fat,

they all terminate on their respetive starting nodes.

Lemma 4. Let f be a global deider and let g be a loal deider for N . Then,

eah agent halts under the exeution PN ,f,g(id, G, s,x) by exeuting either f
or g. Moreover, eah agent i halts on its starting node si.

4.3 Appliation of the meta-protool

To summarize, the meta-protool is a generi tool that enables us to interleave

the exeutions of a possibly in�nite set of mobile agent protools. Eventually,

eah agent aepts or rejets, based either on the histories of the exeutions of a
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number of these protools (by means of the loal deider), or on full knowledge

of the impliit input (by means of the global deider).

We use the meta-protool in order to plae a partiular problem in one of

the mobile agent omputability lasses of Table 1. A ommon part of the proofs

onsists in de�ning the list of protools N and suitable deiders f and g, and
in showing that f and g indeed satisfy the global and loal deider properties,

respetively. This is followed by a part tailored to eah partiular result, where

we use the properties of the meta-protool (Lemmas 1�4 and Corollary 1) and

the partiular de�nitions of f and g, in order to show that agents that exeute

PN ,f,g always terminate in the desired state. The desired state is indiated by

the lass in whih we wish to plae the problem. For example, if we wish to show

that a problem is in MADs, we will have to show that all agents give the orret

answer for all impliit inputs.

5 Mobile Agent Veri�ability Classes

De�nition 5. A deision problem Π is in MAVs if and only if there exists a pro-

tool M suh that for all instanes (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) 7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) 7→ no.

By de�nition, MAVs ⊆ MAV. Moreover, MAV ⊆ Σ0
1, sine a entralized al-

gorithm an simulate the MAV protool for all possible erti�ate vetors (by

lassial dovetailing) and aept if it �nds a erti�ate for whih all agents a-

ept. By taking omplements, we obtain as well that co-MAVs ⊆ co-MAV ⊆ Π0
1.

There exist several nontrivial problems inMAVs and co-MAVs (Proposition 3).

Furthermore, we an show that MAV is a strit superset of MAVs and, as a

orollary, co-MAV is a strit superset of co-MAVs (Proposition 4).

Proposition 3. For any �xed γ ≥ 1, degreeγ ∈ MAVs. Furthermore, consensus ∈
co-MAVs and alone ∈ co-MAVs.

Proposition 4. degree ∈ MAV \ (MAVs ∪ co-MAV).

Proposition 4 also separates MAV from co-MAV. In order to separate Σ0
1

from MAV and Π0
1 from co-MAV, we observe that the teamsize problem, whih

is learly in ∆0
1 = Σ0

1 ∩ Π0
1, is neither in MAV nor in co-MAV.

Proposition 5. teamsize ∈ ∆0
1 \ (MAV ∪ co-MAV).

Deision problems with �no� erti�ates In lassial omputability, the

lass Π0
1 = co-Σ0

1 an be seen as the lass of problems that admit a �no� er-

ti�ate, i.e.: for �no� instanes, there exists a erti�ate that leads to rejetion,

whereas for �yes� instanes, no erti�ate an lead to rejetion. In this respet,

while MAV an ertainly be onsidered as the mobile agent analogue of Σ0
1,

co-MAV is not quite the analogue of Π0
1. Problems in co-MAV indeed admit a

�no� erti�ate, but the aeptane mehanism is reversed: for �no� instanes,
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there exists a erti�ate that leads all agents to rejet. This motivates us to

de�ne and study co-MAV′, the lass of mobile agent problems that admit a �no�

erti�ate while retaining the MAV aeptane mehanism, as well as its om-

plement MAV′. We give the de�nition of MAV′ below.

De�nition 6. A deision problem Π is in MAV′ if and only if there exists a pro-

tool M suh that for all instanes (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) 7→ ŷes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) 7→ no.

By de�nition, it holds that MAVs ⊆ MAV′ and co-MAVs ⊆ co-MAV′. To show

MAV′ = MAVs (and thus co-MAV′ = co-MAVs), we need to �boost� the MAV′ pro-

tool so that the agents answer unanimously even in �yes� instanes. We ahieve

this by supplying an extra erti�ate, whih is interpreted as the number of nodes

of the graph. This enables the agents to meet and exhange information in �yes�

instanes, and therefore reah a unanimous deision. The meta-protool from

Setion 4 essentially provides �for free� the neessary subroutines for meeting

and exhanging information.

Theorem 2. MAV′ = MAVs and co-MAV′ = co-MAVs.

In view of Theorem 2, it follows that MAVs ⊆ MAV∩co-MAV and co-MAVs ⊆
MAV∩ co-MAV. We separate MAV∩ co-MAV from both of these lasses with the

problem mineven:

Proposition 6. mineven ∈ (MAV ∩ co-MAV) \ (MAVs ∪ co-MAVs).

Connetions with the deidability lasses We explore the relationships

among the deidability lasses of Setion 3 and the lasses de�ned in this setion.

From the de�nitions we know that MAD ⊆ co-MAV′, therefore, by Theorem 2,

MAD ⊆ co-MAVs. Similarly, co-MAD ⊆ MAVs. Therefore, sine MADs ⊆ MAD ∩
co-MAD, we also have that MADs ⊆ MAVs ∩ co-MAVs.

We show in Theorem 3 that, in fat, MADs = MAVs∩co-MAVs. Furthermore,

from the de�nitions and Theorem 2, we have MAD ⊆ MAV ∩ co-MAVs and

co-MAD ⊆ MAVs ∩ co-MAV. We show that these atually hold as equalities in

Theorem 4 below. The proof of Theorem 3 (resp. Theorem 4) is based on trying

all possible ombinations of erti�ates for the MAVs (resp. MAV) and co-MAVs

protools. Here, we use the full power of the meta-protool of Setion 4 in order

to interleave and synhronize this in�nite number of exeutions.

Theorem 3. MADs = MAVs ∩ co-MAVs.

Theorem 4. MAD = MAV ∩ co-MAVs and co-MAD = MAVs ∩ co-MAV.

Note that it was shown in [13℄ that, if we onsider deision problems that are

deidable or veri�able by a single agent (thus giving rise to the lasses MAD1

and MAV1), then it holds that MAD1 = MAV1∩ co-MAV1. Theorems 3 and 4 an

be seen as generalizations of that result to multiagent lasses.
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Proposition 7. For any �xed γ ≥ 1, degreeγ ∈ MAVs \ co-MAD and degreeγ ∈
co-MAVs \MAD.

In view of Theorem 4, Proposition 7 yields a separation between MAVs

and co-MAV, as degreeγ ∈ MAVs \ co-MAV, and a separation between co-MAVs

and MAV, as degreeγ ∈ co-MAVs \MAV.

By ombining the results of this setion with the results of Setion 3, we

obtain a piture of the relationships among the lasses below MAV and co-MAV,

as illustrated in Figure 1.

Referenes

1. Boldi, P., Vigna, S.: An e�etive haraterization of omputability in anonymous

networks. In: DISC 2001. LNCS, vol. 2180, pp. 33�47. Springer (2001)

2. Boldi, P., Vigna, S.: Universal dynami synhronous self-stabilization. Distrib.

Comput. 15(3), 137�153 (2002)

3. Chalopin, J., Godard, E., Métivier, Y.: Loal terminations and distributed om-

putability in anonymous networks. In: DISC 2008. LNCS, vol. 5218, pp. 47�62.

Springer (2008)

4. Chalopin, J., Godard, E., Métivier, Y., Tel, G.: About the termination detetion

in the asynhronous message passing model. In: SOFSEM 2007. LNCS, vol. 4362,

pp. 200�211. Springer (2007)

5. Chandra, T.D., Hadzilaos, V., Toueg, S.: The weakest failure detetor for solving

onsensus. J. ACM 43(4), 685�722 (1996)

6. Chandra, T.D., Toueg, S.: Unreliable failure detetors for reliable distributed

systems. J. ACM 43(2), 225�267 (1996)

7. Das, S.: Mobile agents in distributed omputing: Network exploration. Bull. Eur.

Asso. Theor. Comput. Si. EATCS 109, 54�69 (2013)

8. Das S., Kutten S., Lotker Z.: Distributed veri�ation using mobile agents. In:

ICDCN 2013. LNCS, vol 7730, pp. 330�347. Springer (2013)

9. Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized dis-

tributed deision. Distrib. Comput. 27(6), 419�434 (2014)

10. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What an be deided loally

without identi�ers? In: PODC 2013. pp. 157�165. ACM (2013)

11. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impat of identi�ers on

loal deision. In: OPODIS 2012. LNCS, vol. 7702, pp. 224�238. Springer (2012)

12. Fraigniaud, P., Korman, A., Peleg, D.: Towards a omplexity theory for loal

distributed omputing. J. ACM 60(5), 35 (2013)

13. Fraigniaud, P., Pel, A.: Deidability lasses for mobile agents omputing. In:

LATIN 2012. LNCS, vol. 7256, pp. 362�374. Springer (2012)

14. Herlihy, M.: Wait-free synhronization. ACM Trans. Program. Lang. Syst. 13(1),

124�149 (1991)

15. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM

42(3), 88�89 (1999)

16. Markou, E.: Identifying hostile nodes in networks using mobile agents. Bull. Eur.

Asso. Theor. Comput. Si. EATCS 108, 93�129 (2012)

17. Yamashita, M., Kameda, T.: Computing funtions on asynhronous anonymous

networks. Math. Syst. Theory 29(4), 331�356 (1996)

14


	On Mobile Agent Verifiable Problems 

