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On the construction of wavelets on a bounded interval

Gerlind Plonka, Kathi Selig and Manfred Tasche
Fachbereich Mathematik, Universitit Rostock, D-18051 Rostock, Germany

This paper presents a general approach to a multiresolution analysis and wavelet spaces on
the interval [—1,1]. Our method is based on the Chebyshev transform, corresponding
shifts and the discrete cosine transformation (DCT). For the wavelet analysis of given
functions, efficient decomposition and reconstruction algorithms are proposed using fast
DCT-algorithms. As examples for scaling functions and wavelets, polynomials and transformed
splines are considered.

1. Introduction

Recently, several constructions of wavelets on a bounded interval have been
presented. Most of these approaches are based on the theory of cardinal
wavelets. The simplest construction consists in the trivial extension of functions
f 10,1} — R by setting f(x) :=0 for x € R\[0, 1]. These functions can be analyzed
by means of cardinal wavelets. But in general, this extension produces discontinu-
ities at x = 0 as well as x = 1, which are reflected by large wavelet coefficients for
high levels near the endpoints 0 and 1, even if f is smooth on [0, I]. Thus the
regularity of f is not characterized by the decay of wavelet coefficients.

Another simple solution, often adapted in image analysis, consists in the even
2-periodic extension f of f:[0,1] = R. If f € C[0,1], then f € C(R). But in
general, if f € C'[0,1], then the derivative of f has discontinuities at the
integers. The smoothness of f is again not characterized by the decay of wavelet
coefficients.

In [8], Meyer has derived orthonormal wavelets on [0,1] by restricting
Daubechies’ scaling functions and wavelets to [0,1] and orthonormalizing
their restrictions by the Gram-Schmidt procedure. This idea led to numerical
instabilities such that further investigations of wavelets on a bounded interval
were necessary (see [4]).

We are interested in wavelet methods on a bounded interval which can exactly
analyze the boundary behaviour of given functions. Up to now, three methods
are known to solve this problem. The often used first method is based on special



boundary and interior scaling functions as well as wavelets (see [3,4,13]) such that
numerical problems at the boundaries can be reduced. Then the bases of sample
and wavelet spaces do not consist in shifts of single functions. The second
method (see [9]) works with two generalized dilation operations, since the classical
dilation is not applicable for functions on a bounded interval.

A third wavelet construction on the interval I :=[—1, 1], first proposed in [6], is
based on Chebyshev polynomials. Both scaling functions and wavelets are
polynomials which satisfy certain interpolation properties. As shown in [16], this
polynomial wavelet approach can be considered as generalized version of the
well-known wavelet concept, which is based on shift-invariant subspaces of the
weighted Hilbert space L2(7) with respect to the Chebyshev shifts (see [2]),
where w denotes the Chebyshev weight.

The objective of this paper is a new general approach to multiresolution of L2(I)
and to wavelets on the interval I, based on the ideas in [16]. As known, the Fourier
transform and shift-invariant subspaces of L?(R) are essential tools for the con-
struction of cardinal multiresolution and wavelets (see [S]). Analogously, the
finite Fourier transform and shift-invariant subspaces of L3, lead to a unified
approach to periodic wavelets (see [7,11]). This concept can be transferred to the
Hilbert space Lg,,,o of even periodic functions using the shift operator

S,F:=3(F(-+a)+F(-—a)) (a€eR)

for F € Lz,, o- The isomorphism between Lz,, o and L2(I) can be exploited in order
to construct new sample and wavelet spaces in L2(I). Using fast algorithms of
discrete cosine transforms (DCT), efficient frequency based algorithms for
decomposition and reconstruction are proposed. As special scaling functions and
wavelets, we consider algebraic polynomials and transformed splines. It is remark-
able that our decomposition algorithm for polynomial wavelets needs fewer
multiplications up to a certain level than the fast decomposition algorithm for
cubic spline wavelets on [0, 1] proposed in [13].

The outline of our paper is as follows. In section 2 we briefly introduce the
Chebyshev transform, related shifts and the DCT. In section 3 we analyze shift-
invariant subspaces of L2(I). The scalar product of functions from shift-invariant
subspaces can be simplified to a finite sum by means of the so-called bracket
product. In section 4 we consider a nonstationary multiresolution of L2(I) con-
sisting of shift-invariant subspaces V; (j € N;) generated by shlfts of scaling
functions ;. The required conditions for the multiresolution of L2(/) and their
consequences for the scaling functions ; are analyzed in detail. In section 5 we
introduce the wavelet space W, (j € Ny) as the orthogonal complement of ¥; in
V1. Then W is a shift-invariant subspace generated by shifts of the wavelet ;.
Using the two-scale symbol of ; and the bracket product of ¢; and ¢;,,, the wave-
let 1; is characterized in theorem 5.3. Section 6 provides fast, numerically stable
decomposition and reconstruction algorithms based on fast DCT-algorithms. In
section 7 we present polynomial wavelets on I (see [6,16]). Finally in section 8, we
adapt the theory of periodic splines to the interval I with respect to the Chebyshev



nodes. Note that the transformed spline wavelets are supported on small sub-
intervals of I. The examples show that periodic multiresolutions of L3, with even
scaling functions ; can be transformed into a multiresolution of LE(I).

2. Chebyshev transform and shifts

In this section, we introduce the Chebyshev transform and corresponding shifts
and we examine their relations to the even shifts of periodic even functions. For
more details on Chebyshev shifts we refer to [2,16]. Throughout this paper, we con-
sider the interval /:=[—1,1] and the Chebyshev weight w(x):= (1 — x*)™"/? for
x € (—1,1). Let L2(I) be the weighted Hilbert space of all measurable functions
f : I — R with the property

[ w(y)f(»)*dy < oo.

For f, g € LL(I), the corresponding inner product and norm are defined by

(r8)=2 [WOW eI ="

Let /% denote the Hilbert space of all real, square summable sequences a = (a,)5e0,
b = (b,)n—; With the weighted inner product and norm given by

[o,0]
(a,b)z=taby+ Y a,b,,  alla=(a,2)"
n=1

Let C(I) be the set of all continuous functions f : I — R. By II, (n € Ny) we
denote the set of all real polynomials of degree at most » restricted on 7. As
known, the Chebyshev polynomials T, := cos(narccos) € I, (n € Ny) form a
complete orthogonal system in L2 (). Note that arccos : I — [0, ] is the inverse
function of cos restricted on [0, #]. For m,n € N, we have

2 m=n=90,
(T,,,,T,,)z{l m=n>0,
0 m # n.
2

Further, we use the Chebyshev transform of L2(I) into /> mapping f € L(I) into
a[f]:=(a,[f])X, € I* with the Chebyshev coefficients

an[f] = (f3 Tn) (n € NG)
Then for f, g € LL(I), we have the Parseval identities

(f.g)=@lf)alg)e, I/ = Nalf]ll: (2.1

Note that the Chebyshev transform is a linear bijective mapping of L2(I) onto /2.
For more details on the Chebyshev transform see [2,10].



The Chebyshev transform is strongly related with the Fourier cosine transform.
Let L3, be the Hilbert space of all 2m-periodic, square integrable functions
F,G : R — R with the inner product

(F,G),:= % /_ " F(s)G(s) ds.

Let szo be the subspace of all even functions of L3.. For a given function
fel? (I ), the cos-transformed function F:=f(cos) € L},, has the Fourier
expansion

F=1ay(F)+ Z a,(F)cos(n-) (2.2)
with the Fourier cosine coefficients

a,(F):= % [) "F(s)cos(ns)ds  (n € Ny). (2.3)

In order to adapt the concept of shifts to the interval I, we consider the even shift
S,F of F € L3, by a €R, which is defined as the even part of the translated
function F(- — a), i.e.

SoF:=3(F(-+a)+ F(- — a)) € L3, (24)
Observe that for n € N,
S,cos (n+) = cos (na)cos (n-), a,(S,F) = cos (na)a,(F).

Restricting F = f (cos) on [0, ], the arccos-transformed function F(arccos) coin-
cides with f € L1(I). From (2.2)—(2.3) it follows directly the Chebyshev expansion

S =}%alf] +Z a, alf]=a,(f(cos))  (neN).

Further, the even shift S, of F = f(cos)(a € R) goes into the Chebyshev shift s, [ of
f with h:.=cosacl,ie.

(1S ) (x) =3 f (xh — w(x)v(h)) + 1 f (xh + v(x)u(h))  (x€T) (2.3)

with v(x):= (1 — X)) (x e I).

For the realization of the Chebyshev transform in finite dimensional subspaces
of L,Z,.(I ), we will use fast algorithms of the discrete cosine transform (DCT). In
the following, we briefly introduce the different types of DCT.

LetN;:= =d2/, wherej € N, stands for the level and d € Nis a constant dependmg
on the apphcatlon Further, let §; , be the Kronecker symbol and ¢; = ¢; = =271,
€s:=1(k=1,...,N;—1). We introduce the matrices

kim\Y : N, N,
C;:=|cos N i D, :=diag (€ ;)20 I:= (6,‘.',),(',:0,
. 2s + Drm\V™! ~ . —
Cj = (COS (—SA%:)”—W> 0, Df :=diag (ff.S)gi.ola I = (6r S)r 5—01
J r.s=



which fulfil the relations

N,
e~ o N~
T T
1 D;C; =G jD,v':?J . (2.7)
This follows from
% €; ¢ COS kum Ny u=0modNy, (2.8)
ik — .
k=0 ’ N; 0 otherwise,
- N; u=0modN,,,,
Nj—1 (2k + I)H‘ﬂ' J j+2
> cos ~N,  u= Ny, mod Ny, (29)
k=0 j+l .
0 otherwise

(cf. [16]). For further development, we define some variants of the DCT. The
type I-DCT of length N;+ 1 (DCT-1 (N; + 1)) is a mapping of R"*! into itself
defined by

x':=Cx (xeR"") (2.10)

with C/ := C;D,. By N;(C/)™" = 2C;, this mapping is bijective. Note that (2.6) and
(2.10) imply

N.
*"™D, %" = x"(C/)'D;C/x = x'D,;C,D,C;D;x = 7! x"D;x. (2.11)

The type II-DCT of length N; (DCT-II (N;)) is a mapping of RY into itself defined
by

y'=Cly (yeR"Y) (2.12)
with C/':= C;. Then by (2.7) and (2.12), we obtain

(y")™D,§" =y'¢/D;C;y = > y'y. (2.13)

The type III-DCT of length N; (DCT-III (N;)) is a mapping of R™ into itself defined
by

y[]l = éjl”y (y c RNj)

with /"' := CD;. By (2.7), the inverse of the DCT-II (N;) is the mapping (2/N;)
DCT-III (¥;). Fast and numerically stable algorithms for the DCT-I (N, + 1),
DCT-II (N;) and DCT-III (N;), which work in real arithmetic, are described in
[1,15].



3. Shift-invariant subspaces

Using the Gauss—Chebyshev nodes h; ;= cos (un/N;}(u € Z) of level j (j € Ny)

and the Chebyshev shift (2.5), we obtain the shifts of level j

O =Sy, (ueZ,

which possess the following properties (see [2,16]):

Lemma 3.1
Forj e Ny, u,v e Zand f,g € L3(I) we have

(l) u+Nj+1 = Uj +u = Oj41, 20
(11) 20 j u j v 20} UUj u Uj,u+v + Uj, TR

(lll) < juf? > <f gu >’
(iv) 0;,T, = cos (nuﬂ/fV})T,,, a,[0j,, f] = cos (nur/Nj)a,[ f] (n € Ny),
) g5, f€ll, forf€Il, (n e Ny).
Note that g; f = f and o; 5, f = f(— ) for f € L3(I). Further, for f € C(I') we
have

( juf)(l) (]u) (UEZ). (31)

A linear subspace S of LL(I) is called shzft invariant of level j (j € Ny), if
for each f € § all shifted functions 0;,f (/ =0,...,N;) are contained in S. The
shift-invariant subspace of level j

Sy0(p) i=span {o 011 =0,...,N}}
is said to be of type 0 generated by ¢ € L(I). The shift-invariant subspace of level j
Siale) =span{oj i 1=0,...,N;— 1}

is said to be of type 1 generated by p € L:(I). It is obvious by lemma 3.1, (i)—(ii)
that S;4(p) C Sj10(v) and S;,(¥) = S;0(0j51,1¥) € Sjsr0(). By definition,
S € S;i41,0(p) can be represented in the form

/+l

f= Z €ipl ke Oy, ikl /+l,k80 (aj+1,k(f) € R). (3.2)

Using lemma 3.1, (iv) and Chebyshev transform, we obtain the Chebyshev
coefficients

an[f] = Aj+l,u(f)an[(p] (n € NO) (33)
with
Wil knm
/+l n Z +l 13 41, L COS N . (34)
j+1

Observe that (G, ,,(f)),’_’;)‘ is the DCT-I (N, + 1) of (o1 (S )i %+t and that the



following properties of periodicity and symmetry hold for neN; and
k=0,...,Ny —1

af+l‘n(f) = &j+l,l\'j+z+n(f)v CAV,'+|,/<(f) = a‘j,l\'j“—-k(f)-
In particular, for f € §; 5(¢) we get the representation (3.2) with
@20 () =0 (I=0,...,N;,-1). (3.5)

Then it follows that the vector (Gjpy ,(f) fio with components (3.4) is the DCT-I
(N;+1) of (o4, 2,(f)),=0 For f € §; ;(p) we obtain (3.2) with

aj+l,21(f) =0 ({=0,... ,Nj); (3.6)

and the corresponding vector (&, ,(f ))f,v;;' is the DCT-II(N;) of the vector

Ni=1 .
(1,241 (f iy » 1€

=

&10(f) = @jpy,241(f) cos
I

(21 + Dnm
N

[
<

In the following, we derive some important properties of the subspaces S; ,(¢). We
characterize S; ,(¢) (v € {0,1}) by the Chebyshev transform:

Lemma 3.2
Let j € Ny, v € {0,1} and @, f € L2(I) be given.

(i) Thenf € S;,(¢) if and only if there exist G;,, ,(f) € R (n € Ny) with
&irt,n(f) = Q1 nyppan(S) (n € Ny),
&j+l.1~g+,i:x(f) = (—l)udjﬂ,n(f) (n=0,... 1Nj),

such that (3.3) is satisfied.
(i) Let gy, f € S;,(p). Then S;,(f)=S;,(yp) if and only if

supp a[ojy1,,.f] = suppaloj,.e), (3.8)
where suppa| f]:={n € Ny : a,[f] # 0} is the support of a[ f].

(3.7)

Proof

As mentioned before, if f € S; ,(¢), then (3.7) is satisfied. Since the Chebyshev
transform is a linear bijective mapping, the proof of the reversed direction is
straightforward. Hence (i) is valid. Now we show (ii) for v = 0.

1) If S;o(f) = Sjo(y), then go € S;o(f). From (i) it follows that suppaly] C
supp a f ] Analogously, by f € S 0(go) we find suppa[f] C suppaly]. Hence we
obtain (3.8).

2) Assume that (3.8) is satisfied. We only need to show that ¢ € §;4(f). Since
f € S;(¢p), we have (3.3) with (3.7). By suppal f] = suppa[y], we conclude that



an[SO] = Bj+l,nan[f] (l’l S No) with
B' Lni= { di+l,n(f)_l lf CA¥j+l.n(f) 7& 0-;
(EANE

0 otherwise,

for which (3.7) is also satisfied.
For v =1, the assertion follows immediately from S; (y) = S, ¢(041.1¥) and

ji(f) 10( j+1, lf) D

For a further analysis of the shift-invariant subspaces of LL(I), we introduce the
bracket product of a:=(a,), and b:= (b,)2, € I*. Let for k =0, ..., N

OQ

[av b]j.k = Z (alile+1+/\'b171Nj+|+/\' + a(l}1+l)Nj+|—,\'b("1+l)Nj.,.]‘-‘k)' (39)

m=0
Observe that [a,b]; , satisfies the symmetry property
[a b]jN.H 1= [a b]jl (120"~'7]vj+1_1)'

We extend the values [a,b];, (k=0,...,N;

[37 b]j,k = [a, b]ch-;—NjJr| (k (S NO)

+1) to an N, ,-periodic sequence, i.e.

Then the type I-bracket product of length N; + 1 is defined by
[, BT} = ([a, bl )L € RV

and the type Il-bracket product of length N; by
[a,b]}} = (fa,b]; ) € RY.

Lemma 3.3
Let jeNy, v,u€e{0,1} and @, € LA(I) be given. Further, let f€8;.(0)
€ §; ,(¢) with

an[f] = &j’f-l.n(f)an[(p]a an[g] = Bj+l,n(g)an[w] (n € NO)
be given, where &;,, ,( /), BH,',,(g) € R possess the properties (3.7). Then we have

Nj+l

(f.8)= Z €41,k 41, k(f)ﬁﬁ»l «(g)la {90},3[1/)]]j+1,k-

k=0

In particular, for u = v,

Z s e B 1 ) 8l 2l

Using the Parseval identity (2.1), the proof follows by straightforward calcula-
tions. In particular, with f:=0;,0, g:=0; ,% for arbitrary ¢,9 € L? (1), we



obtain for /,m = 0,..., N, the relations

kim kmm
<O-j,lsaa O-j,m’gb Z €k COS —— COS Y [ [‘PL a[w]]j,kv

W/
1.€.,
(<0j,1907 aj,mw>)f{n=0 = Cj Dj dlag {a[@]: a[’l/)”ffcj (3 1 0)
Analogously, for f:=0;,| 54190, §:= 0j41 21 We have for m =0,...,N;, — 1
N1
L K21+ Dnr kQm+ Dn
(Oje1, 24190 Ot 2mr1 V) = Z €,k COS ( N ) cos ( N ) [a[e], a[¥]]} ks
k=0 J+1 J+1
and thus
(< Tj1, 2U+1P, T SEaR 7m+11/)))1 m—O - CTD dlag{ [ ] a[":b]]uc (311)
Corollary 3.4

Forj € Ny and o, € LL(I), we have
(1) S;.(¢) LS. (¥) (ve{0,1}) if and only if

falel,algll; =0 (k=0,...,N,~v); (3.12)
(i) S;o(w) L S;(¥) if and only if

ale], a[Y]] ;1 =0 (k=0,...,N,y).

For ¢ € L3(I), we consider the system B;o(p):={0j,p:1=0,...,N;} and
B; () ={0j4; 49 :{=0,...,N; = 1}. For ,O(go) we define a special ortho-
normality criterion. We say that B; () is orthonormal, if the modified Gramian
matrix fulfils

(/m( _//Lp7 /m(p>)l rn_0=Ij' (313)

The system B; () is called orthonormal, if the Gramian matrix satisfies

Ny =
((U;+| 2+19 Tjg1, 2m+|<P>)/ m=0 = L.

Then we obtain the following characterizations for the bases B, ,(¢) (v € {0,1}) in
terms of the bracket products.

Lemma 3.5
Let v € {0,1} and j € N, be given.

(1) The system B, (i) is a basis of S; () if and only if forallk =0,...,N, —v

(al], a[]];x > 0. (3.14)
(i) The system B; (i) is an orthonormal basis of S; (i) if and only if
[a[go]aa[(p]]j.k=2/]vj (k:()?"-’jvj—l/)‘ (315)
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(iii) If ¢ satisfies (3.14), and if ¢* € LL(I) is defined by
an[(P*] = hj+l,n(30*)an{§0] (i’l € NO)
with coefficients ¢;,, ,(¢") determined by (3.7) and

6j+l n( *) = (2/M)1/2[a[¢]?a[¢] 71/2 (n = O» st Nl - V):

jon

then B; ,(¢") is an orthonormal basis of S; ,(y).

Proof
Let v = 0. The system B, o(¢) forms a basis of S 4(¢) if and only if the Gramian
matrix

N,
((0'1 1% O'j m‘P))I Jm=0

is regular. Since C; and D; are regular, by (3.10) this is the case if and only if
diag [a[y], a[,]]] is regular i.e., if and only if (3.14) is satisfied.
By definition, B; () is an orthonormal basis of S; o(¢) if and only if

(e <, m< T;19, 05, m‘{’))l m=0 = (( ;19 0;, m‘P))z m=oD I
By (3.10) and (2.6), this is true if and only if (3.15) holds. Fmally, by verifying
lale'] ale"l]jw =2/N;  (k=0,...,Np),
we see that by construction B; 4(¢") is an orthonormal basis of S; 4(¢"). By lemma

3.2, the definition of ¢” implies that S; o(¢") = S;,0(¥)-
Using (2.7) and (3.11), the assertlons follow analogously for v = 1. O

With the help of the bracket product, we are able to give a simple description of
the orthogonal projectors P;, (v =0,1) of L2(I) onto S; ,(©).

Lemma 3.6
Letj € Ny, v € {0,1} and let ¢ € L%(I) with (3.14) be given. Then for f € L2(I) we
have

an[Pj,uf] = Aj+l,n(Pj‘uf)an["p] (n € N0)7
where the coefficients ¢, ,(P;, f) satisfy the relations (3.7) and

- - [a[ f],alell;
Cj+}.1(Pj,uf) L [a[(P],a[(P”j,l

The projector P;, is shift-invariant of level j, ie., for all f e L1(I) and
k=0,...,.N,—v

J

(I=0,...,N,—v). (3.16)

k(P f) = Py (0jif)-

Proof
We show the assertion only for v = 0. For f € L3(I), the orthogonal projection
P;of € S;o(p) is determined by ' — P;of L S; (). Then there are coefficients
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Ein(Pof) (n € Ny) satisfying the properties (3.7) of symmetry and periodicity
with

[P0 f] = E1.u(Pjof )as[0] (n e Ny).

Using lemma 3.3, we obtain for all/ =0,..., N,

0=<f—P‘ofa011<P>

= Z €, kcos [alf —P;of] alellx

= Z € i COS g:r_r ([alf],alpl)jx — éj+l,k(Pj.Of)[a[(P]’a{‘P]]j,k)'

Hence the coefficients éj+,,k(}’j!0 f) satisfy (3.16). The shift-invariance of P;,
follows from

a”[o-j»f(Pj»Of)] - c+! n( Of)an[ 1608 'l']’g:

J

= &i1,0( Py o051/ Naulpl = a,[P; (05,11 )] (n e Ny). O

4. Multiresolution of L%(I)

We form shift-invariant subspaces V;:=S§;,(p;) with wjeLﬁ.(l ) for each
level j € Ng. The sequence of subspaces V; (j € Ny) is called a nonstationary
multiresolution of L%(I), if the following three conditions are satisfied:

M1) V; C Vi (J € Ny).
M2) clos [ U ¥, ) = L2(1).

Jj=0
(M3) The systems B, o((N; /2)1’!2%) (j € Ny) are L2(I)-stable, ie., there exist
positive constants a, 3 independent of j such that for all j € Ny and for
any ( / n)n =0 € ]RN-H

2

N
azejzrajns Z € nC /n(N/z)l/- ; n'Pj <IBZ €n _[ll (41)
n=0 n=0 n=0

By (M3), B; o((N;/2) )'2,) is a basis of ¥;. Note that dim ¥; = N; + 1. The shift-
invariant subspace V is called sample space of levelj. The functlon @; of V;is said to
be the scaling functzon of V;. If all systems B, o((N;/ 2)'? ’(pj) are orthonormal bases
of ¥, (j € Ny) in the sense of(3 13), then we say that ( N/2 cpj (j € Ny) are ortho-
normal scaling functions. In this case the constants in condition (M3)area = 3= 1.
Concerning (M2), we observe the following
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Theorem 4.1
Let {V;}72, be a nested sequence of shift-invariant subspaces V;:=S; q(p;) with
w; € L.(I), i.e., (M1) is valid. Then the condition (M2) is satisfied if and only if

U suppali] = N (42)

j=0

Proof
1) Suppose that (4.2) is not satisfied. Then there is a number

ng € No\ U supp ay)]

j=0
such that for the Chebyshev polynomial T, it holds that

T, Lclos U Vj)
j=0

/

Thus, (M2) is not satisfied.
2) Assume that (4.2) holds. By (M1) and lemma 3.2, we have

supp afy;] C supp ay;,] (J € Ny). (4.3)
Suppose that there exists f € L2(I) (f # 0) with

J Lclos (G Vj) . (4.4)
=0

By k, € Ny, we denote an index for which
lag, [ /1] = max {|a[f]| : k € No} > 0.

By (4.2)~ (4 3) we conclude that there is an index j, € Ny such that k, € supp afyp;,]
and N;, > k. Since ¢;, € V; for allj > jo, we find that f L S; o(¢p;,) (J > jo). Hence,

Jo =~

for j > j;,, we have by (3. 12)

[a[f])aleo]]j,ko = 03
i.e.,
ak(}{f]akﬁ[(p]!)] + aN]A-l_f\G{f] ;+1“;&0[(¢D!Q]

+ Z (akg-f-anH ako-H:NiH [(pjg] + a("‘,’l)NJq,}~k{}[f}a('3+l)Nj+]"k() [(qu]) =0. (45)

n=}

Put
€0 = | a, [ fak, [po]l > 0,
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and choose j; > j, such that
,a,,[f]a,,[(pjo]] S 50/2° (46)

nlzN”

This choice of j, is possible, since by the Cauchy-Schwarz inequality

Z ‘an a, 90/0 ‘ — ” [ ]”ﬂ”a[%o]”ﬂ < 0.
But (4.6) contradicts equation (4.5) for j = j,. This implies that f = 0, i.e., (M2) is
satisfied. |
Theorem 4.2

The system {B; o((¥; /2) @) :J € No}is L (I }-stable with positive constants a,
independent ij if and only if forall k =0,...,N; and for all j € N,

N2
a < 743“ alp], alpln < 8. (4.7)
Proof
1) From lemma 3.3, it follows that for j € Ny and (a}-’,\.),l:/;o € RY*!
N » 2 N N
Z Gj,k a/,l\(]vj/z) Gj,k(pj = 71 Z ej n C!, n[ [‘pj] [‘pj]]j,n
k=0 n=0
with
N knm
&j,ll = ; Ej,kaj.k COSs Tj (I’l & NO)
By (2.10)-(2.11) we have
N; N;
2 2 . 2
7 vl €in .'_,n'
With the considerations above, (4.1) reads as follows
2 N;
aZ jlljll— Z ; LPJ Jon = IBZ jnjm
n=0 n=0 n=0
with arbitrary (4&; ,,),,;0 e RY*! and j € N,, which is equivalent to (4.7). O

In the following, we assume that (M1)—(M3) are satisfied. From (M1) it follows
w; € V4, i.e., there exist unique coefficients ;| +(¢;) €R (k=0,...,N;,) such
that
Ny

Y= E :fj+l,ka’+lk(§9;) Otk Pjrt-
k=0
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This is the so-called two-scale relation or refinement equation of ;. The Chebyshev
transformed two-scale relation of y; reads

an[‘Pj] = Aj+1(n)an[90j+l] (n € Np) (4.8)

with the two-scale symbol or refinement mask of ¢;

e knw
Aji(n) = Z €41,k Y1,k (p;) COS N (n € Ny).

By definition we obtain the relations of periodicity and symmetry for all n € Ny and
[=0,...,Ny—1,

Aj+|(") = Aj+1(Nj+2 + n), Aj+1(Nj+2 -1)= Aj+1(1)' (4.9)

If a scaling function ¢; (j € Ny) satisfying (4.7) is given, then an orthonormal basis
B, o((N;/2)!/*¢}) (j € Np) can be easily obtained by lemma 3.5, (iii). Let ¢} (j € Ny)
be defined by its Chebyshev coefficients

N; N -1/2

7 an[(pj] = ([8[90,-], a{(pj]]j.n) an[(pj] (l’l € NO)

Then l:‘s’j,o((Nj/Z)U 3<p}‘) is an orthonormal basis of V; = S, (y;). The two-scale
symbol A4}, satisfying

a,[¢j] = A (ma,[oi]  (n €Ny

is connected with 4;; by

. L [a[@jﬂ]@[%ﬂnjﬂ,n /2 ;
Aj+l(n) o 2( [3[%],8[901]]1,': ) AjH( 1) (n € NO).

The following connection between the bracket product [a[g;],a[p;]]} and the
two-scale symbol 4;,; can be observed:

Lemma 4.3
Forje Nyjand k=0,...,N;, we have

[alp], alp];x = Aj+l(k)2[a[§0j+l}v 1 (VP | P
+ A (Njy — k}z[a{@j-i-l]a a[@jﬂ”ﬁswﬁ,—k-

In particular, if (N;/ 2)/ Zcp; is an orthonormal scaling function and if 4;,, is the
two-scale symbol of ¢}, then

Ak + 4 (N —k)? =4 (k=0,...,N). (4.10)
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Proof
By the definition of the bracket product and by (4.8)-(4.9), we obtain for
k=0,...,N;

[a[(pj] ) 3[80,/]] ik

[eo]

= Z (a’*?\’}+z+k[9oj]2 + a(»‘*+*)Nj+z—k[‘Pi]2 + a"N1+2+N;+n+k[90]]2 + AnNpsar+ Ny —k [Wflz)
n=0

= Ajy (k)z[a[%'+x]a )]k + A (N — k)z[a[somla a[‘Pj+1]];+1,N,~+,—k~

For orthonormal scaling functions, the assertion follows by lemma 3.5, (ii). O

5. Wavelet spaces

Let the wavelet space W; of level j (j € Ny) be defined as the orthogonal
complement of V;in V,,,, i.e.

Wi=V,eV (J € Ny).

Then it follows that dim W, = (N,,; + 1) — (N, + 1) = N,. By definition, the wave-
let spaces W, (j € Ny) are orthogonal. By (M1)-(M2), we obtain the orthogonal
sum decomposition

L =V,a P W,
J=0

Further, W, can be characterized by the orthogonal projector P; ; of L2(I) onto Vi,
namely by

Wi={f—-Pof:f€Viu}
The subspace W, is shift-invariant of level j, since by lemma 3.6 we have for
g=f—Pof (fe Vj»f—l)’
0718 =01 —0(Piof) =0, f — Pioloj f) €W,

Assume that the shift-invariant subspace W, can be of type 1 generated by a
function 9, € Vj,; such that W; =S, (¢;). Further, we suppose that the set
B (N;/2)'*4) = {(N;/2) P sty : 1 =0,...,N; — 1} is Li(I)-stable, ie.,
there are constants 0 < v < § < co independent of j such that for all j € N; and

for any (/Bj,ll)lll\,i_(;! € RNI’

2

Nj—l Nl—l = Nj—l
Y B <D BuN/2) Po ety <6 Bl (5.1)
n=0 n=0 n=0

Under these assumptions, 1; is called semiorthogonal wavelet. If Bj‘,((Nj/Z)'/ zij)
(j € Ny) are orthonormal bases, then (N;/ )Y zz,b}- are called orthonormal wavelets.
Obviously, for orthonormal wavelets the condition (5.1) is satisfied withy = 6 = 1.
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By W, C V,,,, there are unique coefficients o, +(¢;) e R(k =0,...,N;;,) such
that a two-scale relation or refinement equation of 1; of the form

1+l

Z €1k Gtk (V1) Otk B

is satisfied. By means of the Chebyshev transform this yields

a,[Y;] = B (n)a,fp;] (n € Ny),
a,,[a,_,.l l"pj] = COS N”i )+l(n)an[‘pj+l] (n € NO) (5.2)

with the two-scale symbol or refinement mask of 1;

j+l kn
B, (n):= Z €51,k 011 1 (¥;) COS N (n € No).

j+l

It is clear that B, satisfies the same properties of periodicity and symmetry as 4;,,
in (4.9). As in the sample space V, the bracket products are important for the
characterization of the L2(I)-stability of W; and the orthogonality W, L V:

Theorem 5.1
(i) The condition (5.1) for j € N, with positive constants « and § independent of j
is equivalent to
N2
S"ZL[{}] {;H}n— (nzﬂv-"h{i—l)' (53)

(i) Forje Ngand k =0,...,N;, — 1 we have

oty a9 = (05 2l alle

J+

(cos ) (B (k) [alpj) 2l ] s

+ Bj-H( J+1 T k)z[a[‘pjﬂ],a[‘Pj—HH}-&-I,A@,—k)- (5-4)
(iii) For j € Ny, we have S; ;(¢;) L V; if and only if foralln=0,...,N; - 1

A (m) B,y (")(a[ﬂojﬂ]v a[‘PjH]]j—H,u
- Aj+|(Nj+l - ")Bj+1(Nj+l - ")[a[‘PjﬂLa[¢j+|]]j+|.~,-+.—" =0. (5.5)

Proof

The proofs for (i) and (ii) are similar to those of theorem 4.2 and lemma 4.3.
In order to show (iii), we observe that V; L S;,(v;) = S; ¢(0;31,1%;) is equivalent
to the equations [a[y;],a[0;41,19]];, =0 for all k=0,...,N; by corollary 3.4,
(1). Inserting the two-scale relations (4.8) and (5.2), we obtain the assertion.
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Note that from (5.5) it follows that this equation is also valid for n =
M+1,...,}Vj+]. D

We introduce the two-scale symbol matrices of level j (j€N,) for
n=0,...,N;—1by

Aji(n) B;,i(n) ) (5.6)

S. (n):=
jH( ) <Aj+1(Nj+l —n) ““Bj+1(Nj+1 —n)

As usual, these matrices will play an important role in deriving the decomposition
and reconstruction algorithms. Therefore we have to investigate the invertibility
of S;.(n). Let A, (v=0,1) be the ecigenvalues of S;;(n), i.e., it holds that
det (S;,.1(n) — A I) = 0 with the unit matrix L

Lemma 5.2
Assume that (M1)-(M3) and (5.1) hold with positive constants «, (3, 7, 6. Then the
two-scale symbol matrices S;,,(n) are regular for all n = 0,..., N; — 1 satisfying

4
% min {a, 7} < |\ < — max {B,6} (v=0,1). (5.7)
In particular, it holds that
4 4
B,/afygldetsjﬂ(nﬂga\/ﬂé (n=0,...,N;,-1). (5.8)
Furthermore, we have forn=0,...,N; — 1

S (’7)_1 = diag ([a[goj], a[(pj]];}:s [a[wj}, a[¢j];:r)TSj+i (”)T
X diag([a[npj+|], a[(Pj+l]]j+l,n’ [a[‘P_m]»a[‘Pj+1”j+|,N,»+1~n)T- (5.9)

Proof
Using lemma 4.3 and (5.4)—(5.5), we find forn =0,...,N, — 1

J

St (”)T diag ([alew;.1], 3[@;+1Hj+n,m [3[%‘44]: a[@j+t}]j+l\1\ij+.—;r)TSj+l (n)

= diag (fale,), alo/]],.. [al), alw;]);.) T

Thus (5.9) holds forn = 0,...,N; — 1. By (5.9), (4.7) and (5.3), the eigenvalues and
the determinant of S;,(n) can be easily estimated in terms of the constants a, 3,
7 6. O

Now by the help of the conditions for the two-scale symbol B;,, of 1/; in theorem
5.1, we obtain

Theorem 5.3
Assume that (M1)-(M3) are fulfilled. Then for all j €Ny, B, :Ny—R is a

J
two-scale symbol of a semiorthogonal wavelet ; € L2(I) if and only if for
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n=0,..., Ny, the two-scale symbol B;,,(n) is of the form
B.(n)= [a[(Pj—H]’a[90j+l]]j+l,Nj+|—nAj+l(]Vj+l - n)
s [a[SOjL a[‘:aj”j,n

where B;,, has the same properties (4.9) of periodicity and symmetry as 4;,,, and
where K : Ny — R satisfies the conditions

K(m), (510

0<v<|Kn)| <u<oo (n=0,...,N,~ 1),
K(n) = Kin+ Nyy) (1€ DNy), (5.11)
KNy —n) = K;(n) (n=0,...,N,— 1)

for some constants v and p.

Proof
1) Let B;,, be given in the form (5.10) with K satisfying (5.11). Then by theorem
5.1, (iii) the orthogonality ¥; L S; (1) is satisfied, since forn =0,...,N; — 1,

Ay (")Bj+l (n){a[c,oj+,], a[‘Pj+1]]j+1,n
— A1 (Njpy — 1) B (N — n)[afpy], a[¢j+1]]j+1,uf+l-,, =0.
It follows that S; | (3;) € W,. It remains to show that Bj,,((}\/}/Z)mwj) (j € Ny) are
L2(I)-stable. By (5.4) and lemma 4.3, we find forn=0,...,N; — 1

J
[a[j1), al@iil]jn nlalein)s Al Nipi=n

[a[wj]:a{wj”;’,n = [a[@jLaIQOjHj . I(j(n)z'
By (4.7) and (5.11), we can estimate
0< Ez—yz < E [aly),aly]l;. < ﬁ—zpz < o0 (5.12)
166 — 4 e A [ 14" ) )

2) Foreachj € Ny, let B;,, : Ny — R be the two-scale symbol of a semiorthogonal
wavelet ¢; and let Bj‘,((i\gﬂ)’/ ;) (j € Ny) be L2(I)-stable. Thus Bj,, satisfies
(5.4) and (5.5). Now, put forn =0,...,N;,

K;(n) = A; 1 (n) By (Njyy — 1) + Ajy (Njgy — 1) Byyi(n).
Note that K;(n} = K;(N;,, —n) forn=0,..., N, — 1. Then we continue K; on Ny
by Ki(n+rN;,,):=K;(n) foralln=0,...,N;,, — 1 and r € Ny. Thus K] satisfies
the conditions (5.11). Multiplying (5.5) with 4;,,,(n), by lemma 4.3 we obtain for
n=0,...,N;—landalsoforn=N;+1,..., Ny,
0 =4, (”)2Bj+1 (m){alo]s algplljsin
— A (M A (Nigy = 1) B (N — n) a0l 3[‘#j+l]]j+1,~,,,,-n

= By, (n)[aly], alp]]];n — Ki(n) Aj i Ny — n)[algjl, a[‘Pj+1”j+1.1v,-+l~n-

Hence, B;,,(n) isof theform (5.10)forn =0,...,N; — I, N;+ 1,..., N;,,. Defining
B, (N;) by (5.10) for n = N, the proof is complete. O
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Corollary 5.4

Assume that B; o((N; J2)'? *) (J € Ny) are orthonormal bases of V. Let 4 +, be

the two-scale symbols of p; € L2(I). Then for every j € N,, B Ny — R is a

two scale symbol of a wavelet 1 EL:",( ) generating an orthonormal basis
B; (((N; /2)!/’1,&}) of W, if and only if B/, possesses the form

j+l( ) + j+l(1\/j+l—n) (n=03"'7jvj+l)
and fulfils the same properties (4.9) of periodicity and symmetry as A4,
Proof
By lemma 3.5, (ii) we have
Nalglalgll =4 (n=0,...,N),
N[yl algln =4 (n=0,...,N;= 1)

for all j € Ny. Hence, a = f = v =6 = 1. From (5.12) it follows that v = p = 4,
and thus K;(n) = 24 (n € Np). Then the assertion can be obtained by application
of theorem 5.3. O

6. Decomposition and reconstruction algorithms

Now we derive efficient decomposition and reconstruction algorithms. In order
to decompose a given function f;,, € V;,, (j € Np) of the form

j+l

f}+) Z €11 +11]§+1) Tt 1,191 (6.1)

=0

the uniquely determined functions f; € V; and g; € W, have to be found such
that

S =1 +g- (6.2)

Assume that the coefficients o;,; ;€ R (/=0,...,N;,) of f,,, or their DCT-I
(N4 + 1) data

Wil kim
j+lk'-Z €ir1,1 X +1/f+|)COSN (k=0,...,Ny) (6.3)
j+1

are known. The wanted functions f; € V; and g; € W, can be uniquely represented
by

N, N1
fj = Z Ej,ltlaj,lll(/;)aj,lil ©j, g = Z ﬂj,r(gj)o-j+l,2r+l¢j7 (64)
r=0

m=0

with unknown coefficients o, ,(f;), B;,(g) € R. Let 4;, BJ, € R denote the
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following DCT-I (N; + 1) and DCT-II (N,) data

kmmn
ik "Z €m jm(f COS——" (k:037]v;)9 (65)
m=0
5 (g)cos FEDST o N ). (6.6)
4 / N. J
J+!

In order to reconstruct f;,; € V,,1 (j € Ny), we have to compute the sum (6.2)
with given functions f; € V; and g; € W;. Assume that a;,(f), j,(g,) €eRin
(6.4) or the corresponding DCT data (6. 5) (6.6) are known. Then f;,, € V;,, can
be uniquely represented in the form (6.1).

The decomposition and reconstruction algorithms are based on the following
connection between (6.3) and (6.5)—(6.6):

Theorem 6.1
Assume that for j € N,
Forje Ny, letf.,, € Vi, f; € V; and g; € W, with (6.1)-(6.6) be given. Then we
have
dfj+l.r dj,r
. =8,.(nN| . (r=0,...,N;, - 1),
Qi t, Ny —r Bi.r
&1 N, = Aj1(N))Gy -
Proof

From (6.4), it follows by lemma 3.1, (iv) that for all n € N,
n[f/] j na [(pj}

with
lmr
Z €10 ( f)cos —

Analogously, by (6.1) and (6.3)—(6.6) we have for all n € N,

an[f+l] = CAt?i-l nan[(P_i-i—l]’ an[gj] = Bj,nan[wj]a (68)
where &;,, , is defined similar to aj » and
- 2r+1
B Z B (g cos T
Jj+t

Relation (6.2) holds if and only if for all k € N,
@ fi] = al ] + ailg)]-
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Using the Chebyshev transformed two-scale relations (4.8) and (5.2), we obtain
Gyer k] = Gy A (K)ar[p] + Bj,kBjH(k)ak[‘PjH]'
Analogously, we have for k =0,...,N;,,
Gyt Ny -k Al0i01] = & vk Ajrt (N — K)a[p41]
+ B;,NM—;( B (Njy — k)ak[pje]-

Using the assumption (6.7) and observing that &; y.  _x = &, BN;+|~’\' = —Bj'k
(k=0,...,N;), we obtain the assertion. Note that from (4.7) and lemma 4.3 it
follows that 2a8™" < 4,,,(N;)* < 207'B, i.e. 4;1,(N;) #0. O

We obtain the following algorithms:

Algorithm 6.2 (Decomposition algorithm)

Input: j € Ny,
dj+l,k € R (k = 0, .. .,M+1).

Form forr=0,...,N, ~ 1,

&j‘r 4 &j+l,r
~ = j+l(r) . 3
Bj.r Qo t, Ny

R 1A
& n, = Aj (N;)™ Gy ;-

Output: ¢;, (r=0,...,N;),

J

B, (r=0,...,N,—1).

J
Algorithm 6.3 (Reconstruction algorithm)
Input: j € Ny,
G, €R (r=0,...,N),

yrr e di¥y

B, €R(r=0,...,N,—1).

Form forr=0,...,N, —

J 1’

d{j'H,r dj,r
~ = Sj+l(r) - s
aj+|ij+|_r ﬁj,r

CA\‘;H,N; =Ap (N})dj,Nj'

Ou[put: (ij-fl,k (k = O,‘.-,Nj_‘,])v
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7. Polynomial wavelets

As the first example, we consider polynomial wavelets on I (see [6,16]). Set
N;:=2’ (j € Ny). As scaling function y; of level j we use the following function
defined by its Chebyshev coefficients

2 n=0,..,N -1,

Nafpl={1 n=N, (7.1)
0 n>N,.

Then it holds that

N N,
- QDJ == Z ej,ka (S I_'[Nj'
k=0

By (7.1), the corresponding bracket product reads as follows

5 4 k=0,...,N;—1,
Miiglalols={; _n (1.2
Using (2.8), we obtain the following interpolation property of ;
Soj(hj,l) Jl‘)oj Z I\COS - 260/ (120,,]\/}) (73)

By (7.1), the shifted scaling functions o; ; ¢; (k =0,...,N;) are contained in Il
Further, these functions o; . ; (k = 0,..., N;) are modified Lagrange fundamental
polynomials with respect to the Gauss Chebyshev nodes /1;; (I =0,...,N;), since
fork,1=0,...,N; from lemma 3.1, (ii) and (3.1) it follows

ja%( )= ( ,k%’)(l)
= l(Uj 1P (1) + 9 1-kyp; (1))
= ,&551

Figure 1 shows the scaling function s, and figure 2 presents the shifted function
0s16%s. The function o; kP (k=0,...,N;) is supported on the whole interval 7,
and has significant values in a small nelghbourhood of h; ., if j is large enough.

Let V;:=S; o(y;) be the same space of level j. Consequently, by lemma 3.5, (i),
the polynomials o;,p; (k =0,...,N;) form a basis of V}, i.e.,

V=1, dimV, =N+ 1.
Note that the operator L; : C(/) — V; defined by

Lf Z jﬂsoj (fEC(])}
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is an interpolation operator, which maps C(/) onto V; with the property
Lif(y)=fly)  (I=0,...,N).

All sample spaces V; (j ] € Ny) form a multiresolution of L; (I'), where (M3) reads
as follows: The systems 0((N /2)' ;) (J € Ny) are L2(I)-stable with optimal
constants a = 1/2 and # = 1, i.e,, for all j € N, and for any (« ‘k)ilzg e RY* we
have the sharp estimate

N; ,
2 g €jgajk S E ej’kaj,k.
k=0

Using (7.1), we find the Chebyshev transformed two-scale relation of ¢;

a,lp)] = A (ma,le;s] (n € Ny)
with the corresponding two-scale symbol
2 n=0,...,N; -1,
Ay (n) =41 n=Nj

O n:.Nj+1,...,]Vj+|.

2

Z 6% k(N;/2)a; 1 5

LetW; =V, © V be the wavelet space of level j. Thus, dim W; = N,. Consider the
polynom;als Y € Vit (J € Ny) given by their Chebyshev coeﬁ‘iments

2 I‘I:]Vj+1,...,]vj+l—1,
Nia,[¥) = { I n=Nyy, (1.4)

0 otherwise.
Then the corresponding bracket product reads as follows

0 k=0,...,N

c3dVps
M’z[a[wj]aa[wj}]jﬂ,k: 4 k=Nj+1,...,Ny = 1, (7.5)
2 k=N,

The shifted polynomials o, , 5,,,%; satisfy the interpolation properties

Tjt1, 2r+l"/)j(h'+l 2041) = O, (r,s=0, o Nj— 1).

Figure 3 shows the wavelet 15, and figure 4 presents the shifted wavelet o 339s.
The wavelet space W, is a shift-invariant subspace of I2 (1) of type 1 generated by
;. The systems B, | ( N 1/2) 12 ’v,bj ) (j € Np) are LE(I)- stable with optimal constants
v=1/2andé = 1 ie., for allj € N; and for any (g;, ,),_0 € RY, we have the sharp
estimate

5

N;—1 N;j—1

1 ¢ \

DN ANID P aeth]| <Y B2
r=0 r=0

Using (7.1) and (7.4), we obtain the Chebyshev transformed two-scale relation




25



26

of 9,
a,[¥;] = B (n)a,[p)4] (n € Np)

with the corresponding two-scale symbol
0 n=40,...,N,

J

B, =
1+‘(n) {2 n=N;+1,...,Ny,.

In the following, we compare the arithmetical complexity of our decomposition
algorithm 6.2 for these polynomial wavelets on I with that of the fast decomposi-
tion algorithm for linear and cubic spline wavelets on {0, 1] proposed in [13]. Let
J > 3. Assume that 2/*' + 1 function values of Jis1 € V4, are given. The decompo-
sition algorithm for linear spline wavelets in [0, 1] needs 6 - 2/*' real multiplications
in order to compute all wavelet coefficients of g; € W;. For the same problem, the
decomposition algorithm for cubic spline wavelets in [13] can be implemented using
14-2/*" real multiplications. Compared to that, our algorithm 6.2 requires fewer
real multiplications up to the level j = 14.

Now we consider the complete decomposition of f;,; € V},,. Here we have to
determine all coefficients of the related functions in W, W,_,,..., W; and V;.
Figure 5 shows the number of needed real multiplications (divided by 2/*') for
the complete decomposition with linear spline wavelets (<), cubic spline wavelets
(O) and polynomial wavelets (+). Our procedure needs fewer real multiplications
than the method in [13] for cubic spline wavelets up to level j = 20. Since a level

30 T T T T T ¥ T T T

25 b o + 7

20 |- ]

o ¥
10 - e+ i
o +
+
5 i H 1 1 ] 3 i 3 i
2 4 6 8 10 12 14 16 18 20

level j

Figure 5.
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Jj€{7,...,11} is often used in practice, our algorithm is an interesting alternative
to the method in [13].

As a numerical application of the decomposition algorithm 6.2, we would like
to mention that an exact detection of singularities of a given function near the
boundary +1 is possible. For example, we consider a linear spline function in
order to determine its spline knots. Let B, denote the cardinal linear B-spline.
Interpolating the function

f(x):=B,(4x+3.96)  (x€I)

at level j = 7 and decomposing f, we can observe the singularities at —0.99, —0.74
and —0.49 in the corresponding wavelet part of level j = 6 (see figure 6). On the
other hand, the decomposition of the function

J(x):=By(4x +4) (xel)

shows that f has singularities at —0.75 and —0.5, but not at —1 (see figure 7).
We can generalize the example of polynomial wavelets in a similar manner as
done for periodic functions in [14]. Set N; = 42/ (j € Ny) with fixed d € N. Further

let for fixed A € N,
1 J<A
M= {

/ 270 >N,
where 3 < 2*d is fulfilled. Then, N;+M; < N;,) — M;,,. Let the scaling function y;

0.002

—0.003

-1 0 1
Figure 6.
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0.002
N AL
0 vv |
—0.003
-1 0 1
Figure 7.

of level j be given by its Chebyshev coefficients
2 0<n< N, - M,

N+M —n
Nl = =—37—
7

0 nz>N;+ M,

Nj—M;<n< N+ M,

The smaller A, the better localized the scaling functions are on 7. We obtain the
same interpolation property of y; as in (7.3). The sample space V; =5 0(yp;) can
be described by

M;+k M;—k
ijl"INFMjEBSpan{ A[/H_l TA’/“’\+7}+TTM+kk:O’7AJJ_1 ,

ie., Iy _p, C V; C Iy p,-i- The corresponding wavelet space W; (j € Ny) is of
type 1 generated by the polynomial ¢; := 2¢;,, — ¢; € ¥}, such that

(n— N, + M,
__J_t_f ]\9_54}<n<1\3+54j,
M;
. 2 Ni+M; <n< Ny, ~- M,
]Vjan[wj] =4 N+ M. —n
= i Nijy — M, <n< Ny, + My,

M,

L 0 otherwise.
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The shifted polynomials o, ,..,9; also satisfy the interpolation properties
it 2r41 Wi (gt 2641) = Oy (r,s=0,...,N;—1).

For the Chebyshev transformed two-scale relations of ¢; and 1;, we obtain the
two-scale symbols

(2 0<n< N - M,
N +M;,—n
Apa(n)i=q —+—+—  N-M;<n<N+M,
M;
0 N+ M;<n < Np,
and
(0 0<n<N —-M,
n—N,+ M,
B};_}_l(n):: _""_A_"{"_j N,"M},<”<AG+A{],
j
2 N+ M;<n< Ny,

8. Transformed spline wavelets

In principle, the following is obtained by transferring the construction of [12]
onto the interval. Let m € N be a fixed even number and let M,, be the centered
B-spline of order m with the knots —m/2+k (k=0,...,m). Set N;:=2/
(J € Ny). Further, let M,, ; (j € Ny) be the 2m-periodization of M, (N, -/7), i.e.

Mm,j = Z Mm(]Vj '/ﬂ - Ni+l[)'
[==~00

From AZ‘,,,, ;= M, ;(—-) it follows that M, ; € L%«,o- The Fourier cosine coefficients
of M, ; read as follows

- 1 - 1 /. nrY"
an(Mm,j) = N. Mm(nﬂ-/lvj) = ']V <Sll’lC jvj«l-l) (n€Ny).
J

7

Now restricting M,,,' ; on [0, 7], we choose as scaling function ; := M,, ;(arccos),
that is, ¢; has the Chebyshev coefficients

Nl = My(om/;) = (sine "

Jj+1

) weny

For the two-scale symbol of ¢; we find

nmw

Ay (n) = 2(cos )m (n e Ny).

J+2
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Let the sample spaces V; be generated by ¢;, i.e. V;:=S;¢(¢;) (j € Ny). Then by
| suppali)] = Ny
j=0

it follows that condition (M2) is satisfied.
For the bracket product we obtain by Poisson summation formula

sz[a[%]’ algl]jn = i (M,,, (W)Z+M"' (WM([ j’LV-I) - ")Wj)

1=0 J J

Z M, (27l + n/N;)

I=—c0
00
— Z Mzm(k) e—iz:kn‘/!\’j
k=—wx

and hence

sz [a[SOj], a[‘-pj]]j,n = @Zm(e“hm/Nj)

with the well-known Euler-Frobenius polynomial

()= Y Malk (zeC lz|=1).
k=-00
The systems B, o((N;/2)?p;) (j € Ny) are L%(I)-stable, since we have

B3

aé—z'{"[a[@j}: [ ]]jn—-wB (jENO)
with
2217:(22171 _ 1)
(2m)!
where B,,, denotes the (2m)th Bernoulli number. Observe that we have found the
same constants «, 3 as in the case of the multiresolution generated by cardinal
splines of order m (see [12]). Note that different scaling factors of scaling functions

are used in [12].
Let the wavelet 1); be defined by its Chebyshev coefficients

> By(—e M )a (0] (nENy),

da = (I)?_m(_l) = |B2m|a 45 = (I)?./n(l) =1,

nm

an)i=2(sin 37

j+2

i.e., 9; possesses the two-scale symbol
Bo() =2(sin 37 Banl-e™™H)  (n€ o).

j+2
By definition it is clear that ¢; € V;,,. In order to show that W, = §; ,(¢;), we
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have to check the orthogonality V; L S; (¢;) and the L2(I)-stability of
B; ((N;/2) ) 29, (j € Ny). Since m is even we easily observe that (5.5) is satisfied
for the two-scale symbols 4 +l(n) ;+1(n) above. Furthermore, inserting B, (n)
into (5.4) we obtain for n = 0 — 1 by lemma 4.3

N7 [aly, alylln = ‘I’z,,,(e_i"”/ )@ (7N ) s (—e M),
In particular, we obtain L2 (I )-stability of Bj,l((Nj/2)]/ ij) with the constants
4y = min {®,,,(2) Py (—2) @y (7)) : 2 € C,|z| = 1}
= Doy (—1) Lo (—1) Pam(i) > 0,
46 = max { By, (2)®pu(—2)Bym()) : 2 € C,|z| = 1} < L.

Observe that these constants are the same as the constants found for the well-
known cardinal Chui—Wang wavelet (cf. [12]). Note that different scaling factors
of wavelets are used in [12]. In contrast with polynomial wavelets, the shifted
scaling functions and wavelets are supported on small subintervals of I.

Finally, we will consider the connection of the wavelet 1; above with the cardinal
Chui-Wang wavelet w,, given by its Fourier transform

) _ —iuf2 m _ pinf2 ‘
mmo:owﬂmw*CL{}—>¢m< ﬂﬂ%}ﬁﬁfa (u € R\{0}).

Let QZ} be the 27-periodization of w,,(N;-) with
W 1= (_1)",/2+l(wnx( : /71’ + m) + Wm(— '/71' + m)),
ie.,

Bi= Y Wu(N; - = Nyyl).

|=—0c0

Then sz € L%,,,O. The Fourier cosine coefficients read

. 2 ne [ . nmwY /N . nm Y
a,(;) = — cos (sm ) B, (—e~ " M+1) [ sinc
Y Nj 1Vj+l ]vj+2 " Nj+2
nw . nm ' —inm[Niyy
= 2cos sin N (?2»:(_6 g )%[%H]-
j+1 j+2

Comparing with the Chebyshev coefficients of 7; we find for the restriction of Jj
on [0, 7):

0j41,1%; = ¥;(arccos).
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