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On the construction of wavelets on a bounded interval 

Gerlind Plonka, Kathi Selig and Manfred Tasche 
Fachbereich Mathematik, Universitiit Rostock, D-18051 Rostock, Germany 

This paper presents a general approach to a multi resolution analysis and wavelet spaces on 
the interval [-1, I]. Our method is based on the Chebyshev transform, corresponding 
shifts and the discrete cosine transformation (OCT). For the wavelet analysis of given 
functions, efficient decomposition and reconstruction algorithms are proposed using fast 
OCT -algorithms. As examples for scaling functions and wavelets, polynomials and transformed 
splines are considered. 

1. Introduction 

Recently, several constructions of wavelets on a bounded interval have been 
presented. Most of these approaches are based on the theory of cardinal 
wavelets. The simplest construction consists in the trivial extension of functions 
f: [0, 1] ~JR. by settingf(x) :=0 for x E R.\[0, 1]. These functions can be analyzed 
by means of cardinal wavelets. But in general, this extension produces discontinu­
ities at x = 0 as well as x = l, which are reflected by large wavelet coefficients for 
high levels near the endpoints 0 and 1, even iff is smooth on [0, I]. Thus the 
regularity off is not characterized by the decay of wavelet coefficients. 

Another simple solution, often adapted in image analysis, consists in the even 
2-periodic extension j off: [0, I]~ R If .f E C(9, 1], then j E C(JR.). But in 
general, iff E C 1[0, 1], then the derivative off has discontinuities at the 
integers. The smoothness off is again not characterized by the decay of wavelet 
coefficients. 

In (8], Meyer has derived orthonormal wavelets on [0, I] by restricting 
Daubechies' scaling functions and wavelets to [0, I] and orthonormalizing 
their restrictions by the Gram-Schmidt procedure. This idea led to numerical 
instabilities such that further investigations of wavelets on a bounded interval 
were necessary (see [4]). 

We are interested in wavelet methods on a bounded interval which can exactly 
analyze the boundary behaviour of given functions. Up to now, three methods 
are known to solve this problem. The often used first method is based on special 
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boundary and interior scaling functions as well as wavelets (see [3,4,13]) such that 
numerical problems at the boundaries can be reduced. Then the bases of sample 
and wavelet spaces do not consist in shifts of single functions. The second 
method (see [9]) works with two generalized dilation operations, since the classical 
dilation is not applicable for functions on a bounded interval. 

A third wavelet construction on the interval I:= [-1, 1], first proposed in [6], is 
based on Chebyshev polynomials. Both scaling functions and wavelets are 
polynomials which satisfy certain interpolation properties. As shown in [16], this 
polynomial wavelet approach can be considered as generalized version of the 
well-known wavelet concept, which is based on shift-invariant subspaces of the 
weighted Hilbert space L~(I) with respect to the Chebyshev shifts (see [2]), 
where w denotes-the Chebyshev weight. 

The objective of this paper is a new general approach to multiresolution of L~(I) 
and to wavelets on the interval I, based on the ideas in [16]. As known, the Fourier 
transform and shift-invariant subspaces of L2(JR) are essential tools for the con­
struction of cardinal multiresolution and wavelets (see [5]). Analogously, the 
finite Fourier transform and shift-invariant subspaces of L~1T lead to a unified 
approach to periodic wavelets (see [7,11]). This concept can be transferred to the 
Hilbert space L~ ..... o of even periodic functions using the shift operator 

SaF := HF( ·+a)+ F( ·-a)) (a E JR) 

for FE L~1r, o· The isomorphism between ~1r,o and L~(I) can be exploited in order 
to construct new sample and wavelet spaces in L~(I). Using fast algorithms of 
discrete cosine transforms (DCT), efficient frequency based algorithms for 
decomposition and reconstruction are proposed. As special scaling functions and 
wavelets, we consider algebraic polynomials and transformed splines. It is remark­
able that our decomposition algorithm for polynomial wavelets needs fewer 
multiplications up to a certain level than the fast decomposition algorithm for 
cubic spline wavelets on [0, 1] proposed in [13]. 

The outline of our paper is as follows. In section 2 we briefly introduce the 
Chebyshev transform, related shifts and the DCT. In section 3 we analyze shift­
invariant subspaces of L~.(I). The scalar product of functions from shift-invariant 
subspaces can be simplified to a finite sum by means of the so-called bracket 
product. In section 4 we consider a nonstationary multiresolution of L~(I) con­
sisting of shift-invariant subspaces Vj (j E N0 ) generated by shifts of scaling 
functions <pj. The required conditions for the multiresolution of L~v(I) and their 
consequences for the scaling functions <pj are analyzed in detail. In section 5 we 
introduce the wavelet space Uj ( j E N0) as the orthogonal complement of Vj in 
V;+t· Then Uj is a shift-invariant subspace generated by shifts of the wavelet '~h· 
Using the two-scale symbol of <pj and the bracket product of <pj and <pj+t, the wave­
let '1/Jj is characterized in theorem 5.3. Section 6 provides fast, numerically stable 
decomposition and reconstruction algorithms based on fast OCT-algorithms. In 
section 7 we present polynomial wavelets on I (see [6,16]). Finally in section 8, we 
adapt the theory of periodic splines to the interval I with respect to the Chebyshev 
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nodes. Note that the transformed spline wavelets are supported on small sub­
intervals of I. The examples show that periodic multiresolutions of L~11' with even 
scaling functions <p1 can be transformed into a multiresolution of L~(I). 

2. Chebyshev transform and shifts 

In this section, we introduce the Chebyshev transform and corresponding shifts 
and we examine their relations to the even shifts of periodic even functions. For 
more details on Chebyshev shifts we refer to [2,16]. Throughout this paper, we con­
sider the interval I:=[-1,1] and the Chebyshev weight w(x):=(I-x2t 1/ 2 for 
x E ( -1, 1 ). Let L:.(I) be the weighted Hilbert space of all measurable functions 
f: I---+ lR with the property 

1 w(y)f(y)2 dy < oo. 

For f, g E Mv(I), the corresponding inner product and norm are defined by 

(f,g} := ~ { w(y)f(y)g(y) dy, 
7r }J II! II :=(/,f) 112 • 

Let / 2 denote the Hilbert space of all real, square summable sequences a= (a11)~0 , 
b = (b11)~0 with the weighted inner product and norm given by 

00 

(a, b)r2 :=!aobo + 2::::: anbn, 
n=l 

Let C(I) be the set of all continuous functions f : I---+ JR. By II, (n E N0) we 
denote the set of all real polynomials of degree at most n restricted on I . As 
known, the Chebyshev polynomials T, := cos(narccos) E Il11 (n E N0) form a 
complete orthogonal system in L:.(I). Note that arccos: I---+ [0, 1r] is the inverse 
function of cos restricted on [0, 1r]. For m, n E N0 we have 

m=n=O, 

m = n > 0, 

m =!= n. 

Further, we use the Chebyshev transform of L:.(I) into / 2 mapping/ E L~. (I) into 
a[f] := (a11 [/])~0 E / 2 with the Chebyshev coefficients 

an[f] := (/, Tn) (n E No). 

Then for f, g E L;.(I), we have the Parseval identities 

(/,g) =(a[/], a[g])12, (2.1) 

Note that the Chebyshev transform is a linear bijective mapping of L~.(I) onto /2. 

For more details on the Chebyshev transform see [2,10]. 
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The Chebyshev transform is strongly related with the Fourier cosine transform. 
Let L~" be the Hilbert space of all 21r-periodic, square integrable functions 
F, G: IR -t IR with the inner product 

1 1" (F, Gh := 2 F(s)G(s) ds. 
1T -1T 

Let L~".o be the subspace of all even functions of L~". For a given function 
f E L~.(J), the cos-transformed function F :=/(cos) E L~".o has the Fourier 
expans10n 

00 

F = 1a0 (F) + L a11 (F) cos (n ·) (2.2) 
n=I 

with the Fourier cosine coefficients 

21o'if a11 (F) := - F(s) cos (ns) ds 
7f 0 

(n E N0). (2.3) 

In order to adapt the concept of shifts to the interval/, we consider the even shift 
SaF ofF E L~". o by a E IR, which is defined as the even part of the translated 
function F( · -a), i.e. 

SaF :=4(F( ·+a)+ F( ·-a)) E L~1r,o· (2.4) 

Observe that for n E N0 

Sacos(n·) = cos(na)cos(n·), 

Restricting F =/(cos) on [0, 1r] , the arccos-transformed function F(arccos) coin­
cides with/ E L~. (I). From (2.2)-(2.3) it follows directly the Chebyshev expansion 

00 

f = 1ao[/] + L an[f]T11 , an[!]= an(f(cos)) (n E N0). 

II= I 

Further, the even shift Sa ofF= f(cos)(a E IR) goes into the Chebyshev shift s1J of 
f with h:=cosa E /,i .e. 

(s1J)(x) :=1f(xh- v(x)v(h)) + !f(xh + v(x)v(h)) (x E I) (2.5) 

with v(x) :=(I- x2) 112(x E I). 
For the realization of the Chebyshev transform in finite dimensional subspaces 

of L~. (I), we will use fast algorithms of the discrete cosine transform (DCT). In 
the following, we briefly introduce the different types of DCT. 

Let N1 := d21, wherej E N0 stands for the level and dEN is a constant depending 
on the application. Further, let 8k,l be the Kronecker symbol and t:1,0 = EJ,Nj := r', 
t:1,k:=l(k= l , ... ,N1 -1). Weintroducethematrices 

( 
k/7T)Nj 

Cj:= cos N ' 
J k,/=0 

D ·-d' ( )Ni j .- Iag Ej,k k=O> 

C- ·- ( (2s + 1 )m)Nri 
j . - cos , 

Nj+l r,s=O 

- . )N·-l D1 := d1ag ( EJ,s s~O , 
- (J:: )N·-l lj := 0 r,s r,~=O• 
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which fulfil the relations 

N 
C1D1C1D1 = 21 11, 

-T- - - -T- N-cj n1c1 = c1c1 n1 = { 11. 

This follows from 

N· {N ' ku1r J L Ej,k cos N. = 
k=O 1 0 

~ (2k + I)u1r { NJ 
L...- cos = -N. 
k=O Nj+l 0 1 

u = Omod~+l• 

otherwise, 

u =Omod~+2• 

u = ~+I mod N1+2, 

otherwise 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(cf. [16]). For further development, we define some variants of the OCT. The 
type I-OCT of length N1 + 1 (OCT-I (N1 + 1)) is a mapping of RNj+l into itself 
defined by 

(2.10) 

with C) :=C1D1. By N1(Cj)- 1 = 2C), this mapping is bijective. Note that (2.6) and 
(2.1 0) imply 

(x 1)TD1x1 = xT(Cj)TD1C)x = xTD1C1D1C1D1x = i xTD1x. (2.11) 

The type II-DCT of length N1 (DCT-II (N1)) is a mapping ofRNj into itself defined 
by 

(2.12) 

with cp :=C;. Then by (2.7) and (2.12), we obtain 

(yii)Tf>jyll = yTc}f>jcjy = i YTY· (2.13) 

The type III-OCT of length~ (DCT-III (N1)) is a mapping oflRNj into itself defined 
by 

with C]I' :=C}f>1. By (2.7), the inverse of the DCT-11 (N1) is the mapping (2/N;) 
OCT-III (N1). Fast and numerically stable algorithms for the OCT-I (N1 + 1), 
OCT-II (N1) and DCT-III (N1), which work in real arithmetic, are described in 
[1,15). 
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3. Shift-invariant subspaces 

Using the Gauss-Chebyshev nodes h1,u :=cos (u1rj N1)(u E Z) of level j (j E N0 ) 

and the Chebyshev shift (2.5), we obtain the shifts of level j 

a1,u :=s111." (u E Z), 

which possess the following properties (see [2, 16]): 

Lemma 3.1 
For j E N0, u, v E Z andf,g E L~. (1) we have 

(1) aj,u+Nj+i = Oj,±u = aj+1 ,2u• 
(ii) 2aj,uaj,v = 2aj,vaj,ll = aj,u+v + aj,u-v• 

(iii) (aj, 11 /,g) = (f,aJ,ug), 
(iv) a1,11 T11 = cos(nu1rjN1)T,,, a11 [a1,uf] = cos(nu7r/Nj)a11 [/] (n E N0), 

(v) Oj,,J E ll11 for f E TI" (n E N0 ). 

Note that a1,0 f = f and a1,N1 f = f( - ·)for/ E L~.(1). Further, for/ E C(I) we 
have 

(u E Z). (3.1) 

A linear subspace S of L~. (1) is called shift-invariant of level j (j E N0), if 
for each f E S all shifted functions a1,1 f (I = 0, ... , N1) are contained in S. The 
shift-invariant subspace of level} 

S1,o(4?) :=span {a1,1'P: I= 0, . .. , N1} 

is said to be of type 0 generated by 4? E L~, (I). The shift-invariant subspace of level} 

S1,1 (4?) :=span {a1+1,21+t4': I= 0, ... , N1 - 1} 

is said to be of type I generated by 4? E L~, (I) . It is obvious by lemma 3.1, (i)-(ii) 
that sj,o(4?) ~ sj+I ,O('P) and sj,l (4?) = sj,o(aj+1 ,14') ~ Sj+t ,o(!p). By definition, 
f E S1+1.o(4?) can be represented in the form 

Ni+i 
f = L EJ+t,kaJ+I ,df)aJ+l ,k'P 

k=O 

(3.2) 

Using lemma 3.1, (iv) and Chebyshev transform, we obtain the Chebyshev 
coefficients 

(n E N0) (3.3) 

with 

NJ+i k 
aj+l ,n(f) := L EJ+I.kaj+l .df) cos Nn1r. (3.4) 

k~ j+l 

Observe that (&1+ 1 , 11 (/))~~~~ is the DCT-1 (N1+1 + 1) of (a1+ 1 ,k(f)):~~ and that the 
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following properties of periodicity and symmetry hold for n E N0 and 
k = 0, ... , NJ+l - 1 

aj+l,n(f) = a}+l,Nj+Z+n(f), a}+J,k(f) = a},Nj+z-k(j). 

In particular, for f E S1,0 ( <p) we get the representation (3.2) with 

a1+ 1, 21+ 1 (f):= 0 (I= 0, ... , N1 - 1 ). (3.5) 

Then it follows that the vector (&1+ 1 , 11 (/)):~o with components (3.4) is the OCT-I 
(~ + 1) of ( a1+1. 21 ( f) )~0 • For f E SJ. 1 ( <p) we obtain (3.2) with 

aJ+l,2t(f) := 0 (I= 0, ... , N1), (3.6} 

and the corresponding vector (&1+ 1 ,,(/)):~~ 1 is the OCT-II(~) of the vector 
(aJ+l,2t+l (/))~~~,i.e. 

N·-1 
A f-- (2/ + l)mr 
a}+J,n(f) = L...t aJ+l,2l+l (f) cos N . 

1=0 J+l 

In the following, we derive some important properties of the subspaces s1,,(<p). We 
characterize S1,v(<J?) (11 E {0, l}) by the Chebyshev transform: 

Lemma 3.2 
Letj E N0 , 11 E {0, I} and <p,f E L;,(I) be given. 

(i) Then/ E S1,v( <p) if and only if there exist &1+1, 11(/) E JR. (n E N0) with 

&J+l,n(f) = &J+l,Nj+z+n(f) (n E No), 

(n=O, ... ,N1), 
(3.7) 

such that (3.3) is satisfied. 
(ii) Let uJ+t,vf E S1,,(<p). Then S1,v(f) = S1,v(<J?) if and only if 

supp a[uJ+t,vf] = suppa[uJ+l,v'PL (3.8) 

where supp a[!]:= {n E N0 : a11 [/] =!= 0} is the support of a[!). 

Proof 
As mentioned before, iff E S1,v(<J?), then (3.7) is satisfied. Since the Chebyshev 
transform is a linear bijective mapping, the proof of the reversed direction is 
straightforward. Hence (i) is valid. Now we show (ii) for 11 = 0. 

1) If S1,0(f) = S1,0(<p), then <p E S1,0(f). From (i) it follows that suppa[<p] ~ 
suppa[f). Analogously, by f E S1,0 (<p) we find suppa[f] ~ suppa[<p] . Hence we 
obtain (3.8). 
2) Assume that (3.8) is satisfied. We only need to show that <p E S1,0(f). Since 
f E S1,0(<p), we have (3.3) with (3.7). By supp a[/]= supp a[<p], we conclude that 
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if &j+J ,n(J) =/= 0, 

otherwise, 

for which (3.7) is also satisfied. 
For v =I, the assertion follows immediately from S1,1(<p) = S1,0(u1+1•1<p) and 

sj,l(f) = sj.o(O"j+J,d). 0 

For a further analysis of the shift-invariant subspaces of L~.(I), we introduce the 
bracket product of a:= (a11 ):_0 and b := (b,,):_0 E / 2 . Let fork= 0, ... , N1+1 

00 

[a, blJ,k := L (amNJ+l +kbmNJ+l+k + a(m+l)Nj+l-kb(m+l)Nj+i-k)· (3.9) 
m=O 

Observe that [a, b]1,k satisfies the symmetry property 

[a, blJ,N1+1_ 1 = [a, blJ. 1 (I= 0, ... , N1+1 - 1 ). 

We extend the values [a, blJ.k (k = 0, ... , N1+t) to an Aj-+ 1-periodic sequence, i.e. 

(k E N0). 

Then the type 1-bracket product of length N1 + I is defined by 

[ b] I ·- ([ bj )Ni E mN1+l a, J .- a, J,k k=O lN. , 

and the type Il-bracket product of length N1 by 

[ ] II [ l N ·-1 N · a,b 1 :=( a,b J.k)k~o E 1R '· 

Lemma 3.3 
Let j E N0, v,p, E {0, l} and <p,'l/J E L~,(J) be given. Further, let f E S1,v(<p), 
g E S1,11 (1/J) with 

an[f] = &J+l,n(f)an[<p], a"[g] = ~J+l,n(g)an['l/J] (n E No) 

be given, where &1+1,11 (/), ~J+l.n(g) E lR possess the properties (3.7). Then we have 

NJ~l 

(/,g) = L EJ+l,k&J+t , df)~J+l,k(g)[a[<p], a['l/J]]J+I,k· 
k=O 

In particular, for p, = v, 

Nj-V 

(/,g)= L EJ,k&J+l , k(f)~J+t , dg)[a[<p],a['l/JJL , k · 
k=O 

Using the Parseval identity (2.1 ), the proof follows by straightforward calcula­
tions. In particular, with f:=u1.1<p, g:=u1,m'l/J for arbitrary <p,'l/J E L~.(1), we 
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obtain for 1, m = 0, ... , N1 the relations 
N· 

1 khr km1r 
(CY1,1rp,CY1,m'I/J) = L Eucos Ncos N [a[rp],a['I/JlJ;,b 

k=O 1 1 

I.e., 

(3.1 0) 

Analogously, forf:=CY;+I, 21+1rp, g:=CY;+I, 2m+I'Ij; we have for l,m = 0, ... ,N1 - 1 
N·-1 
~ k(21 + l)1r k(2m + l)1r 

(CY;+I,21+Irp,CY;+I,2m+I'I/J) = ~ E;,kcos N cos N [a[rp],a['I/JJL·.b 
k=O }+I j+l 

and thus 

Corollary 3.4 
For j E N0 and rp, 'ljJ E L:.(1), we have 

(i) S;,v(rp) j_ S1,v('lj;) (v E {0, 1}) if and only if 

[a[rpJ, a['I/J]];,k = 0 (k = 0, ... , N1 - v); 

(ii) S1,0(rp) j_ S1, 1 ('1/J) if and only if 

[a[rp], a['I/J]];+I,k = 0 (k = 0, ... ,N1+I). 

(3.12) 

For rpEL~.(I), we consider the system B1,0 (rp):={CY;.trp:l=O, ... ,N;} and 
B1, 1(rp):={CY1+1,21+1rp:l=O, ... ,N1 -1}. For B1,0 (rp), we define a special ortho­
normality criterion. We say that B1,0 (rp) is orthonormal, if the modified Gramian 
matrix fulfils 

(3.13) 

The system B1, 1 ( rp) is called orthonormal, if the Gramian matrix satisfies 

( ) N· - 1 -
( CTj+l,21+1rp,CYj+1,2m+lrp )1, 1m=0 = 1;. 

Then we obtain the following characterizations for the bases B1.v(rp) (v E {0, 1}) in 
terms of the bracket products. 

Lemma 3.5 
Let v E {0, 1} andj E N0 be given. 

(i) The system B1,v(rp) is a basis of S1,v(rp) if and only if for all k = 0, ... , N1 - v 

[a[rp], a[rpJ]1,k > 0. (3.14) 

(ii) The system B;,v(rp) is an orthonormal basis of S1,v(rp) if and only if 

[a[rp], a[rp]lJ,k = 2/ N1 (k = 0, ... , N;- v). (3.15) 
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(iii) If tp satisfies (3.14), and if tp* E L~. (1) is defined by 

a11 [tp*] := c1+1,11 ( tp*)a11 [tp] (n E No) 

with coefficients c1+1, 11 (tp*) determined by (3.7) and 

cj+l ,ll( tp*) := (2/ Nj) 112 [a[tp], a[tpJJJ.:/2 (n = 0, ... 'Nj - !/)' 

then B1,,,(tp*) is an orthonormal basis of S1,v(tp). 

Proof 
Let v = 0. The system B1,0(tp) forms a basis of S1,0(tp) if and only if the Gramian 
matrix 

( ( (Jj,ftp, (Jj,ml{J) )~~n=O 

is regular. Since C1 and D1 are regular, by (3.10) this is the case if and only if 
diag [a[tp], a[tpJn is regular, i.e., if and only if (3.14) is satisfied. 

By definition, 81.0 ( tp) is an orthonormal basis of S1,0 ( tp) if and only if 

(Ej , m(CTj,Jl{J,CTj, mtp))~~~=O = ((CJj,fi{),CJj,mtp)(~n=ODj = lj. 
By (3.1 0) and (2.6), this is true if and only if (3.15) holds. Finally, by verifying 

[a[tp*J, a[tp*]J1,k = 2/ N1 (k = 0, ... , N1), 

we see that by construction B1,0 (tp*) is an orthonormal basis of S1,0(tp*). By lemma 
3.2, the definition of tp* implies that sj,o(tp*) = sj,o(tp). 

Using (2. 7) and (3.11 ), the assertions follow analogously for v = I. 0 

With the help of the bracket product, we are able to give a simple description of 
the orthogonal projectors P1,v (v = 0, I) of L~.(I) onto S;,v(tp). 

Lemma 3.6 
Let) E N0, v E {0, 1} and let tp E L~. (I) with (3.14) be given. Then for/ E L~.(I) we 
have 

(n E N0 ), 

where the coefficients c1+1,11 (P1,vf) satisfy the relations (3.7) and 

A ) [a[/J, a[tp]J1,, 
cJ+I.J(PJ,vf := [a[tp], a[tp]]J,/ (I= 0, ... , N1 - v). (3.16) 

The projector P1,v ts shift-invariant of level j, i.e., for all f E L~v(I) and 
k = 0, ... , N1 - v 

Proof 
We show the assertion only for v = 0. For f E L~. (1), the orthogonal projection 
P1.0J E S1,0 (tp) is determined by f- P1.of ..l S1,0(tp). Then there are coefficients 
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cJ+l,n(P1,of) (n E No) satisfying the properties (3.7) of symmetry and periodicity 
with 

a"[Pj,of] cJ+l,n(Pj,of)a,[c.p] 

Using lemma 3.3, we obtain for all/ = 0, ... , N1 

0 = (f- P1,0 f,CI1,,c.p) 

Ni khr 
= L EJ,k cos N- [a[f - P1,0 f], a[c.p]]1,k 

k=O 1 

(n E N0). 

Hence the coefficients c1+1.dP1,0 f) satisfy (3.16). The shift-invariance of P1,0 

follows from 

a,[CIJ,t(Pj,of)J cJ+l,,(P;,of)a,[c.p] cos /~1r 
J 

(n E N0 ). 0 

4. Multiresolution of L~(I) 

We form shift-invariant subspaces V1 := S1,0 (c.p1) with c.p1 E L~.(/) for each 
level j E N0 . The sequence of subspaces Jlj (j E N0 ) is called a nonstationary 
multiresolution of L~.(I), if the following three conditions are satisfied: 

(Ml) Jl} c Jl}+ 1 (j E No). 

(M2) cios (u Jl}) = L~.(I). 
J=O 

(M3) The systems B1,0((N1j2) 112c.p1) (j E N0) are L~v(I)-stable, i.e., there exist 
positive constants a, (3 independent of j such that for all j E N0 and for 

( ) Ni E mNj+l any aJ,n fl=O ~ , 

Nj Nj 2 Nj 

a L Ej, 11aJ, :S L EJ,na;, 11 (Nj2) 112 CI1,nc.pj :S (3 L EJ,11aJ.,. (4.1) 
n=O n=O n=O 

By (M3), B1,0((N1j2) 112c.p1) is a basis of Jlj. Note that dim Jlj = N1 +I. The shift­
invariant subspace ~·is called sample space of level}. The function c.p1 of Jlj is said to 
be the scaling function of Jlj. If all systems B1,0( (N1j2) 112c.pj) are orthonormal bases 
of V; (j E N0) in the sense of (3. 13), then we say that (Nj/2) 112c.p1 (j E N0 ) are ortho­
normal scaling functions. In this case the constants in condition (M3) are a = (3 = 1. 
Concerning (M2), we observe the following 
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Theorem 4.1 
Let { V. }~0 be a nested sequence of shift-invariant subspaces V; := S1,0 ( <pj) with 
'PiE Lt.( I), i.e., (Ml) is valid. Then the condition (M2) is satisfied if and only if 

Proof 

00 

U supp a[~.pj] = N0 . 

}=0 

I) Suppose that ( 4.2) is not satisfied. Then there is a number 

00 

n0 E N0 \ U supp a[cp;] 
j=O 

such that for the Chebyshev polynomial T,,0 it holds that 

T~ -L clo{Q v} 
Thus, (M2) is not satisfied. 
2) Assume that (4.2) holds. By (Ml) and lemma 3.2, we have 

supp a[~.pj] ~ supp a[~.p1+d (j E N0 ). 

Suppose that there exists/ E L~.(I) (f =f. 0) with 

f_Lclo{Q ~) 
By k0 E N0 , we denote an index for which 

lak0 [!]1 =max {ladfJI :kENo} > 0. 

(4.2) 

(4.3) 

(4.4) 

By (4.2)-(4.3) we conclude that there is an indexj0 E N0 such that k0 E supp a[~.p10 ] 

and N10 2:: k0 . Since 'Pio E J0 for all) 2:: Jo. we find that/ l.. S1,0 ( 'Ph) (j 2:: )0 ). Hence, 
for j 2::)0 , we have by (3.12) 

I.e., 

00 

+ L (ako+nNi+l [f]ako+nNi+l ['PJol + a(n+l)Nj+l-ko[!Ja(n+l)Nj+l-ko['Pio]) = 0. (4.5) 
n=l 

Put 
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and choose }1 ?:. }0 such that 

L !an[f]an['Pioll :'S Eo/2. (4.6) 
II?. Nil 

This choice of }1 is possible, since by the Cauchy-Schwarz inequality 
00 

L !a,Jf]an['PioJI :'S lla[fJII,z!la[<pioJII,2 < oo. 
n=l 

But (4.6) contradicts equation (4.5) for j } 1• This implies thatf = 0, i.e., (M2) is 
satisfied. 0 

Theorem 4.2 
The system {Bi, 0 ((Ni/2) 112rpi) :j E N0 } is L~.(I}-stable with positive constants a.,(3 
independent of j if and only if for all k = 0, ... , Ni and for all j E N0 

N2 
a:::; -;f- [a[<pi], a[<pi]]i,k:::; (3. (4.7) 

Proof 
l) From lemma 3.3, it follows that for j E N0 and (a.i.k):~o E JRNi+l 

with 

(n E N0 ). 

By (2.10)-(2.11) we have 

With the considerations above, (4.1) reads as follows 

with arbitrary (&i.n):~o E JRNi+ 1 and} E N0, which is equivalent to (4.7). 0 

In the following, we assume that (Ml)-(M3) are satisfied. From (Ml) it follows 
'Pi E ~+I, i.e., there exist unique coefficients a.i+l,k( rpi) E lR (k = 0, ... , Ni+d such 
that 

Ni+l 

'Pi= L Ei+l,ka.i+l,k(rpi)ai+l.k'Pi+l · 
k=O 
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This is the so-called two-scale relation or refinement equation of <p1. The Chebyshev 
transformed two-scale relation of <p1 reads 

(n E N0) (4.8) 

with the two-scale symbol or refinement mask of <p1 

(n E N0). 

By definition we obtain the relations of periodicity and symmetry for all n E N0 and 
I= 0, ... , N1+2 - I, 

A1+1 (n) = A1+1 (N1+2 + n), (4.9) 

If a scaling function <p1 (j E N0 ) satisfying ( 4. 7) is given, then an orthonormal basis 
B1, 0 ((~j2) 1 12<pj) (j E N0 ) can be easily obtained by lemma 3.5, (iii). Let <pj (j E N0 ) 

be defined by its Chebyshev coefficients 

(n E N0). 

Then B1,0((N1/2) 112<pj) is an orthonormal basis of Vj = s1,0(<p1). The two-scale 
symbol Aj+ 1 satisfying 

(n E N0) 

is connected with A1+1 by 

A~ ( ) ·= 2 ([a[f.PJ+d, a[f.PJ+dlJ+l ,n)112 A. ( ) 
J+l n . [ [ ·] [ ·J]· .J+I n a <p1 ,a <p1 1,11 

(n E N0). 

The following connection between the bracket product [a[<p1], a[<p1m and the 
two-scale symbol AJ+t can be observed: 

Lemma 4.3 
For j E N0 and k = 0, ... , Nj, we have 

[a[<pJ, a[<p1]lJ,k = AJ+l (k)2[a[<p1+t], a[f.PJ+tllJ+l,k 

+ AHI (Nj+J - k) 2[a[f.PJ+l], a[<pJ+IllJ+t.Nj+l-k· 

In particular, if (N1/2) 112<pj is an orthonormal scaling function and if Aj+1 is the 
two-scale symbol of <pj, then 

(k=O, ... ,Nj). (4.10) 
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Proof 
By the definition of the bracket product and by (4.8)-(4.9), we obtain for 
k = 0, ... ,N1 

[a[<PJ, a[<p;]lJ,k 
00 

= L (a11Nj+2+d<PJl 2 + a(II+I)Nj+2-d<p;] 2 + a11Nj+2+Nj+i+d<P1f + anNj+2+Nj+i-d<P;] 2) 
n=O 

= A1+t (k) 2[a[<PJ+d, a[<Pi+dL+t,k + A;+t (NJ+t k) 2 [a[<PJ+d, a[<PJ+IJ]J+I ,Nj+l-k· 

For orthonormal scaling functions, the assertion follows by lemma 3.5, (ii). 0 

5. Wavelet spaces 

Let the wavelet space Wj of level j (j E N0) be defined as the orthogonal 
complement of V1 in Vi+~> i.e. 

Wj := V;+I e V} (i E No). 

Then it follows that dim Wj = (N;+I + I) - (~ + I) = N1. By definition, the wave­
let spaces Wj (j E N0 ) are orthogonal. By (Ml)-(M2), we obtain the orthogonal 
sum decomposition 

00 

L~.(I) = V0 EB EB Wj. 
}=0 

Further, Wj can be characterized by the orthogonal projector P1,0 of L~. (1) onto V) , 
namely by 

Wj = {f- PJ.of :f E VJ+I}· 

The subspace W1 is shift-invariant of level j, since by lemma 3.6 we have for 
g := f- PJ,of (f E Vl+l ), 

O'J,ig = 0'1,tf- O'J,I(P1,of) = 0'1.tf- P1,o(0'1.tf) E Wj. 

Assume that the shift-invariant subspace Wj can be of type l generated by a 
function 'lj;1 E VJ+ 1 such that W; = S1, 1 ( 'lj;1). Further, we suppose that the set 
B1. 1 ( (N1/2) 112'1/J1) = { (N)2) 1120'1+1•21+1 'lj;1 : I= 0, ... , N1 - I} is L~.(J)-stable, i.e., 
there are constants 0 < 1 :S 8 < oo independent of j such that for all j E N0 and 
c ({J )Nrl IDJNj tOr any tn n=O Ea , 

Nj-l Nj-1 2 Nrl 

I L fJ]~~ :S L fJJ,II(NJj2) 1120'J+I,2n+l'l/JJ :S {J L fJ]w (5.1) 
11=0 11=0 n=O 

U_nder these assumptions, 'lj;1 is called semior/~ogonal wavelet. If B1, 1 ((~/2) 112 'lj;1 ) 
(; E N0) are orthonormal bases, then (N1j2) l-'lj;1 are called orthonormal wavelets. 
Obviously, for orthonormal wavelets the condition (5.I) is satisfied with 1 = 8 = I. 
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By Uj c VH 1, there are unique coefficients aJ+l,k('~M E lR (k = 0, ... , N1+I) such 
that a two-scale relation or refinement equation of 'lj;1 of the form 

Nj+l 

'lj;J = L f.J+I .kaJ+l.k('l/J;)(JJ+l,k¢J+l 
k=O 

is satisfied. By means of the Chebyshev transform this yields 

a,[7j;1] = B1+1(n)a 11 [<p1+d (n E N0), 

mr 
a,[(Ji+l,r'lj;1] =cos -N Bj+ 1(n)a,[<p1+d (n E N0) 

J+l 

with the two-scale symbol or refinement mask of 'lj;1 

Nj+l kmr 
BJ+l (n} := L f.j+l,kaJ+l ,k('lj;j) cos N 

k~ j+l 

(n E N0). 

(5.2) 

It is clear that B1+1 satisfies the same properties of periodicity and symmetry as AJ+l 
in (4.9). As in the sample space Vj, the bracket products are important for the 
characterization of the L~.(/)-stability of Uj and the orthogonality W; _L V;: 

Theorem 5.1 
(i) The condition (5.1) for} E N0 with positive constants 1 and 8 independent of} 

is equivalent to 

(n = 0, ... , N1 - I). (5.3) 

= (cos ~:1 J (B1+, (k)2[a[<t'j+tL a[<p1+dL+t.k 

+ BJ+l (NJ+l - kf[a[<t'J+J], a[<t'J+dlJ+t,Nj+l_d. (5.4) 

(iii) For j E N0 , we have S1, 1 ( 7j;1) _L Vj if and only if for all n = 0, ... , NJ - I 

A1+1 (n)BJ+l (n)[a[<p1+d, a[<t'J+dlJ+I.n 

- AJ+l (NJ+l - n)BJ+l (NJ+l - n) [a[<p1+1], a[<t'J+IJ]J+I.Ni+l-" = 0. (5.5) 

Proof 
The proofs for (i) and (ii) are similar to those of theorem 4.2 and lemma 4.3. 
In order to show (iii), we observe that V1 _L S1,1('1/J;) = S1,0 ((J1+1•17j;1) is equivalent 
to the equations [a[<p1], a[(JJ+I , 17j;1JL.k = 0 for all k = 0, ... , N1 by corollary 3.4, 
(i). Inserting the two-scale relations (4.8) and (5.2), we obtain the assertion. 
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Note that from (5.5) it follows that this equation rs also valid for n = 

0 

We introduce the two-scale symbol matrices of level j (j E N0 ) for 
n = 0, ... , N1 - 1 by 

S ( ) ·- ( A1+1(n) 
J+l n .-

A1+1 (~+I - n) 
(5 .6) 

As usual, these matrices will play an important role in deriving the decomposition 
and reconstruction algorithms. Therefore we have to investigate the invertibility 
of S1+1(n). Let >-v (v=O,l) be the eigenvalues of S1+1(n), i.e., it holds that 
det (S1+1(n) Avl) = 0 with the unit matrix I. 

Lemma 5.2 
Assume that (Ml)-(M3) and (5.1) hold with positive constants a, /3, "f, 8. Then the 
two-scale symbol matrices S1+1 (n) are regular for all n = 0, ... , N1 - 1 satisfying 

~min{a,')'}::;l>-vl 2 ::;~max{/3,8} (v=O,l). (5 .7) 

In particular, it holds that 

4 4 
(J VC0 ::; I det S1+1 (n) I ::; ;_ J738 (5.8) 

Furthermore, we have for n = 0, ... , N1 - 1 

Si+l (nt 1 = diag ([a[<p1], a[<pJ]).~, [a[1/;1], a[1/JJJ::.) TsJ+I (n) T 

x diag ([a[<pJ+ 1], a[<pJ+I]]J+I,n> [a[<t?i+l], a[<pJ+I]]J+ 1• Nj+ 1_ 11 ) T. ( 5.9) 

Proof 
Using lemma 4.3 and (5.4)-(5.5), we find for n = 0, ... , N1 - I 

Sj+l (n) T diag ([a[<pj+d, a[<pj+lllj+l,tt' [a[<pj+lj, a[<pj+lllJ+l,Nj+l-n) Tsj+ l (n) 

= diag ([a[<p1], a[<pJL,,, [a[1j11], a[1/;1]1J.,,)r. 

Thus (5.9) holds for n = 0, ... , N1 - I. By (5.9), (4.7) and (5.3), the eigenvalues and 
the determinant of S1+1 (n) can be easily estimated in terms of the constants a, /3, 
"(, 8. 0 

Now by the help of the conditions for the two-scale symbol B1+1 of 1/;1 in theorem 
5.1, we obtain 

Theorem 5.3 
Assume that (Ml)-(M3) are fulfilled. Then for all j E N0 , Bi+l : N0 ---+ lR is a 
two-scale symbol of a semiorthogonal wavelet 1/11 E L~. (1) if and only if for 
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n = 0, ... , N1+1, the two-scale symbol B1+1 (n) is of the form 

B. ( ) _ [a[<pJ+l], a[<pJ+dL+J,N1+1-nAJ+l (NJ+, - n) K-( ) 
1+1 n - [ [ ] [ ]] 1 n , a <pJ , a <p1 J, 11 

(5.10) 

where BJ+l has the same properties (4.9) of periodicity and symmetry as AJ+l> and 
where K1 : N0 --7 lR satisfies the conditions 

0 < v:::; l~(n)l :::; f.1 < oo 

~(n) = ~(11 + NJ+ 1) 

~(NJ+l - 11) = ~(11) 

for some constants v and f.L· 

Proof 

(n = 0, ... , N1 - 1 ), 

(n E N0), 

(11 = O, .. . ,N;- 1) 

( 5.11) 

1) Let BJ+ 1 be given in the form (5.10) with K1 satisfying (5.11). Then by theorem 
5.1' (iii) the orthogonality Vj .l sj, I ( VJj) is satisfied, since for 11 = 0, ... 'Nj - 1' 

Aj+1 (n)BJ+I (11)[a[<pj+J], a[<pj+dlJ+1,11 

- A1+1 (NJ+ 1 - 11)Bj+I (N1+1 - n)[a[<p1+t], a[<pHJ]L+ 1.N1+1_ 11 = 0. 

It follows that s1,1 (V;j) ~ w,. It remains to show that Bj, 1 ((N)2) 112V;1) (j E N0) are 
L~.(I)-stable. By (5.4) and lemma 4.3, we find for n = 0, .. . , Nj- 1 

[ [·'··] [·'··]]· = [a[<pJ+d, a[<pJ+1J]J+1,n[a[<pJ+d, a[<pJ+dL+1,N1+J-II K( )2 
a '~-'J , a '~-'J 1,11 [ [ ·] [ ·]] . 1 n . a <pJ 'a <pJ J,n 

By (4.7) and (5.11), we can estimate 
2 , , 

a 2 N/ {3- 2 
0 < 16{3 v :::; 4 [a[V;j], a[V;jJL.n:::; l6a f.1 < oo. (5.12) 

2) For each} E N0, let B1+1 : N0 --7 IR be the two-scale symbol of a semiorthogonal 
wavelet V;1 and let B1,1((N1/2) 1/2V;j) (j E N0 ) be L~,(I)-stable. Thus B1+1 satisfies 
(5.4) and (5.5). Now, put for n = 0, ... , N1+1 

~(n) := A1+1 (n)B1+1 (N1+1 - n) + A1+1 (N1+1 - n)B1+1 (n). 

Note that Kj(n) = ~(N1+ 1 - n) for n = 0, ... , N1 - 1. Then we continue K1 on N0 

by ~(n + rN1+1) := ~(n) for all n = 0, ... , NJ+l - l and r E N0 • Thus~ satisfies 
the conditions (5.11). Multiplying (5.5) with A1+1 (n), by lemma 4.3 we obtain for 
n = 0, ... , N1 - 1 and also for 11 = Nj + 1, ... , N1+ 1 

0 = A1+1 (n)2 B1+1 (n)[a[<pj+1], a[<pJ+J]lJ+I,, 

- A1+1 (n)AH1 (Nj+1 - n)B1+1 (Nj+1 - n)[a[<pJ+1], a[<p1+dlJ+1.Nj+J-II 

= Bj+1 (n)[a[<pJ, a[<p1]t.,, - ~(n)Aj+ 1 (NJ+l - n)[a[<pj+J], a[<pJ+dlj+I,N1+ 1-11· 

Hence, Bj+l (n) is of the form (5.10) for n = 0, ... , N1 - l, N1 + I, ... , NJ+l· Defining 
B1+1(Nj) by (5.10) for n = N1, the proof is complete. 0 
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Corollary 5.4 
Assume that B1,0((N1j2) 112t.pj) (j E N0) are orthonormal bases of V1. Let Aj+1 be 
the two-scale symbols of t.pj E L~.(/). Then for every j E N0, B/+1 : N0 ---+ ~ is a 
two-scale symbol of a wavelet '1/Jj E L~.(/) generating an orthonormal basis 
B1,1((N1/2) 112 '1/Jj) of J.fj if and only if B/+1 possesses the form 

B/+1 (n) = ±Aj+1 (NJ+I - n) (n = 0, ... ,N1+1) 

and fulfils the same properties (4.9) of periodicity and symmetry as AJ+I· 

Proof 
By lemma 3.5, (ii) we have 

N/[a[t.pj], a[t.pjJL.n = 4 

N/[a[1/JiJ, a['I/Jj]L, 11 = 4 

(n = 0, ... , N1), 

(n = 0, ... , N1 - 1) 

for all j E N0• Hence, a= f3 = 1 = 6 = 1. From (5.12) it follows that v = 1-L = 4, 
and thus Kj(n) = ±4 (n E N0 ). Then the assertion can be obtained by application 
of theorem 5.3. D 

6. Decomposition and reconstruction algorithms 

Now we derive efficient decomposition and reconstruction algorithms. In order 
to decompose a given function.lj+ 1 E ~+I (j E N0) of the form 

Ni+l 

./j+l = L f.j+I,IQJ+I,/(.fj+t)O"j+l,/t.pj+ll 
l=O 

(6.1) 

the uniquely determined functions ./j E ~ and g1 E J.fj have to be found such 
that 

(6.2) 

Assume that the coefficients ai+I.I E ~ (I= 0, ... , N1+1) of ./j+1 or their DCT-1 
(N1+1 + 1) data 

(6.3) 

are known. The wanted functionsfj E ~and g1 E J.fj can be uniquely represented 
by 

Ni Nri 

./j = 2:::: f.j.m a;.m ( .fj)uj.m t.p;, g)= L f3j,.(g;)uj+l ,2r+l'I/JJ, (6.4) 
m=O r=O 

with unknown coefficients a1,,(.fj), (31,,.(g1) E ~. Let &;,b /3;,., E ~ denote the 
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following DCT-1 (N1 + l) and DCT-11 (N1) data 

N-1 - f-- (2r + I )s1r 
f3J,s := ~ f3rr(gj} cos -'---N-:_ 

r=O J+l 

(k = 0, ... , N1) , (6.5) 

(6.6) 

In order to reconstruct Jj+1 E V;+I (j E N0), we have to compute the sum (6.2) 
with given functions Jj E Vj and g1 E ~-. Assume that o:1,m(Jj), f31,,(g_;) E lR in 
(6.4) or the corresponding DCT data (6.5)-(6.6) are known. Thenjj+1 E VJ+ 1 can 
be uniquely represented in the form (6.1). 

The decomposition and reconstruction algorithms are based on the following 
connection between (6.3) and (6.5)-(6.6): 

Theorem 6.1 
Assume that for j E N0 

(k = 0, ... ,Nj). (6.7) 

For j E N0, letfj+ 1 E Vi+~>/;· E Vj and g1 E ~with (6.1)- (6.6) be given. Then we 
have 

Proof 
From (6.4), it follows by lemma 3.1, (iv) that for all n E N0 

a,[/i] = aj,nan['PJl 
with 

Analogously, by (6.1) and (6.3)-(6.6) we have for all n E N0 

where &;+1,11 is defined similar to aj,n and 
N-l - f-- (2r + 1 )n1r 

fJj,n := ~ /3j,r(gj ) COS N · 
r=O j + l 

Relation (6.2) holds if and only if for all k E N0 

adjj+tl = ad.t;J + ak[gJ 

(6 .8) 
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Using the Chebyshev transformed two-scale relations (4.8) and (5.2), we obtain 

&J+I.kak[Cf'J+d = &J,kAJ+I (k)ak[rt'i+d + ,BJ,kBJ+l (k)ak[rt'i+d· 

Analogously, we have fork= 0, ... , N1+1 

&J+l,N1+1-kadrp;+d = &J,NJ+l-kAJ+l (NJ+l - k)ak[Cf'J+I] 

+ fi;,N1+ 1-kBJ+I (NJ+l - k)ak[rp1+d· 

Using the assumption (6.7) and observing that &J,N·+l-k = &1,k> ,BNJ+l-k = -,81,k 
(k = 0, ... ,N1+J), we obtain the assertion. Note that f'rom (4.7) and lemma 4.3 it 
follows that 2a{3- 1 :S A;+1(N1)2 :S 2a- 1{3, i.e. A1+1(Nj) =/= 0. 0 

We obtain the following algorithms: 

Algorithm 6.2 (Decomposition algorithm) 

Input: j E N0 , 

&J+I,k E lR (k = 0, ... , NJ+I). 

Form for r = 0, ... , N1 - I, 

Output: &1,, (r = 0, ... , Nj), 
,Bj,r (r = 0, ... , N1 - I). 

Algorithm 6.3 (Reconstruction algorithm) 

Input: j E N0, 

&j,r E lR (r = 0, ... , NJ, 
/J1,, E lR (r = 0, ... , N1 - I). 

Form forr=O, ... ,N1 -I, 

Output: &;+l,k (k = 0, ... , N;+l ). 
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7. Polynomial wavelets 

As the first example, we consider polynomial wavelets on I (see [6,16]) . Set 
NJ := 21 (j E N0). As scaling function <.p1 of level j we use the following function 
defined by its Chebyshev coefficients 

Then it holds that 

n=O, ... ,N1 -1, 

n =N1, 

11 > NJ. 

By (7 .1 ), the corresponding bracket product reads as follows 

k=O, ... ,NJ-1, 
k=N1. 

Using (2.8), we obtain the following interpolation property of <.p1 

2 Nj khr 
<.p1(h1,1) = a1,1<.p1(1) = N L E1,kcos N = 280,~ 

J k=O J 

(7.1) 

(7.2) 

(7 .3) 

By (7.1), the shifted scaling functions a1.ki.PJ (k = 0, ... ,N1) are contained in TINj· 

Further, these functions a1,ki.PJ (k = 0, ... , Nj) are modified Lagrange fundamental 
polynomials with respect to the Gauss-Chebyshev nodes h1,t (I= 0, ... , N1), since 
fork, I= 0, ... ,N1 from lemma 3.1, (ii) and (3.1) it follows 

a1,ki.PJ(h1,1) = (o-1,~a1,ki.PJ)(I) 

= 1(aJ.I+ki.Pi(l) + aJ,Il-kii.Pi(l)) 

-IJ: = Ei,kuk,l· 

Figure I shows the scaling function <.p5, and figure 2 presents the shifted function 
a5,16 <.p5• The function ai,ki.Pi (k = 0, ... , Ni) is supported on the whole interval/, 
and has significant values in a small neighbourhood of hi,k' if j is large enough. 

Let Vi:= Si, 0 (<.pj) be the same space of level}. Consequently, by lemma 3.5, (i), 
the polynomials a1,ki.Pi (k = 0, ... , N1) form a basis of Vi, i.e., 

f0 = nNj, dim v1 = N1 + 1. 

Note that the operator L1 : C(J)- f0 defined by 

Nj 

Li f := L Ei.k f(hi,k )ai,k IPJ (f E C(/)) 
k=O 
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is an interpolation operator, which maps C(/) onto V1 with the property 

LJf(h1,,) = f(h1,,) (/ = 0, ... , Nj). 

All sample spaces V1 (j E N0 ) form a multiresolution of L~.(I), where (M3) reads 
as follows: The systems B1.0((N1/2) 112<p_;) (j E N0 ) are L~.(/)-stable with optimal 
constants a= 1/2 and f3 = l, i.e., for all j E N0 and for any (a1.d;~o E JRN;+I we 
have the sharp estimate 

Using (7.1 ), we find the Chebyshev transformed two-scale relation of i.fJJ 

a11 [<p1] = AJ+I (n)a11 [i.fJJ+d (n E N0 ) 

with the corresponding two-scale symbol 

n=O, ... ,N1 I, 

n=N1, 

n = N1 + l, ... , NJ+I· 

Let Utj := "J+1 e V1 be the wavelet space of level). Thus, dim Utj = N1. Consider the 
polynomials 'lj;1 E "J+1 (j E N0) given by their Chebyshev coefficients 

{
2 n=N;+I, ... ,N1+1 -1, 

N1a11 ['1/JJ := 
0
1 n = NJ+" (7.4) 

otherwise. 

Then the corresponding bracket product reads as follows 

k = 0, ... ,NJ, 

k = N1 + l, ... , N;+l - 1, 

k = NJ+I· 

The shifted polynomials <YJ+ 1,2,+1'1j;1 satisfy the interpolation properties 

<YJ+I ,2r+I'I/Jj(hJ+I,2s+d = 8,,s (r,s = 0, ... ,N1 -1). 

(7.5) 

Figure 3 shows the wavelet 'lj;5, and figure 4 presents the shifted wavelet <Y6 33 'lj;5 . 

The wavelet space Utj is a shift-invariant subspace of L~. (I) of type I generat~d by 
'lj;1• The systems B1,1((N)2) 112 'lj;j) (j E N0) are L~. (/)-stable with optimal constants 
1 = I/2 and 8 =I, i.e., for all) E N0 and for any (/31,,)~~~ 1 E I[{N1, we have the sharp 
estimate 

Using (7.1) and (7.4), we obtain the Chebyshev transformed two-scale relation 
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(n E N0) 

with the corresponding two-scale symbol 

{ 
0 n = 0, ... , N1, 

BJ+ I(n):= 2 
11 = Nj + l' ... 'Nj+ I. 

In the following, we compare the arithmetical complexity of our decomposition 
algorithm 6.2 for these polynomial wavelets on I with that of the fast decomposi­
tion algorithm for linear and cubic spline wavelets on [0, I] proposed in [I3]. Let 
j;:::: 3. Assume that 21+1 +I function values ofjj+1 E VJ+ 1 are given. The decompo­
sition algorithm for linear spline wavelets in [0, 1] needs 6 · 21+1 real multiplications 
in order to compute all wavelet coefficients of g_; E W1. For the same problem, the 
decomposition algorithm for cubic spline wavelets in [ 13] can be implemented using 
I4 · 21+1 real multiplications. Compared to that, our algorithm 6.2 requires fewer 
real multiplications up to the levelj = I4. 

Now we consider the complete decomposition of Jj+1 E VJ+I· Here we have to 
determine all coefficients of the related functions in rY.i· rY.i- 1, ••• , W3 and V3 . 

Figure 5 shows the number of needed real multiplications (divided by 21+ 1) for 
the complete decomposition with linear spline wavelets(<>), cubic spline wavelets 
(D) and polynomial wavelets ( + ). Our procedure needs fewer real multiplications 
than the method in [13] for cubic spline wavelets up to levelj = 20. Since a level 

30~---.----.----.----,----.,----.----.----.----.-, 
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j E {7, ... , II} is often used in practice, our algorithm is an interesting alternative 
to the method in [ 13]. 

As a numerical application of the decomposition algorithm 6.2, we would like 
to mention that an exact detection of singularities of a given function near the 
boundary ±1 is possible. For example, we consider a linear spline function in 
order to determine its spline knots. Let B2 denote the cardinal linear B-spline. 
Interpolating the function 

f(x) := B2(4x + 3.96) (x E I) 

at levelj = 7 and decomposing/, we can observe the singularities at -0.99, -0.74 
and -0.49 in the corresponding wavelet part of levelj = 6 (see figure 6). On the 
other hand, the decomposition of the function 

f(x) := B2(4x + 4) (x E I) 

shows that/ has singularities at -0.75 and -0.5, but not at -1 (see figure 7). 
We can generalize the example of polynomial wavelets in a similar manner as 

done for periodic functions in [14]. Set N1 = d21 (.i E N0 ) with fixed dEN. Further 
let for fixed A E N0 

.i ~A, 

.i >A, 

where 3 ~ 2>-.d is fulfilled. Then, Ni + M 1 ~ NJ+I - MJ+I· Let the scaling function rp1 

0.002 

0 A ~~ 
IV IP 

-0.003 

-1 0 1 

Figure 6. 
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of level j be given by its Chebyshev coefficients 

1
2 

N+M-n 
Nia"['PJI '~ 0' M; 

O< n<N-M - - J Jl 

1 

The smaller >., the better localized the scaling functions are on I . We obtain the 
same interpolation property of cp1 as in (7.3). The sample space V1 = S1.0 (cp1) can 
be described by 

i.e., ITN-M c V1· c ITN+ M _ 1• The corresponding wavelet space W1- (j E N0) is of 
1 1 1 1 

type 1 generated by the polynomial '1/J; := 2cpJ+l - cp1 E ~+J such that 

2 

N1+1 + M1+1 - n 

MJ+l 

0 otherwise. 
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The shifted polynomials aJ+l ,Zr+IWJ also satisfy the interpolation properties 

(r,s = 0, ... ,N1 - 1). 

For the Chebyshev transformed two-scale relations of c.p1 and w1, we obtain the 
two-scale symbols 

( ) ·-l ~J + M1 - n AJ+l n .- M-

' 0 

and 

0 < n < N -M· - - J ,, 

N1 - M1 < n < ~ + M1, 

N1 + M1 :S n :S ~+I 

8. Transformed spline wavelets 

In principle, the following is obtained by transferring the construction of [12] 
onto the interval. Let m EN be a fixed even number and let Mm be the centered 
B-spline of order m _with the knots -m/2 + k (k = 0, ... , m). Set N1 := 21 

(j E N0). Further, let Mm,J (j E N0 ) be the 27r-periodization of Mm(~ ·/1r), i.e. 

DO 

M,,j := L M/II (Nj .;71" - Ni+ll) . 
1=-oo 

Fro!? Mm,J = Mm,J(- ·)it follows that Mm,J E L~.,.., 0 . The Fourier cosine coefficients 
of Mm,J read as follows 

- 1 - I ( . n1r \" 
a11 (Mm) = NJ Mnr(n1rjN1) = NJ smc ~+I} (n E N0) . 

Now restricting Mm,J on [0, 1r], we choose as scaling function c.p1 := M111,J(arccos), 
that is, c.p1 has the Chebyshev coefficients 

( )

II , n7r 
N1a,[c.p1] = Mm(n1rjN1) = sine N 

J+l 

(n E N0) . 

For the two-scale symbol of c.p1 we find 

( 
1171" \" 

A1+1 (n) = 2 cos N1+2) (n E N0). 
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Let the sample spaces Vj be generated by <pi, i.e. V; := S;,o(tpi) (j E N0 ). Then by 
00 

U supp a[<p;] = N0 

j=O 

it follows that condition (M2) is satisfied. 
For the bracket product we obtain by Poisson summation formula 

z ~ ( A ((/S+tl+n)1f)2 A ((Nj+((/+ l) -n)1f)2
) 

Ni [a[<p;J, a[tpilJJ.n = f;;o M, Ni +Mm Ni 

00 

= L M2,(21fl + 111fj Nj) 
1=-oo 

00 

= L Ma,(k) e-inktr/N; 

k=-oo 

and hence 

N2[ [ ] [ ]] _<I> ( - imr/N;) J a tpj , a <fl; j,n - 2m e 

with the well-known Euler-Frobenius polynomial 
00 

<I>2,(z) := L M 2,(k)zk (z E <C, lzl = 1). 
k=-oo 

The systems Bj,o((NJI2) 112tpJ (j E N0 ) are L~.(/)-stable, since we have 

N2 
a ~ T [a[tpj], a[tpj]L, 11 ~ {3 (j E No) 

with 

where B2111 denotes the (2m)th Bernoulli number. Observe that we have found the 
same constants a, f3 as in the case of the multiresolution generated by cardinal 
splines of order m (see [12]). Note that different scaling factors of scaling functions 
are used in [12]. 

Let the wavelet 1/JJ be defined by its Chebyshev coefficients 

[ J ·- ( · 111f )" ( - imr/N·+l ) [ ] an 1/Jj .- 2 Sill - <l>2m -e I all tpj+( 
Ni+2 

(n E N0), 

i.e., 'ljJ1 possesses the two-scale symbol 

Bj+I (n) = 2 (sin ~:J"<I>2n,( - e-imrfNJ+l) (n E N0) . 

By definition it is clear that 1/JJ E V;+t· In order to show that ffj = S;.1(1/Jj), we 
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have to check the orthogonality Vj ..L S1, 1 ( 7/Jj} and the L~. (I )-stability of 
B1, 1((N1j2) 1127f;1) (j E N0). Since m is even, we easily observe that (5.5) is satisfied 
for the two-scale symbols A1+1 (n), B1+1 (n) above. Furthermore, inserting B1+1 (n) 
into (5.4) we obtain for n = 0, ... , N1 - 1 by lemma 4.3 

N2[a[·'··] a[·'··]]· =<I> (e-imr/Ni)<P (e-imrfNJ+i)<P (-e-imr/Nj+i) 
J '1-'J > '!-'] J,ll 2m 2m 2m · 

In particular, we obtain £~.(!)-stability of B1, 1 ( (N1j2) 1/ 27/Jj) with the constants 

41 =min { <~>2m(z)<I>2m( -z)<Pzm(i) : z E <C, !zl = I} 

= <~>an(-l)<I>2m(-i)<I>zm(i) > 0, 

46 = max{<I>2m(z)<I>2n,(-z)<I>2m(i): z E <C,!zl = 1} < 1. 

Observe that these constants are the same as the constants found for the well­
known cardinal Chui-Wang wavelet (cf. [12]). Note that different scaling factors 
of wavelets are used in [12]. In contrast with polynomial wavelets, the shifted 
scaling functions and wavelets are supported on small subintervals of I. 

Finally, we will consider the connection of the wavelet 7f;1 above with the cardinal 
Chui-Wang wavelet wm given by its Fourier transform 

(uElR.\{0}) . 

Let -J;1 be the 21r-periodization of wm(N1 ·) with 

- ·- (-l)m/2+1( (. / ) (- ·/ )) W111 ,- Wm 11" + m + Wm 11" + m , 

I.e., 

00 

-J;j .- L wm(Nj.- ~+111"/). 
i=-oo 

Then -J;1 E L~1r,O· The Fourier cosine coefficients read 

- 2 n1r ( n1r Jm . ( n1r Jm a,(7f;1) =-cos-- sin-- <I> 2m( -e-"'7rfNJ+i) sine -N 
Nj ~+I ~+2 }+2 

Comparing with the Chebyshev coefficients of 7f;1 we find for the restriction of -J;1 
on [0, rr]: 
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