
HAL Id: hal-01322947
https://hal.science/hal-01322947v1

Submitted on 29 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontology Enrichment by Discovering Multi-Relational
Association Rules from Ontological Knowledge Bases

Claudia d’Amato, Steffen Staab, Andrea G. B. Tettamanzi, Minh Tran Duc,
Fabien Gandon

To cite this version:
Claudia d’Amato, Steffen Staab, Andrea G. B. Tettamanzi, Minh Tran Duc, Fabien Gandon. On-
tology Enrichment by Discovering Multi-Relational Association Rules from Ontological Knowledge
Bases. SAC ’16 - 31st ACM Symposium on Applied Computing, Apr 2016, Pisa, Italy. pp.333-338,
�10.1145/2851613.2851842�. �hal-01322947�

https://hal.science/hal-01322947v1
https://hal.archives-ouvertes.fr

Ontology Enrichment by Discovering Multi-Relational
Association Rules from Ontological Knowledge Bases

Claudia d’Amato
Computer Science

Department
University of Bari, Italy

claudia.damato@uniba.it

Steffen Staab
University of Southampton,

UK & University of
Koblenz-Landau, Germany
staab@uni-koblenz.de

Andrea G. B. Tettamanzi
Univ. Nice Sophia Antipolis,

I3S, France
andrea.tettamanzi@unice.fr

Tran Duc Minh
Univ. Nice Sophia Antipolis,

I3S, France
tdminh2110@yahoo.com

Fabien Gandon
INRIA Sophia Antipolis,

France
Fabien.Gandon@inria.fr

ABSTRACT
In the Semantic Web context, OWL ontologies represent the con-
ceptualization of domains of interest while the corresponding as-
sertional knowledge is given by the heterogeneous Web resources
referring to them. Being strongly decoupled, ontologies and asser-
tion can be out-of-sync. An ontology can be incomplete, noisy and
sometimes inconsistent with regard to the actual usage of its con-
ceptual vocabulary in the assertions. Data mining can support the
discovery of hidden knowledge patterns in the data, to enrich the
ontologies. We present a method for discovering multi-relational
association rules, coded in SWRL, from ontological knowledge
bases. Unlike state-of-the-art approaches, the method is able to
take the intensional knowledge into account. Furthermore, since
discovered rules are represented in SWRL, they can be straight-
forwardly integrated within the ontology, thus (i) enriching its ex-
pressive power and (ii) augmenting the assertional knowledge that
can be derived. Discovered rules may also suggest new axioms to
be added to the ontology. We performed experiments on publicly
available ontologies validating the performances of our approach.

CCS Concepts
•Computing Methodologies→Artificial Intelligence; •Artificial
Intelligence→ Knowledge Representation and Reasoning;

Keywords
Description Logics; Pattern Discovery

1. INTRODUCTION
Data, information, and knowledge on the Semantic Web (SW) are
connected following best practices and exploiting standard Web
technologies, e.g. HTTP, RDF and URIs. This allows to share
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
SAC 2016, April 4-8, 2016, Pisa, Italy
ACM. 0-12345-67-8/90/01. . . $15.00
DOI: http://dx.doi.org/10.1145/2851613.2851842

and link information that can be read automatically by comput-
ers [4, 5]. A key aspect is the description of data/resources in terms
of controlled vocabularies, namely ontologies, which formally de-
fine the meaning of data/resources, and support powerful deductive
reasoning capabilities. The Linked Open Data (LOD) cloud1 is a
collection of interlinked open datasets (e.g. DBPedia, GeoNames,
FOAF) published according to these best practices. LOD could be
seen as a large source of assertional knowledge, whose intensional
part is formally defined by existing formal RDFS2/OWL3 ontolo-
gies. However, due to the heterogeneous and distributed nature
of the SW, ontological knowledge bases (KBs)4 may turn out to
be incomplete and noisy w.r.t. the domain of interest. An ontol-
ogy is incomplete when it is logically consistent (i.e., it contains no
contradiction) but it lacks information (e.g., assertions, disjointness
axioms, etc.) w.r.t. the domain of reference; an ontology is noisy
when it is consistent but it contains invalid information w.r.t. the
reference domain. This may prevent the inference of relevant infor-
mation or cause incorrect information to be derived. Data mining
techniques could be exploited for discovering hidden knowledge
patterns from ontological KBs, to be used for enriching an ontol-
ogy both at terminological (schema) and assertional (facts) level.
We present a method for discovering hidden knowledge patterns
in the form of multi-relational association rules (ARs) coded in
SWRL [12], which can be added to the ontology enriching its ex-
pressive power and increasing the assertional knowledge that can
be derived. Additionally, discovered rules may suggest new ax-
ioms to be added to the ontology, such as transitivity and symmetry
of a role, and/or concept/role inclusion axioms. First works for
mining hidden knowledge patterns in the SW [14, 13] proposed so-
lutions for discovering DATALOG clauses and conjunctive queries
from hybrid sources of knowledge (a rule set and an ontology).
These methods are grounded on a notion of key, standing for the
basic attribute to be used for counting elements for building the
frequent patterns. Unlike these methods, the proposed solution fo-
cuses on an ontological KB and does not require any notion of key.
A method for learning ARs from RDF datasets is proposed in [16],

1http://lod-cloud.net/
2http://www.w3.org/TR/rdf-schema/
3http://www.w3.org/TR/owl-features/
4By ontological knowledge base, we refer to a populated ontology, that
is both schema and instance level are specified. The expression will be
interchangeably used with the term ontology.

while a method for inducing new assertional knowledge from RDF
datasets is presented in [9]. Differently from our approach, these
methods do not consider any background/ontological knowledge
and do not exploit any reasoning capabilities. Furthermore, our
rules can be directly added to the ontology. Our solution is experi-
mentally evaluated and comparisons with the main state-of-the art
system are provided. In the next section, basics are illustrated; the
proposed method is presented in Sect. 3 and experimental evalua-
tion is given in Sect. 4. Conclusions are drawn in Sect. 5.

2. BASICS
We refer to ontological KBs described in Description Logics (DLs) [3],
which are the theoretical foundation of OWL. A DL KB K con-
sists of a set of axioms, of two kinds: terminological (TBox) T
and assertional (ABox) A. The formal meaning of DL axioms is
given in terms of model-theoretic semantics. Common ABox ax-
ioms are concept assertions of the form C(a) and role assertions
e.g. R(a, b), where C is a concept name, R is a role name, and a, b
are individual names5. DLs are endowed with deductive reasoning
capabilities such as: instance checking, assessing if an individual
is instance of a given concept; and concept subsumption. In the
following the general definition of relational AR for an ontological
KB is given. Hence, the problem we want to address is defined.

DEFINITION 1 (RELATIONAL ASSOCIATION RULE). Given a
populated ontological KB K= (T ,A), a relational association rule
r for K is a Horn-like clause of the form: body → head, where:
(a) body is a generalization of a set of assertions inK co-occurring
together; (b) head is a consequent that is induced fromK and body

DEFINITION 2 (PROBLEM DEFINITION). Given:

• a populated ontological knowledge base K = (T ,A);
• a minimum “frequency threshold”, θf ;
• a minimum “head coverage threshold”, θhc;
• a minimum “confidence improvement threshold”, θic;

Discover: all frequent hidden patterns w.r.t θf , in the form of
multi-relational ARs, that may induce new assertions for K.

Intuitively, a frequent hidden pattern is a generalization of a set
of concept/role assertions co-occurring reasonably often (w.r.t. a
fixed frequency threshold) together, showing an underlying form
of correlation that is exploited for obtaining new assertions.

2.1 Representation Language
For representing the rules to be discovered (following Def. 2), we
adopt the Semantic Web Rule Language (SWRL) [12], extending
the set of OWL axioms of a given ontology with Horn-like rules6.

DEFINITION 3 (SWRL RULE). Given a KB K, a SWRL rule
is an implication between an antecedent (body) and a consequent
(head) of the form: B1 ∧B2 ∧ . . . Bn → H1 ∧ · · · ∧Hm,
where B1 ∧ · · · ∧ Bn is the rule body and H1 ∧ · · · ∧ Hm is the
rule head. Each B1, . . . , Bn, H1, . . . Hm is called atom.
An atom is a unary or binary predicate of the formPc(s), Pr(s1, s2),
sameAs(s1, s2) or differentFrom(s1, s2), where the predicate sym-
bol Pc is a concept name inK, Pr is a role name inK, s, s1, s2 are
terms. A term is either a variable (denoted by x, y, z) or a constant
(denoted by a, b, c) standing for an individual name or data value.
5In OWL, concepts and roles are called classes and properties.
6The results is a KB with an enriched expressive power. More complex
relationships than subsumption can be expressed. For details see [11].

The discovered rules can be generally called multi-relational rules
since multiple binary predicatesPr(s1, s2) with different role names
of K could appear in a rule. The intended meaning of a rule is:
whenever the conditions in the antecedent hold, the conditions in
the consequent must also hold. A rule having more than one atom
in the head can be equivalently transformed, due to the safety con-
dition (see Def. 4), into multiple rules, each one having the same
body and a single atom in the head. We will consider, w.l.o.g., only
SWRL rules (hereafter just “rules”) with one atom in the head.

2.2 Fixing the Language Bias
In this section, the adopted language bias is specified. We man-
age rules having only atomic concepts and/or role names of K as
predicate symbols, and individual names as constants. Only con-
nected [9] and non-redundant [13] rules satisfying the safety con-
dition [11] are considered. Additionally, to guarantee decidability,
only DL-safe rules are managed [15], that is rules interpreted under
the DL-safety condition consisting in binding all variables in a rule
only to explicitly named individuals in K7. In the following, nota-
tions and formal definitions for the listed properties are reported.

Given an atomA, let T (A) denote the set of all the terms occurring
in A and let V (A) ⊆ T (A) denote the set of all the variables
occurring in A e.g. V (C(x)) = {x} and V (R(x, y)) = {x, y}.
Such notation may be extended to rules straightforwardly.

DEFINITION 4 (SAFETY CONDITION). Given a KB K and a
rule r = B1 ∧ B2 ∧ . . . Bn → H , r satisfies the safety condition
if all variables appearing in the rule head also appear in the rule
body; formally if: V (H) ⊆

⋃n
i=1 V (Bi),

DEFINITION 5 (CONNECTED RULE). Given a KB K and a
rule r = B1 ∧B2 ∧ . . . Bn → H , r is connected iff every atom in
r is transitively connected to every other atom in r.
Two atoms Bi and Bj in r, with i 6= j, are connected if they share
at least a variable or a constant i.e. if T (Bi) ∩ T (Bj) 6= ∅.
Two atoms B1 and Bk in r are transitively connected if there exist
in r, atoms B2, . . . , Bk−1, with k ≤ n, such that, for all i, j ∈
{1, . . . , k} with i 6= j, T (Bi) ∩ T (Bj) 6= ∅.

DEFINITION 6 (NON-REDUNDANT RULE). Given a KBK and
a rule r = B1 ∧ B2 ∧ . . . Bn → H , r is a non-redundant rule if
no atom in r is entailed by other atoms in r with respect to K, i.e.,
if, ∀i ∈ {0, 1, . . . , n}, with B0 = H , results:

∧
j 6=iBj 6|=K Bi,

EXAMPLE 1 (REDUNDANT RULE). GivenK with T = {Father v
Parent} and the rule r = Father(x) ∧ Parent(x) → Human(x)
where Human is a primitive concept, r is redundant since the atom
Parent(x) is entailed by the atom Father(x) with respect to K.
2.3 Metrics for Rules Evaluation
For determining the rules of interest for the goal in Def. 2, metrics
for assessing the quality of a rule are necessary. In the following,
the adopted metrics are summarized.

Given a rule r = B1 ∧ . . . ∧Bn → H , let us denote:

• ΣH(r) the set of distinct bindings of the variables occurring
in the head of r, formally: ΣH(r) = {binding V (H)}

• EH(r) the set of distinct bindings of the variables occurring
in the head of r provided that the body and the head of r are
satisfied, formally: EH(r) = {binding V (H) | ∃ binding V (B1∧
· · · ∧Bn) : B1 ∧ · · · ∧Bn ∧H}.
Since rules are connected, V (H) ⊆ V (B1 ∧ · · · ∧Bn)

7When added to an ontology, DL-safe rules are decidable and generate
sound results but not necessarily complete.

• MH(r) the set of distinct bindings of the variables occurring
in the head of r also appearing as binding for the variables
occurring in the body of r, formally: MH(r) = {binding V (H) |
∃ binding V (B1 ∧ · · · ∧Bn) : B1 ∧ · · · ∧Bn}

Following [9], and differently from the classic definitions (as used
in [1]) for ensuring monotonicity, they are recalled in the following.

DEFINITION 7 (RULE SUPPORT). Given a rule r = B1 ∧
. . .∧Bn → H , its support is given by the number of distinct bind-
ings of the variables in the head, formally: supp(r) = |EH(r)|.

DEFINITION 8 (HEAD COVERAGE FOR A RULE). Given a
rule r = B1 ∧ . . . ∧ Bn → H , its head coverage is given by the
proportion of the distinct variable bindings from the head of the
rule that are covered by the predictions of the rule:

headCoverage(r) = |EH(r)|/|ΣH(r)|
DEFINITION 9 (RULE CONFIDENCE). Given a rule r = B1∧

. . .∧Bn → H , its confidence is defined as the ratio of the binding
of the predicting variables in the rule head and their binding in the
rule body: conf(r) = |EH(r)|/|MH(r)|
An issue with these definitions, and particularly Def. 9, is that
an implicit closed-world assumption is made, since no distinction
between false predictions, i.e., bindings σ matching r such that
K |= ¬Hσ, and unknown predictions, i.e., bindings σ matching r
such that both K |= Hσ and K |= ¬Hσ, is made. On the contrary,
reasoning on ontologies is grounded on the open-world assumption.
Additionally, our goal is to maximize correct predictions, not just
describing the available data. To circumvent this limitation the fol-
lowing metric, generalizing the PCA Confidence [9], is introduced.

DEFINITION 10 (RULE PRECISION). Given a rule r = B1 ∧
. . . ∧ Bn → H , its precision is given by the ratio of the number
of correct predictions made by r and the total number of correct
and incorrect predictions (predictions logically contradicting K),
leaving out the predictions with unknown truth value.
This metric expresses the ability of a rule to perform correct predic-
tions, but it is not able to take into account the induced knowledge,
that is the unknown predictions. For this reason, the metrics pro-
posed for this purpose in [8] are also considered for the evaluation
in Sect. 4. They are recalled in the following:
• match rate: number of predicted assertions in agreement with

facts in the complete ontology, out of all predictions;

• commission error rate: number of predicted assertions con-
tradicting facts in the full ontology, out of all predictions;

• induction rate: number of predicted assertions that are not
known (i.e., for which there is no information) in the com-
plete ontology, out of all predictions.

3. DISCOVERING RELATIONAL ASSOCI-
ATION RULES FROM ONTOLOGIES

Given a populated ontological KB, our goal is to discover frequent
hidden patterns in the form of multi-relational ARs to be exploited
for making predictions of new assertions in the KB. The discovered
rules are DL-Safe and expressed in SWRL (see Sect. 2). Hence,
they can be integrated with the existing ontology, resulting in a KB
with an enriched expressive power [11, 12]. For reaching this goal,
we propose an algorithm grounded on the general framework for
discovering frequent DATALOG patterns (i.e., conjunctive DATA-
LOG queries) [6, 7, 10], successively adapted in [9] for discover-
ing relational ARs from RDF datasets. To the best of our knowl-
edge, our method represents the first work for discovering multi-
relational ARs from an ontological KB that is able to take into ac-
count terminological axioms and deductive reasoning capabilities.

Algorithm 1 Discover multi-relational ARs from a populated ontological KB.

Input: K: ontological KB; θf : frequency threshold; θhc: head coverage threshold;
Output: frequent: set of frequent patterns discovered fromK
1: infrequent ← ∅; frequent ← ∅
2: q ← CREATEGENERALPATTERNS(K, θf)
3: while ¬q.isEmpty() do
4: p← q.dequeue()
5: specPatternList ← GENERATESPECIALIZEDPATTERNS(p)
6: specializationAdded ← false
7: for all p′ ∈ specPatternList do
8: pruned ← EVALUATEPATTERNFORPRUNING(K, p, p′, q, infrequent)
9: if pruned then
10: infrequent ← infrequent ∪ {p′}

{Stopping criterion for the specialization process of a single pattern}
11: else if p′.length() < MAX_LENGTH then
12: q.enqueue(p′) {p′ is enqueued for further specialization steps}
13: specializationAdded ← true
14: else if ISSAFE(p′.asRule()) then
15: frequent ← frequent ∪ {p′} {p’ has the max length and is saved as a

discovered frequent pattern}
16: specializationAdded ← true
17: {If all specializations are pruned the parent pattern is saved as frequent}
18: if (¬specializationAdded) ∧ (p.length() ≥ 2) then
19: psafe ← GETSAFEPATTERNORANCESTORPATTERN(p)
20: if psafe 6= null ∧ psafe /∈ frequent then
21: frequent ← frequent ∪ {psafe}
22: return frequent

This allows pruning rules that may be inconsistent, when consid-
ered jointly with the KB, and taking into account additional (de-
rived) information, which would not been considered otherwise.

3.1 The Algorithm
The process comprises two main phases [1, 2]: (1) discover all
possible frequent patterns (the most expensive computation); (2)
obtain relational ARs from the discovered frequent patterns. As
in [9], a pattern is represented as a list of atoms to be interpreted
in conjunctive form. For each discovered frequent pattern, a multi-
relational AR is obtained (Phase 2) by considering the first atom in
the list as the head and the remaining atoms as the body.

For discovering frequent patterns, we implement a level-wise generate-
and-test approach. The ground level is given by an initial general
pattern consisting of a single atom. Frequent patterns are discov-
ered by successively (level-wise) specializing the pattern by suit-
able operators, which allow to explore the search space, until a
stopping criterion is met. Precisely, at each level, a set of special-
ized patterns is computed (generate phase) and each pattern is then
evaluated for possible pruning (test phase). Alg. 1 formalizes the
frequent patterns discovery phase. As first step, all general patterns
are generated (with the function CREATEGENERALPATTERNS) and
stored in a queue q. Given all concept and role names in the KB,
the function maintains those whose cardinality extensions (approx-
imated with instance retrieval) is higher than a threshold θf . Each
generated general pattern is dequeued from q and processed for spe-
cialization (with the function GENERATESPECIALIZEDPATTERNS)
until q is empty. Pattern specialization is performed level-wise by
adding a new atom for each level and evaluating the obtained pat-
tern for possible pruning, until the maximum pattern length (stop-
ping criterion) is reached. All possible specializations for a given
pattern are generated by applying the following operators:8

Add a concept atom: (detailed in Alg. 2) adds an atom whose pred-
icate symbol is a concept name in the ontology and its vari-
able argument already appears in the pattern to be special-

8Currently, we focus on rules containing variables only, but operators tak-
ing into account constants might similarly be considered.

ized. The predicate symbol can already appear in the pattern,
in that case, a different variable name has to be used.

Add a role atom: (Alg. 3 and Alg. 4) adds an atom whose predi-
cate symbol is a role name in the ontology and at least one
of its variable arguments is shared with one or more atoms in
the pattern while the other could be a shared or a new vari-
able. The predicate symbol could appear in the pattern.

The operators are applied so that, at each step of the specialization
process, rules in agreement with the language bias (see Sect. 2) are
obtained. Particularly, non-redundancy is ensured by checking that
(i) a candidate concept name is never added as a concept atom with
the same variable names appearing in a concept atom whose pred-
icate symbol subsumes or is subsumed by the candidate concept
name w.r.t. the considered ontology or with variable names ap-
pearing in a role atom where domain and/or range of the predicate
symbol is subsumed by the candidate concept name w.r.t. the con-
sidered ontology (lines 2–8 of Alg. 2); (ii) a candidate role name is
never added as a role atom with the same variable names appearing
in a concept atom whose predicate symbol subsumes the domain
and/or range of the role name w.r.t. the considered ontology (Alg. 3
and Alg. 4). The formal proof that only non-redundant patterns are
generated can be built by (similarly to how the Tableaux algorithm
works) attempting to build an interpretation for the specialized pat-
tern (regarded as a conjunction of concept and role names) where
a concept or role name in it, is assumed to be redundant. This ends
up with an empty interpretation, showing that there cannot exist
any redundant atom within the specialized pattern.

At each specialization level, the generated pattern is evaluated by
the function EVALUATEPATTERNFORPRUNING (see Alg. 5) for pos-
sible pruning. Several pruning conditions are verified (see discus-
sion in Sect. 3.2). If the specialized pattern is pruned (line 9), it
is added to the list of the infrequent patterns. If not pruned, the
pattern is enqueued for a successive specialization step, provided
that its pattern length does not exceed the fixed maximum length
(lines 11–12). If the pattern is not pruned but the maximum length
is reached, it is added to the list of the discovered frequent patterns,
provided it satisfies the safety condition (lines 14–15). It may hap-
pen that all specializations of a given pattern are pruned (line 17).
In this case, the pattern from which specializations are computed
is added to the list of the discovered frequent patterns, provided
it satisfies the safety condition. If not, its first ancestor satisfying
the safety condition (GETSAFEPATTERNORANCESTORPATTERN)
(if any) is added to the list of the discovered frequent patterns,
provided that no equivalent pattern is already present in the list
(lines 18–21). Once all the general patterns are processed for spe-
cializations, namely q is empty, the set of all discovered frequent
patterns is returned. The corresponding rules are straightforwardly
obtained and coded in SWRL by considering, for each pattern, the
first atom as the head of the rule and the remaining as the rule body.

3.2 On Assessing Pattern Pruning
The EVALUATEPATTERNFORPRUNING function (Alg. 5) checks
for different pruning conditions on a given specialized pattern. If
one of them is verified, the pattern is pruned. The first pruning con-
dition (line 2) checks if the rule obtained from the discovered pat-
tern is unsatisfiable when considered jointly with the ontology. If
so, the rule is pruned since it contradicts the reference KB.9 Please

9As remarked in [13], the satisfiability check is useful only if disjointness

Algorithm 2 ADDCONCEPTATOMS(r, C′, conceptsr, rolesr, varsr) :
specializedPatternsGivenAConceptAtom
Implements the specialization operator “add concept atom” which, given the current
pattern r and the candidate concept atom C′, returns all possible non-redundant
patterns w.r.t. the combination of variables

Input: r: the pattern to be specialized; C′: the candidate concept atom;
conceptsr : concept names appearing in the pattern under construction;
rolesr : role names appearing in the pattern under construction;
varsr : variable names appearing in the pattern under construction;

Output: specializedPatternsGivenAConceptAtom: the list of all non-redundant spe-
cializations for the input pattern, given the candidate concept atom C′

1: specializedPatternsGivenAConceptAtom← ∅
2: subCr ← conceptsr .getConceptsSubsumedBy(C′)
3: superCr ← conceptsr .getConceptsSubsuming(C′)
4: subRr ← rolesr .getRolesWithDomainOrRangeSubsumedBy(C′)
5: {Avoid rules with semantically redundant atoms}
6: used ← subCr.getVars() ∪ superCr.getVars() ∪ subRr.getVars()
7: for all v ∈ varsr \ used do
8: specializedPatternsGivenAConceptAtom.add(r ∧ C′(v))
9: return specializedPatternsGivenAConceptAtom

Algorithm 3 ADDROLEATOMSWITHFRESHVAR(r, R′, conceptsr,
rolesr, varsr) : specializedPatternsWithFreshVarGivenARoleAtom
Implements the operator “add role atom introducing a fresh variable”, which, given
the current pattern r and the candidate role atom R′, returns all non-redundant
possible patterns w.r.t. the combination of variables and a fresh variable

Input: r: the pattern to be specialized; R′: the candidate role atom;
conceptsr : concept names appearing in the pattern under construction;
rolesr : role names appearing in the pattern under construction;
varsr : variable names appearing in the pattern under construction;

Output: specializedPatternsWithFreshVarGivenARoleAtom: list of specializations
1: specializedPatternsWithFreshVarGivenARoleAtom← ∅;
2: z ← GETFRESHVARIABLE()
3: supConceptsOfDomainr ← conceptsr .getConceptsSubsuming(dom(R′))
4: supConceptsOfRanger ← conceptsr .getConceptsSubsuming(range(R′))
5: for all v ∈ varsr \ supConceptsOfDomainr .getVars() do
6: specializedPatternsWithFreshVarGivenARoleAtom.add(r ∧ R′

i(v, z))
7: for all v ∈ varsr \ supConceptsOfRanger .getVars() do
8: specializedPatternsWithFreshVarGivenARoleAtom.add(r ∧ (R′

i(z, v))
9: return specializedPatternsWithFreshVarGivenARoleAtom

note that, this condition cannot occur if the ontological KB is con-
sistent and noise-free. Nevertheless, since the proposed method can
be also applied to noisy ontologies, it may happen that an unsatis-
fiable rule/pattern (when considered jointly with the ontology) is
extracted, particularly if low frequency and Head Coverage thresh-
olds (see Sect. 2.3) are considered.

The second pruning condition (line 4) is used for pruning a pattern
if its Head Coverage is less then a threshold θhc. This ensures
that the generated pattern is an abstraction of a sufficient number
of assertions and not of an isolated number of cases. Even though
we ensure that the final discovered rules satisfy the safety condition
(see Def. 4), while building a pattern (see Sect. 3) it may happen
that a dangling variable occurs, that is a variable occurring in the
corresponding rule head but not in the body. This may happen when
a binary atom occurs in the head and a unary atom is added as a
first atom in the body10. In such a case, when computing support,
confidence and Head Coverage (see Sect. 2.3), according to the
DL-safety condition: a) the dangling variable y has to be bound
to any individual in K i.e., the rule r is treated as if an additional
conjunct >(y) is present in the body; b) a variable z ∈ V (r) \
V (H) is treated as if it is existentially quantified, i.e., a binding
of the variables V (H) is counted once and only if there exists an

axioms occur in the ontology, otherwise no rules can be pruned. This check
can be omitted (saving computational costs) if no disjointness axioms occur.

10Please note if such a case is avoided, the search space would result drasti-
cally cut with the risk of skipping important/useful patterns.

Algorithm 4 ADDROLEATOMSWITHALLVARSBOUND(r, R′, conceptsr,
rolesr, varsr) : specializedPatternsWithBoundVars
Implements the specialization operator “add role atom with all variables bound” that
given the current pattern r and the candidate role atom R′ return all non-redundant
patterns w.r.t. the combination of variables

Input: r: the pattern to be specialized; R′: the candidate role atom;
conceptsr : concept names appearing in the pattern under construction;
rolesr : role names appearing in the pattern under construction;
varsr : variable names appearing in the pattern under construction;

Output: specializedPatternsWithBoundVars: list of specializations
1: specializedPatternsWithBoundVars← ∅
2: supConceptsOfDomainr ← conceptsr .getConceptsSubsuming(dom(R′))
3: supConceptsOfRanger ← conceptsr .getConceptsSubsuming(range(R′))
4: ifR′ /∈ rolesr then
5: for all v ∈ varsr \ supConceptsOfDomainr .getVars() do
6: for all w ∈ varsr \ supConceptsOfRanger .getVars() do
7: specializedPatternsWithBoundVars.add(r ∧ R′(v, w))
8: else
9: usedDomVars← rolesr .getElement(R′).getListOfVarsForDomain()
10: usedRangeVars← rolesr .getElement(R′).getListOfVarsForRange()
11: usedDomVars← usedDomVars ∪ supConceptsOfDomainr .getVars()
12: usedRangeVars← usedRangeVars ∪ supConceptsOfRanger .getVars()
13: for all v ∈ varsr \ usedDomVars do
14: for all w ∈ varsr \ usedRangeVars do
15: specializedPatternsWithBoundVars.add(r ∧ R′(v, w))
16: return specializedPatternsWithBoundVars

Algorithm 5 EVALUATEPATTERNFORPRUNING(K, p, p’, q, infrequent) :
pruned
Determine if a pattern has to be pruned or not.

Input: K: ontological KB; p: parent pattern of the pattern to be evaluated; p’: pattern
to be evaluated for pruning; q: list of the generated patterns; infrequent: set of the
patterns that have been pruned;

Output: pruned: true if the pattern has to be pruned, false otherwise
1: r′ ← p′.asRule(); r ← p.asRule()
2: ifK ∪ r′ |= ⊥ then
3: return true
4: else if headCoverage(r′) < θhc then
5: return true
6: else if conf(r′)− conf(r) < θic then
7: return true
8: else if ISPATTERNALREADYGENERATED(p′, q) then
9: return true
10: else
11: for all infPatt ∈ infrequent do
12: if r′.getSupportExtension()⊆ infPatt.getSupportExtension() then
13: return true
14: return false

individual to which z can be bound while satisfying both the head
and the body.

The third condition (line 6) prunes a pattern if it does not show a
sufficient confidence improvement w.r.t. its parent. A lack of con-
fidence improvement means that the specialized pattern does not
contain new information, hence, by adopting the minimal criterion
length, the shorter pattern is preferred.

The condition reported on line 8 is used for pruning patterns that
are already generated from other specialization paths, thus avoiding
that the same pattern is considered more than once for the special-
ization process, thus saving computational effort. Checking for an
already generated pattern is performed by a heuristic: two patterns
are assumed to be semantically equivalent if the support extension
of their corresponding rules is the same. For avoiding to compare
the support extension of the candidate rule/pattern with those of
all patterns/rules already generated, the heuristic selects only the
patterns whose corresponding rules have the same Head Coverage
value of the current pattern/rule and among these checks for the ex-
istence of a pattern/rule having the same support extension of the
candidate pattern/rule. If found, the candidate pattern is pruned.

Table 1: Key facts about the ontological KBs used.
Ontology # Concepts # Roles # Indiv. # Declared # Decl.+Derived

Assertions Assertions
Financial 59 16 1000 3359 3814
BioPAX 40 33 323 904 1671
NTMerged 47 27 695 4161 6863

The last condition (line 10) prunes a candidate pattern if it results
to be the specialization of an existing infrequent pattern. This is
checked by an heuristic: the candidate pattern is assessed as infre-
quent if the support extension of its corresponding rule is contained
in the support extension of a rule/pattern in the infrequent patterns.

4. EXPERIMENTAL EVALUATION
We tested our method on ontologies publicly available: Financial
Ontology 11, Biological Pathways Exchange (BioPAX) 12 Level 2
Ontology, New Testament Names Ontology (NTN) 13. Details on
them are reported in Tab. 1. We started by considering small on-
tologies since we wanted to take under control the role of the rea-
soner in this preliminary phase. For the same reason, efficiency as-
pects have not been strongly taken into account. At this stage, we
wanted to prove the feasibility of our approach, while directions for
tackling scalability and efficiency aspects are drawn in Sect. 5. The
first goal of our experiments consisted in assessing the ability of the
discovered rules to predict new assertional knowledge for a consid-
ered ontological KB. For the purpose, different samples of each
ontology have been built for learning multi-relational ARs (as pre-
sented in Sect. 3) while the full ontology versions have been used as
test-bed. Specifically, for each ontology three samples have been
built by randomly removing respectively 20%, 30%, 40% of the
concept assertions, according to a stratified sampling procedure.14

We ran our system by repeating 10 times the sampling procedure
for Financial and BioPAX ontologies and 1 times for NTNMerged
and using the following parameters setting: MAX_LENGTH = 3,
θf = 1 (frequency threshold for building the queue q of the gen-
eral patterns), θhc = 0.01, θic = 0.001. As in [9], we applied the
discovered rules to the full ontology versions and collected all pre-
dictions, that is the head atoms of the instantiated rules. All predic-
tions already contained in the reduced ontology versions have been
discarded while the remaining predicted facts have been consid-
ered. A prediction is assessed as correct if it is contained/entailed
by the full ontology version. A prediction is assessed as incorrect if
it is inconsistent with the full ontology version. Results (see Tab. 2)
have been averaged over the different runs of the ontology sampling
for each ontology and have been measured in terms of: precision
(see Def. 10), match rate, commission error rate and induction rate
(see Sect. refsec:metrics). Looking at Tab. 2, it is possible to see
that very high values of match rate are reached for the considered
ontologies. This proves that the discovered rules are actually able
to predict new assertional knowledge for the considered ontologies.
Additionally, as expected (because of the exploitation of the termi-
nology and the reasoning capabilities) no contradicting knowledge
is predicted (because of the null commission rate). The cases of
not null induction rate testifies the ability of the developed method
to induce new knowledge that is not logically derivable. Specif-
ically, induction rate is not null for the case of ontologies where

11http://www.cs.put.poznan.pl/alawrynowicz/financial.owl.
12http://www.biopax.org/release/biopax-level2.owl.
13http://www.semanticbible.com/ntn/ntn-view.html
14The reduced versions of the ontologies will be available online

Table 2: Average performance metrics on each ontology.
Ontology Sample Match Comm. Ind. Precision Tot. nr.

Rate Rate Rate Predictions

Financial
20% 0.81 0 0.19 1.0 947
30% 0.81 0 0.19 1.0 1890
40% 0.82 0 0.18 1.0 2960

BioPAX
20% 1.0 0 0 1.0 669
30% 1.0 0 0 1.0 1059
40% 1.0 0 0 1.0 1618

NTMerged
20% 0.94 0 0.06 1.0 9085
30% 0.9 0 0.1 1.0 9756
40% 0.94 0 0.06 1.0 10418

cases of concepts and roles for which a large number of assertions
is available while for other concepts and roles, few assertions are
available. Note that the value of precision is always the highest one
since the induced assertions are not considered for the computation
of this metric and any mistake (commission error is null) is made.
It is also interesting to note how the number of predicted assertions
increases when less knowledge is available (since a higher number
of assertions have been removed from the ontologies).
The second goal of our experiments consisted in showing the im-
portance and the value added of exploiting the terminological knowl-
edge and the reasoning capabilities when extracting rules from on-
tological KBs. For this purpose, we compared our system with
AMIE [9], which represents the state-of-the-art system in the con-
sidered setting, but it is not able to exploit neither terminological
information nor reasoning capabilities. Since one of the AMIE
key points (as argued in [9]) is its ability to outperform state-of-
the-art ILP systems in terms of number of discovered rules, we
compared the number of rules discovered by our system with the
number of rules discovered by AMIE, using the same samples of
the ontologies mentioned above. Averaged results are reported in
Tab. 3 where it is possible to see that our system outperformed the
number of rules discovered by AMIE for the case of Financial and
BioPax ontologies. Indeed, our system is able to output rules not
necessarily closed15 and having both concept and role atoms in the
head, while AMIE can only output closed rules with role atoms in
the head. Additionally our system is able to prune redundant rules
and rules that are inconsistent when considered jointly with the ref-
erence ontology. This is the reason why AMIE registered a larger
number of rules then our system for the case of NTNMerged. Our
system outperformed AMIE also in terms of number of predictions.
For the purpose, we compared the top n rules, ranked w.r.t. their
match rate. n was set equal to the number of rules discovered by
AMIE when few rules were discovered, and equal to 10 for the
other cases. Our system clearly outperformed AMIE for the cases
of BioPax and NTNMerged. The same did not happen for Financial
ontology. This is because our system outputs as much as possible
specific rules. For the case of Financial ontology, AMIE output two
rules, each one having just one atom in the body, while our system
output several refinements of such two rules, thus preventing the
predictions just coming from the general rules. This suggested an
improvement of our method consisting in assessing whether more
general or refined rules have to be returned.

5. CONCLUSIONS
We presented a method for discovering multi-relational ARs from
ontological KBs, to be used for enriching assertional knowledge.
The method exploits: 1) terminological axioms; 2) DLs reason-
ing capabilities; providing a step ahead w.r.t. the state-of-the-art.
Discovered rules are represented in SWRL, hence they can be di-
rectly added to the considered ontological KB deriving new asser-

15A rule is closed if every variable in it appears at least twice [9].

Table 3: Comparison # extracted rules: AMIE vs. our system.
Ontology Samp. # Rules Top

Ours AMIE n # Predictions # Predictions
Ours #AMIE

Financial
20% 177 2 2 29 208
30% 181 2 2 57 197
40% 180 2 2 85 184

BioPax
20% 298 8 8 25 2
30% 283 8 8 34 2
40% 272 0 8 50 0

NTMerged
20% 243 1129 10 620 420
30% 225 1022 10 623 281
40% 239 1063 10 625 332

tional knowledge. Furthermore, the discovered rules may suggest
new axioms at schema level, such as role transitivity, symmetry,
role/concept subsumption. The proposed approach has been ex-
perimentally evaluated through its application to publicly available
ontologies and comparisons with the main state of the art system.

Future works will focus on: enriching the expressiveness of the dis-
covered rules and improving the method performance particularly
w.r.t. scalability. For the latter goal, additional heuristics for fur-
ther cutting the search space will be studied, jointly with indexing
methods for caching the results of the reasoner inferences.

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association

rules between sets of items in large databases. In Proc. of the Int.
Conf. on Management of Data, pages 207–216. ACM Press, 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules in large databases. In Proc. of Very Large
Data Bases Int. Conf., pages 487–499. Morgan Kaufmann, 1994.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge Univ. Press, 2003.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, 2001.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked data – the story so far.
Int. J. on Semantic Web and Information Systems, 5(3):1–22, 2009.

[6] L. Dehaspe and H. Toivonen. Discovery of frequent DATALOG
patterns. Data Mining and Knowledge Discovery, 3(1):7–36, 1999.

[7] L. Dehaspe and H. Toivonen. Discovery of relational association
rules. In Relational Data Mining, pages 189–208. Springer, 2000.

[8] N. Fanizzi, C. d’Amato, and F. Esposito. Learning with kernels in
description logics. In F. Zelezný and N. Lavrac, editors, Proceedings
of the 18th Int. Conf. on Inductive Logic Programming (ILP 2008),
volume 5194 of LNCS, pages 210–225. Springer, 2008.

[9] L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. AMIE:
Association rule mining under incomplete evidence in ontological
knowledge bases. In Proc. of the 22th International Conference on
World Wide Web (WWW ’13), pages 413–422. ACM, 2013.

[10] B. Goethals and J. Van den Bussche. Relational association rules:
Getting warmer. In Int. Works. on Pattern Detection and Discovery
Proc., volume 2447 of LNCS, pages 125–139. Springer, 2002.

[11] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules
language. In Proc. of the Int. Conf. on World Wide Web, pages
723–731. ACM, 2004.

[12] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A semantic web rule language combining OWL
and RuleML, 2004.

[13] J. Józefowska, A. Lawrynowicz, and T. Lukaszewski. The role of
semantics in mining frequent patterns from knowledge bases in
description logics with rules. Theory and Practice of Logic
Programming, 10(3):251–289, 2010.

[14] F. A. Lisi. AL-QuIn: An onto-relational learning system for semantic
web mining. Int. J. of Semantic Web and Information Systems., 2011.

[15] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL
with rules. Web Semantics, 3(1):41–60, 2005.

[16] J. Völker and M. Niepert. Statistical schema induction. In ESWC’11
Proc., volume 6643 of LNCS, pages 124–138. Springer, 2011.

