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Abstract

This paper presents a fully automatic framework for the generation of
so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and
height LiDAR samples) from ground-level LiDAR scans. Beyond the Digi-
tal Surface Model (DSM or heightmap) provided by the height orthoimage,
the proposed method cost-effectively generates a reflectance channel that is
easily interpretable by human operators without relying on any optical ac-
quisition, calibration and registration. Moreover, it commonly achieves very
high resolutions (1em? per pixel), thanks to the typical sampling density of
static or mobile LiDAR scans.

Compared to orthoimages generated from aerial datasets, the proposed Li-
DAR orthoimages are acquired from the ground level and thus do not suffer
occlusions from hovering objects (trees, tunnels and bridges), enabling their
use in a number of urban applications such as road network monitoring and
management, as well as precise mapping of the public space e.g. for accessi-
bility applications or management of underground networks.

Its generation and usability however faces two issues : (i) the inhomogeneous
sampling density of LIDAR point clouds and (ii) the presence of masked ar-
eas (holes) behind occluders, which include, in a urban context, cars, tree
trunks, poles or pedestrians (i) is addressed by first projecting the point
cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and
height images from which dense images estimated using a joint anisotropic
diffusion of the height and reflectance channels. (ii) LIDAR shadow areas
are detected by analysing the diffusion results so that they can be inpainted
using an examplar-based method, guided by an alignment prior.

Results on real mobile and static acquisition data demonstrate the effective-
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Figure 1: a) Aerial orthoimage. b) Rasterized LiDAR pointcloud (reflectance attribute).
c¢) Interpolated LiDAR refectance with estimated occlusion mask in green. d) Proposed
LiDAR orthoimage with inpainted reflectance.

ness of the proposed pipeline in generating a very high resolution LiDAR
orthoimage of reflectance and height while filling holes of various sizes in a
visually satisfying way.

1. Introduction

Orthophotographies and Digital Surface Models (DSM), defined respec-
tively as the color and ground height orthoimages (i.e. raster maps defined
on a regular horizontal grid), are ubiquitous products in modern cartogra-
phy. They are widely used in many application fields such as remote sensing,
geographical information and earth observation, mapping and environmen-
tal studies. Such orthoimages are traditionnaly computed from an aerial
perspective (satellites, planes and more recently unmanned aerial vehicles
(UAVs)). Although aerial imagery approaches provide a very well known
and common approach to the problem of orthoimage generation, they may
be limited in terms of accuracy and resolutions and they certainly suffer from
occlusions caused by the natural and urban environnement such as trees, tun-
nels, overhangs or tall buildings (Fig. [Ta).

These limitations prevent orthoimages generated by above-ground datasets
to be used for a whole new set of applications that rely on a precise mapping of
the ground and which cannot suffer from such large occlusions. These appli-
cations include, mostly in a urban context, accessibility assessment for soft
mobilities (disabled, wheelchairs and strollers) and itinerary computations
(39), precise mapping of road marks (24), road limits or curbs (29; 19; 51} 23),
road inventory (33)), road surface modelling and quality measurements (22)),
mobile mapping registrations on aerial images (43) or image based localiza-
tion using ground landmarks (34]). Moreover, recent legislations in European
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Figure 2: Full orthoimage production pipeline from MLS. Framed rectangles are processing
steps, arrows are exchanged data. hg and wug are the projections of each point height and
reflectance respectively onto an horizontal grid. M,,,; is a binary mask of pixels where
at least one point was projected.

countries call for a subdecimetric accuracy mapping of underground networks
(water pipes, gaz pipes, internet wires and phone wires) as the lack of accu-
rate data has lead to accidents and delays in many public works. Very high
resolution orthoimaging with limited occlusions could help in meeting the re-
quirements of these legislations as it would provide sub-centimetric accuracy
mapping of the ground.

To maximize orthoimage resolution and to minimize occlusions, we pro-
pose to leverage ground-level LiDAR scans acquired by Mobile Laser Scan-
ning vehicles (MLS) or from fixed stations. The proximity of the acquisition
ensures a high resolution as well as a diminution of occluded areas. As in
(44), we propose to derive a gray image from the reflectance attribute of the
LiDAR samples (which measures backscattered energy) instead of relying on
optical imagery (which would introduce difficulties in dynamic environments
and require precise co-registration) to produce sub-centimetric orthoimages.

1.1. Problem statement and related works

The projection of a ground-level point cloud at centrimetric resolutions
creates a sparse image due to its inhomogeneous sampling density (Fig. .b).



The problem of filling in the holes created by the lack of information in the
raster image created by the projection of a point cloud has been scarsely
investigated (44). This problem is strongly related to DSM generation from
LiDAR data, especially airborne LIDAR data, which has been widely studied
over the past decades (15). DSMs are mostly represented either by Triangular
Irregular Network (50 20; [14)) or by raster images (27 45} [41: 13]). In both
cases, the main challenges of DSM generation still remains ground point
filtering and interpolation. Ground point filtering aims at removing points
that belong to the ground (e.g. earth surface in case of airborne DSMs) from
points that belong to elevated structures (such as buildings, trees, cars, fences
or poles). For airborne LiDAR data, it is done by defining slope operators
in order to follow the ground surface (49; [42} 25). However, these methods
are developped in order to extract the ground on large scale, for terrain
with high relief variation. In the case of urban scenarios, these methods fail
to distinguish correctly small objects (bikes, pedestrians) from the ground.
DSM interpolation approaches depends on the final product representation.
For TIN, the interpolation is either done by Delaunay Triangulation (48
or by plane fitting, as proposed in (7). However, these approaches are not
relevant to our problem as we aim at generating orthoimages as well as raster
DSMs. The interpolation of raster images DSMs has already been done by
coarse to fine interpolation approach (27), by using moving least squares
in (4I) and more recently using Poisson interpolation (31I)) to deal with the
high variations of density in the raster images derived from MLS (44). The
generation of DSMs does not require to preserve textures as the surface model
is textureless. However in our context, we aim at generating orthoimages
from the reflectance as well as DSMs. Therefore, the preservation of texture
is a key point of our problem, which requires to use other approaches for the
raster image interpolation.

1.2. Contributions

We propose a framework that combines diffusion inpainting and examplar-
based inpainting for the joint production of high resolution and photo-realistic
reflectance and height orthoimages. Our main contribution is to provide a
fully automatic framework with an efficient set of default parameters. First,
we introduce a novel anisotropic diffusion technique that uses both texture
and height information. Second, we propose an examplar-based inpainting
method that is modified in order to take advantage of the specific attributes
present in LiDAR datasets.



1.3. Outline of the paper

In this paper, we propose in Section [2]a novel approach for the reconstruc-
tion of ground orthoimages that produces very satisfying results in terms of
visual quality and coherence. We first explain in Section [3| how the point
cloud can be projected on a 2D-pixel grid after filtering ground points. We
present a brief state-of-the-art on diffusion algorithms and we introduce a dif-
fusion model for the computation of dense images from the sparse projections
in Section [d] In Section [5] we present different examplar-based inpainting
techniques before introducing an inpainting method that takes height infor-
mation into account as well as assumptions about the alignment between
structures. Finally, in Section [6] we validate our framework by presenting
various examples of reconstruction made on real acquisition data.

2. Framework description

Orthoimage generation from LiDAR scans aquired at ground level as been
scarcely studied in the past. Nevertheless, the relation between LiDAR re-
flectance and optical acquisition has already been used for different applica-
tions such as depth map generation from point cloud (6), which shows the
correlation between both modalities. (44)) first extract the ground points by
considering the lowest points projected in each pixel. Next, they perform
Poisson interpolation to connect sparse pixels. In this paper, we introduce
an efficient and fully automatic pipeline to reconstruct an aerial image from
a LiIDAR point cloud. The proposed framework is summed up in figure [2]

From the point cloud, we need to extract the ground points (eg. points
that do not belong to a mobile object or to an object that is lying on the
ground). This is done by computing an envelop I' (see section [3). The re-
flectance and height values of these ground points are then projected in two
2D-images respectively: ug and hg. This projection is done by removing
the z (height) coordinate and rounding the coordinates to the chosen resolu-
tion. We also build a mask M,,,; of the pixels where at least one point was
projected.

At this point, the projections ug and hg are sparse as they do not cover
all the pixels of the images. Figure [3] presents an example of the different
kinds of missing pixels that results from the projection. Some parts of the
projection correspond to the inside of a building (figure Blc in orange), un-
der sampling holes appear in between lines of acquisition (figure B¢ in blue)
and an occlusion is caused by a pole blocking the laser beams (figure .c
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Figure 3: Highlighting of the different types of holes in the sparse projection. (a) is the
original point cloud colored with the reflectance, (b) is the sparse projection of the white
rectangle in (a) after extracting ground points, (c) is the sparse projection labelled with
the different kinds of holes.

in green). In order to reconstruct the missing information of the orthoim-
age, we first perform diffusion on both ug and hy by coupling reflectance
and height in an anisotropic diffusion algorithm in order to remove holes due
to undersampling. The resulting images are respectively called ud and h{.
After this step, there are still some large holes remaining. Their locations
M, cc are retrieved through mathematicl morphology. Finally, we can recon-
struct occlusion holes using an examplar-based inpainting method that uses
both reflectance and height information, as well as an assumption about the
alignment between structures to inpaint.

3. Projection of LiDAR point cloud

The projection of a point cloud onto a 2D pixel grid is a typical discretiza-
tion problem. It mostly requires to define a mapping between the point cloud
metric frame and the 2D-pixel grid. However, in the case of Digital Terrain
Model, it is also needed to filter out off-ground points (trees, urban struc-
tures, cars). We introduce a novel approach for ground point filtering in
section [3.1] and explain how the projections are done in section More
details about the parametrization of the projection can be found in 3.3



3.1. Filtering ground points

The definition of ground-points in a point cloud can be tedious as we have
to filter groups of point that represent relatively planar structures and which
do not belong to any other objects than the ground itself. Ground filtering is
a typical DTM generation problem (30). Traditional aerial DTMs generally
model the scene at large scale. In order to correctly include details of urban
scenes (pavements, steps or any lightly elevated structure that belongs to the
ground), it is necessary to model the ground at a finest scale. In urban sce-
nario, plane fitting is often use as primary ground segmentation. Although it
allows a fast and simple estimation of ground points, considering horizontal
planes relatively to the acquisition system can be ambiguous. Indeed, mod-
ern MLSs tend to be accurate enough to acquire ceilings through windows,
creating false positives. Vertical planes are also relevant (pavements, stairs),
but not in every cases (trucks, billboards). This problem has been inves-
tigated by considering it as a classification problem (36) or by performing
advanced structural analysis (27; [0). However, these solutions have shown
their limitations when the scene presents high diversity of objects. In par-
ticular, they lack of precision when aiming at estimating the boundaries of
the ground in urban scenes because other objects (cars, ceilings) are often
considered as the ground as they share common structural properties.

We propose a novel approach for ground point filtering based on the way
the acquisition is done. We aim to filter out hovering object or any point that
is over another one. As the points are acquired with a certain margin of error,
direct comparison is not suitable as the likelyhood of two points having the
exact same (z,y) coordinates is negligible. We first create an empty envelop
of the size of the projection where each pixel has an infinite value. This
envelop will help defining the boundaries of the 2D region that represents
the ground while ensuring that all the points that fall into the envelop really
are ground points. We then consider segments made by each point and its
relative emission point. Each segment is discretized in the envelop using
the Bresenham line algorithm (10). As the beam is perfectly straight, we
can estimate the height of the segment at any position of the segment. Each
pixel is then filled with the lowest height value of segments that cross it. Note
that in our case, only points below the sensor are considered. This reduce the
amount of data to process while ensuring to discard only off-ground points.
However, this is only suitable for MLS in urban scenarios. Figure [4] shows
a slice of the maximal envelop I' computed on a set of beams that overlaps.
We can see that for every overlapping beams, only the portion of the lowest
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Figure 4: Slice of an envelop I" obtained by evaluating several aligned beams coming from
the sensor S until they hit an object of the scene. The red line is the final threshold
applied to the envelop to exclude too high points.

one is kept in the envelop. Finally, we filter the point cloud by taking only
points that are under the envelop and the threshold, with an epsilon margin.

3.2. Sparse projections

Using the filtered point cloud, we want to produce two sparse images
corresponding to the reflectances and the heights in the sensor frame: uy and
ho defined on the mask M,,,;. The values for each pixel in v is the mean of
the reflectances of every points that is being projected in it. The values in hg
are the same using the height in the sensor frame. Finally, an M,,,; image
is produced where pixels are valued 1 where at least one point was projected
and 0 elsewhere. Note that at high resolution (1px per square centimeter),
the use of the mean is relevant on our data as only few points (less than 5)
project in each pixel. However, if the amount of points that projects in each
pixel increases a lot (when working at lower resolution for example), one can
consider using the median instead of the mean to remove outliers. Note that
the computational cost of the median is higher than the cost of the mean.
Thus, its use will significantly increase the running time of the projection
step.

3.8. Parameters

The choice of the mapping between real coordinates and pixels mostly
depends on the density of the point cloud. In our case, with an acquisition
done using a RIEGL LMS-Q120i which produces 300 000 points per second,
the maximal acceptable resolution was 1px — lem?. The height threshold
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Figure 5: Comparison of different diffusion techniques for filling stripe holes. (a) is the
point cloud, (b) its projection (rotated for clarity purpose), (c) is the Gaussian diffusion
result, (d) is the Perona-Malik algorithm result and (e) is the result of our proposed
modification. We can see that our modification provides a better conservation of big holes
while filling perfectly the stripe holes.

is arbitrary but in the case of a urban scenario, it should be kept under
the height of the aquisition vehicle. More details about the parameters are
provided in 6.1}

3.4. Dependency to the sensor

It is important to point out that the type of missing data are directly
related to the chosen resolution as well as the type of sensor. The holes due
to the acquisition sampling are less likely to appear when chosing a lower
resolution. Moreover, the missing values in between acquisition lines are
specific to the sensor mentionned above. They are quite homogeneous and
create a regular pattern. With a panoramic sensor such as the one used in
(1), the missing pixels will appear in a random pattern, but will create a more
dense image for the same resolution, which makes our pipeline still suitable
for this type of data.

4. Diffusion of sparse images

The two images obtained in the previous section are sparse in the sense
that they do not cover every pixels of the DTM. Therefore, we need to inter-
polate the images in order to get a dense representation of them. The goal is



to fill in gaps between relatively close pixels that are due to the acquisition
undersampling. In this section, we first explain what are the requirements
that the filling method needs to meet. Then we introduce a modification to
existing methods in order to enhance the results. Finally we show a compar-
ison of different methods to validate our proposed modification.

4.1. Choice of the approach and requirements

A typical approach for filling small holes by interpolation is to use diffu-
sion algorithms. Several diffusion techniques exist such as the total variation
(12), the generalized total variation (8)), structure tensor diffusion (47 5l or
partial differential equation diffusion (2) and extended to multi-modal data
(52).

Here, we focus on iterative solving methods which are more flexible. A ba-
sic diffusion algorithm is the so called Gaussian diffusion which is an isotropic
technique that consists in updating the image with its own Laplacian (26).
However in the case of a urban scenario, an anisotropic diffusion is more rele-
vant as very high gradients appear at the edge of different structures (roads,
pavements, stairs) and need to be preserved.

The Perona-Malik algorithm (32) is a well known algorithm for anisotropic
diffusion. It is partially inspired from the Gaussian diffusion and is defined
as follows:

% — div(c(|Vu|)Vu) =0 in 2 x (0,1)
91— () in 9Q x (0,7) (1)
u(0,x) = up(x) in Q

where ug € () is the input image, div is the divergence operator, V is the
gradient operator, N is the normal vector to the boundary of 2 and c is
an increasing function. A common choice for ¢ is the weighting function
c(|Vul) = m, a being a weighting factor that quantifies how much

the gradient information needs to be considered. This technique ensures the
preservation of edges while ensuring smooth transitions between sampled
scan lines. Nevertheless, this technique only takes into account the gradients
of a single channel. In our context, the diffusion needs to be blocked in case
of a high gradient in the reflectance image as well as in the case of a high
gradient in the height image that could correspond to the junction between
the road and a pavement, or steps of stairs. Therefore, we need to modify
equation in order to take both channels into account.
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4.2. Our proposed algorithm,

We propose here a modification to the Perona-Malik equation (1)) by
coupling heights and reflectances as follows, using previously introduced no-
tations:

(24— div(f(|Vul,|Vh])Vu) =0 in Q x (0,t)

«2}; div(f(|Vul,|Vh])VA) = 0 in Q x (0,)
LL =0 in 092 x (0,7)

9 _ 0in 00 x (0,7) )
u(0,z) = ug(x) in
| (0. 2) = ho(z) in ©

where we recall that ug is the reflectance image and hq is the height image.
We introduce the new weighting function f that emerges from the one used
in equation as follows:

1

Vul|, |Vh
f(‘ U‘ | D \/1 N |Vu|2 N |Vh\2

(3)

having «, 8 as weighting constants quantifying how gradients of reflectance
and height need to be considered. The choice of coupling both reflectance
and height information into the same model is motivated by the fact that
reflectance and height gradients are not always at the same locations and
therefore, are complementary. Note that coupling various modalities in a
model has already been proposed in (3) for coupling multi-spectral images,
however in that case authors present a model specifically designed for merging
multiple images representing the same object at different wavelengths. Using
our method, we can now take into account gradients coming from both wg

and ho.

4.3. Comparison with other diffusion techniques

In this section, we propose an evaluation of the performances of our model
against gaussian diffusion and closest neighbors diffusion. Projecting a point
cloud acquired at very low speed provides a dense image locally. Therefore,
we can define a ground truth using this region of the projection. We define
a set of 20 masks of same dimension as the ground truth and we randomly
set 80% of the pixels to 1. For each method and each mask, we recover
pixels of the ground truth where the mask is valued 1, using the rest of the
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Figure 6: Result of the different diffusion models on degraded ground truth. (a) original
image, (b) original image with 80% of pixels removed, (c) Closest Neighbors result, (d)
Gaussian diffusion result and (e) Our result. We can see that the Gaussian diffusion and
our model better recover the aspect of the image. Our method succeed in a finer edge
recovery.

Table 1: Evaluation of different diffusion algorithms

Metric Closest Neighbors | Gaussian | Proposed Model
MSSIM 0.8056 0.8550 0.8591
MPSNR (dB) 33.21 34.59 35.08

image. Note that the percentage of missing pixel (here, 80%) is defined as the
average missing pixels ratio of our dataset. Finally, we compute the average
of classical similarity metrics (MSSIM and MPSNR, which are respectively
the mean of the SSIMs and the mean of the PSNRs) for each methods on the
reconstructed images compared to the ground truth. The results are summed
up Table [I] in which we can see that our method outperforms the two other
diffusion methods. Figure [6] presents one set of results. We can see that the
Gaussian model as well as our model better succeed in recovering the aspect
of the original image. Our method outperforms the Gaussian diffusion by
recovering sharper edges.

4.4. Parameters

In practice, the proposed diffusion technique was implemented by solving
the PDE system with a first order explicit Euler scheme with respect to the
time variable. The number of iterations has to be chosen in order to fill in
stripe holes. It depends on the chosen resolution as very sparse images will
require more iterations to fully fill the image. Moreover, a good speed-up
can be obtained by using the result of the closest neighbors diffusion of both
ug and hg as the initialization for the proposed model as it drastically lowers
the number of required iterations. The weighting term for the reflectances
a should be higher than the one for height 5 in order to completely block
the diffusion in case of large height variation while connecting close pixels.
Practical details will be given in section [6.1] Note that only unknown pixels

12



regarding M,,,; should be updated to prevent an oversmoothing of the final
images.

5. Inpainting of occlusions

After the projection, some holes are not only caused by some undersam-
pling but also by the beam being blocked by an object (cars, poles, lights,
pedestrians or bikes) before reaching the ground. This leads to a ground pro-
jection with a lot of information at the edge turned toward the sensor, but
nothing when going further. As occlusion holes are wider than stripe holes,
the diffusion algorithm proposed above is not suitable in order to reach a vi-
sually satisfying result. In this section, we first see how occlusions holes are
detected in the image. We then present the problem of texture synthesis in
our case and we give a first solution. Finally, we introduce an improvement
to this solution based on assumptions made on the urban scenario.

5.1. Occlusion hole detection

The occlusion detection consists in defining which holes are caused by the
sampling rate and which holes are caused by a blocking of the laser beams.
This can be done by applying mathematical morphology on the projection
mask M,,,; before diffusion where each known pixel is valued 1 and all other
pixels are valued 0. At this point, everything with the 0 value is considered
as occlusion holes.

Having M,,,;, a simple morphological operation known as closing (40) is
enough to detect occlusions and build the occlusion mask M,... The closing
consists in applying a dilation of a certain radius to the mask and then to
apply an erosion of the same radius. This leads to a closing of small 0-labelled
areas surrounded by 1s. Choosing wisely the radius of the closing ensures
that undersampling holes are eliminated while preserving the shape and the
position of the occlusion holes.

Unfortunately, the resulting mask does not consider the boundaries of the
scene, and tends to extend further. We recall that when projecting the point
cloud (Section , a I" envelop is computed in order to define the boundaries of
the scene. Thus, we consider the intersection of the computed mask and the
I' envelop to prevent the mask from expending outside of the ground region,
typically inside of buildings or in regions too far from the sensor (Figure [3).

13



5.2. Examplar-based inpainting

Among the variety of different inpainting algorithms, examplar-based al-
gorithms are known for being more effective and more reliable in filling large
areas (with large internal radius). Examplar-based inpainting consists in
trying to find the best candidate in the known region of the image for the
patch centered on a pixel lying on the border of the hole. Once found, the
candidate is used to fill the unknown part of the image by copying the color
in its central pixel (I8) or the full patch (16]). The operation is repeated until
the hole is fully closed. More recent approaches, such as (17 [46)) reconstruct
the texture using both color information and depth information. However
these algorithms require different acquisitions of the same view, which is not
applicable in our case as we aim at performing the reconstruction on a single
acquisition pass.

The urban scenario presents a huge variety of structures (roads, pave-
ments, stairs, gutters) as well as many different textures (roads, cobbles,
floor tiles). Thus, we decided to base our work on the Criminisi et al. (16)
algorithm that was designed for the good preservation of the structures in the
reconstruction. More complex approaches exist that rely on the work pre-
sented in (16) such as (I1)) and (28) however it would have been less intuitive
to adapt them to our context. In (16)), authors put forward the idea that the
order in which areas are reconstructed have a high impact in the final result.
They introduce a priority term that takes into account the strength and the
direction of the image’s gradient at the border of the unfilled area. A patch
that contains a strong gradient in the direction orthogonal to the border of
the region to reconstruct is evaluated before more uniform patches.

5.8. Modification to the original algorithm

Coupling reflectances and heights. The algorithm presented in (16) offers a
very good technique for region filling. However, it can fail when the area to
fill is very large. Therefore, we introduce a modification to the algorithm by
taking the height information into account as a guide for the reconstruction.
The idea is to use the height information to restrain the selection of best
candidate patches to the areas of similar height by computing the Sum of
Squared Differences of the candidate patch in both the reflectance and the
height images. The SSD (Sum of Squared Differences) is defined as follows:

SSD(Py, P2) = Z (P1(i,j) — Pz(iaj))Q (4)

i,jeQ
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Figure 7: Comparison of (I6) and our proposed modification on the junction between
the road and a pavement. (a) is the original unfilled image where the dark region is
being reconstructed using examplar-based inpainting, (b) the result from (I6), (c) our
proposed optimization. The result is clearly better in (c) as the reconstruction conserves
the structures of the image without creating new artifacts such as the one appearing on
the left of (b).

having Py, P, the two 2D-patches that are compared and €2 the domain of
definition of the image. In our modification, and for each candidate, a score
is attributed by combining both channels as follows:

Sp(Py, Pe) = SSD(P{, Pe') + 1 x SSD(P{, Py) (5)

where Py is the target patch to be filled and P. is a candidate patch. P,
can be any patch in the image that has no pixel that belongs to an occlusion
hole. However, for speed-up purpose, we can limit the selection of P, to
be in a certain radius around P;. 7 is a regularization parameter and the
superscripts R, H denote that the patch is taken in the reflectance image or
the height map respectively. The regularization parameter only appears for
the height map SSD as the height information is less important in order to
reach a visually satisfying result.

The impact of the use of the height map in the synthesis is very noticeable
in figure [7] The structure of the road is well preserved using the proposed
modification compared to the original algorithm in which artifacts appear
after some iterations. These artifacts mislead the reconstruction and the
result is visually incoherent.

Taking advantage of urban environment. Although the current modification
of the algorithm provides a very good solution for filling occlusion holes, the
reconstruction can fail sometimes when the hole is very large. This happens
for holes that are caused by cars or trucks where the area to reconstruct is
significantly larger than regular holes (10° pixels at a 1pz = 1em? resolution
for a standard car and the portion of pavement behind it) and it can become
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Figure 8: Illustration of the assumption that the urban environment evolves in a similar
way than the path of the sensor. The straight green line shows the path of the sensor.
Each dashed line represents areas of same distance to the sensor.

a common issue. Indeed, at the center of the holes the nearest known infor-
mation is too far away and the error accumulated along the iterations is likely
to fail the reconstruction. To improve the results in the concerned areas, we
advocate that the structure of a urban environment is very likely to evolve
in a similar way to the vehicle path as illustrated in figure Therefore,
we can constrain the selection of candidates to patches that are at a similar
distance to the sensor than the current patch. The range attribute of the
LiDAR image provides this information for each point.

We define the new score equation as follows, using previously introduced

notations:
. (|d(Pt> - d(PC)|)2] S, (PL.P.) ©)

Sf<Pt7PC) = ~

having d(P) the distance between the sensor and the center of the patch
P and ~ a regularization parameter that constrains the selection of patch
to a range interval around the current range. The range can be accessed
everywhere in the image by precomputing a signed distance map of the area
to the path of the vehicle (eg. where the range is the lowest).

Large patches and artifacts. When the reconstruction is done at a very high
resolution, large patches (10%px) are likely to be required in order to correctly
represent the structural elements of the image. This might lead to abrupt
junctions between reconstructed patches. Therefore, we propose to enhance
the copy of the patch by performing the seam carving using graphcuts pre-
sented in (37). The goal is to compute the optimal cut between P; and P,
where they overlap to obtain a seamless result.
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5.4. Parameters

71 should be kept under 1 to ensure the visual coherence of the reconstruc-
tion. Parameter v depends on the size of the occlusion. When ~ = 1, the
regularization is very strong and the selection of the candidate patch is con-
strained on a narrow band of same distance to the sensor point. When the
value of the parameter is highly increased (y > 10?), no regularization oper-
ates and the algorithm behaves as if the range was not taken into account.
Therefore, one can alternate between these two values for v depending on
the internal radius of the occlusion (see next section).

6. Results

We conclude this paper by presenting different results obtained using
the proposed framework. We first present a general set of parameters for
an automatic reconstruction of a set of orthoimages. We then demonstrate
the efficiency of the solution by showing various results and comparison to
existing methods. After that, we validate the quality of the framework using
numerical criterions. Finally, some details about the computation time are
drawn.

6.1. Parameters

In the same way as other pipelines, this one comes with a set of parameters
that was used for producing every images displayed in this paper.

Projection. The objective of this study was to provide very high quality or-
thoimages. Therefore, all reconstructions were done at the maximal possible
resolution of our sensor: 1px — lem?. A threshold of 60cm from the road
level was used to filter out points after the computation of the envelop.

Diffusion. For the diffusion step, we found the best balance of results by
setting o = 5, 8 = 0.7 with 3 iterations and by first interpolating ug and hg
using the nearest neighbor algorithm.

Mask extraction. In this step, a closing radius of 6px was enough to fill stripe
holes while leaving occlusions intact.
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Figure 9: Comparison between aerial orthophotography with a standard resolution (50cm?
per pixel) (top) and MLS orthoimage using our model at lem? per pixel (bottom). Tra-
ditional orthophotography provides limited resolution and suffers from occlusions brought
by the coverage of trees and other structures whereas our model provides unobstructed,
hight resolution orthoimages. The aerial image comes from Geoportail.

Inpainting. At 1px = lem?, the chosen patch size was 43x43px to fit the
smallest structuring element (cobbles). In all our experiment, n = 0.2 ended
up being a very good choice. Finally, we set the value of v to 0.3 or 10°, the
choice being made by automatically checking whether the internal radius of
the evaluated occlusion was higher than 50cm or not.

6.2. Qualitative analysis

A quick glance at the difference between traditional aerial orthophotog-
raphy and MLS orthoimage using our framework is given in figure 0] The
resolution provided by a typical aerial camera is about 50cm? per pixel, where
our reconstruction is done at lem? per pixel. Fine textures and very precise
details are noticeable in the reconstruction whereas only main structures can
be seen in the aerial orthophotography. Moreover, the aerial orthophotog-
raphy presents various occlusions such as trees that do not appear in our
result.
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Figure 10: Comparison between our proposed framework (a) and the one introduced in
(44)) (b). Texture is better preserved using our framework.

In figure we show a visual comparison between the proposed frame-
work and the method introduced in (44) which is the state of the art for
the production of orthoimages using MMS LiDAR point cloud. We can see
that both algorithms perform about the same for stripe holes, but our solu-
tion gives more satisfying results for large occlusions. The texture is better
reconstructed using our method. This will be later discussed in Section |6.3}

More reconstruction results are displayed in Figure Each step of the
pipeline is illustrated. We can see on Figure [L1| top that the framework per-
forms a very good reconstruction on fine details such as cobbles. In Figure
bottom, 25% (~ 5.10°px) of the area is occluded, mostly due to the presence
of cars and poles. However, our framework succeeds plausible reconstruction
of the scene, leading to a result that is much more understandable than ini-
tially. Finally, figure|12|shows an extreme scenario where the use of the range
is relevant as the structure of the scene follows the same path as the road.
The environment is fully reconstructed (16%, ~ 10°px) while preserving the
structure of the road.

In Figure [I3] the framework is applied on data provided by the Seman-
tic3D dataset (2I). This dataset is aquired using a static LiDAR sensor.
There, we can see that the area under the sensor as well as occlusion on the
ground are successfully recovered while preserving the fine cobble texture.

The purpose of this pipeline is to generate both reflectance and height
orthoimages. In figure we show how the two outputs can be combined
in order to obtain a 3D model of the road. Figure [[4la and [I4]b are the
reflectance image and the height image of the area that is being modelled in
figure [[4lc. We can see that the 3D model respects the topography of the
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Figure 11: Various results on different urban scenes. (a) shows the original point clouds
projected on an horizontal grid (sparse). (b) are the results after stripe holes were filled.
Areas that present large occlusions are highlighted in green. (c) the final results of our
method. In both result, the orthoimage is successfully reconstructed while improving the
understandability of the scene.

scene with the junction of the road and a pavement.

6.3. Quantitative analysis

Apart from the visual results, we also provide a numerical comparison
between the proposed framework and the one of (44). Measuring similarities
between two images is a tough task as the plethora of different metrics are all
designed for a single aspect of the image (color variation, gradient similarity
and correlation). In the case of texture synthesis, the similarity cannot be
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Figure 12: Exemple of scene that follows the vehicule path. In this case, the use of the
range information is very relevant. The green dashed line denotes the vehicle path.

Figure 13: Example of reconstruction on the Semantic 3D dataset. (a) is the area from
which the orthoimage is aquired, (b) is the projection of the ground points on an horizontal
grid, (c) is the final result. The final results provides a plausible estimation of the area
under the acquisition sensor.

directly compared as the goal is not to obtain exactly the same result, but
to obtain visual coherence in the reconstruction. Thus, we advocate that the

21



Figure 14: 3D model of the ground of a part of an orthoimage. (a) is the reflectance
image used as texture for the 3D model, (b) is the height image used as the height coor-
dinate of the 3D model, (c) is the mask where the darkest region was reconstructed using
examplar-based inpainting, (d) is the 3D model obtained using both reflectance and height
orthoimages.

Table 2: Numerical comparison between reconstructions

Tmage Artificial occlusion Real occlusion
STD | Hist. dist. | STD | Hist. dist
Ground truth 4.51 - 4.79 -
Proposed framework | 4.56 0.14 4.29 0.19
(44) 1.87 0.78 2.05 0.80

measure of the standard deviation and the distance between histograms, also
known as Wasserstein metric in (35]), provide simple and efficient metrics for
evaluating the quality of our results.

Table [2| sums up the comparison of the inpainting step on two examples:
an image where the hole has been manually removed and an image where
the ground truth is available as the vehicle did a second pass in which the
occlusion disappear. For each example, we compute the standard deviation
of the region reconstructed by examplar-based inpainting. We also compute
the distance between the normalized histrograms of the ground truth and
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a b C

Figure 15: Comparison between height images with and without occlusion on the junction
between a road and a pavement. (a) is the original height map, (b) is the reconstruction
of an occlusion in the same area. The occlusion corresponds to the darkest region of (c).
The mean square error of the reconstruction (b) compared to (a) on the occlusion region
is 2mm.

each output. For both examples, our method provides a standard deviation
that is very close to the ground truth resulting in visually similar textures.

As the proposed framework also reconstructs the height map of the aquired
area, we provide a numerical analysis of this aspect. The choice of the met-
ric in that case is quite easier as the height map is more homogeneous than
the reflectance image, especially in a urban scenario as can be seen in fig-
ure Therefore, the Normalized Mean Square Error is enough to estimate
how good the reconstruction is. We found out that in general the mean
square error was below lem. This validates the proposed framework for the
reconstruction of height map.

6.4. Computational speed

The performances of the framework in terms of computational speed are
mostly affected by the amount of occlusions and the resolution at which
the reconstruction is being made. As the framework is composed of several
steps, we present the computation time of each step as well as the total time
of processing. All the results are given using MATLAB 2015a on a single
thread with an Intel Core i5 CPU at 3.40GHz.

The speed of computation is summed up in table The evaluation is
done for the reconstruction of the same point set at different resolutions. The
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Table 3: Comparison of computation speed compared to the resolution

Image size 600x550px | 2400x2200px
Image resolution 1px = 4cm? | 1px = lem?
Percentage of stripe holes 13% 61%
Percentage of occlusion holes 22% 25%
2D Projection 2.13s 3.78s
Diffusion 1.54s 3.27s
Mask extraction 0.18s 0.91s
Examplar-based inpainting 23.81s 6.31min
Total 27.66s 6min38s

choice of resolution and the amount of stripe holes do not affect much the
computation time in proportion. However, the inpainting of large occlusions
drastically increases the time of computation in the case of very high resolu-
tion. The computation speed of this step might be largely improved by using
approaches derivated from Patch-Match (4). Moreover, the framework can
be run in parallel as each step is independent of the next ones.

7. Conclusion and future work

We have proposed a complete framework to reconstruct high quality
ground orthoimage from a point cloud aquired with LiDAR. This frame-
work consists of several steps, which make use of classical modern imaging
techniques. By taking into account the multi-modal nature of the data, we
propose several modifications of these methods, leading to significantly better
results.

The framework is designed to work automatically with a set of parame-
ters that ensures satisfying results on a large variety of input data as demon-
strated by the results. Our approach performs at least as well as previous
techniques. In case of large occlusions or complex textures, it drastically
outperforms earlier works in terms of visual quality. Moreover, robustness
towards edges and structures conservation in both reflectance and height
domain has been demonstrated.

Although the average results of the method are more than acceptable,
it can underperform in some specific cases. Indeed, the recognition of the
area to reconstruct using the envelop can sometimes fail when a massive non-
static object in the scene is considered (i.e. a building), this area therefore
not being reconstructed. Moreover, the use of examplar-based inpainting
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introduces common issues such as aberrant synthesis when no similar patches
are available.

In the future, we will focus on improving the current framework to better
distinguish static structures and mobile objects, based on the work presented
in (38). Moreover, we also want to perform labelling on the scene in order
to produce a more relevant metric for evaluating the results. Finally, we aim
at using aerial optical data in order to provide colored orthoimages, which
promise very interesting challenges.
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