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Abstract

This paper presents a fully automatic framework for the generation of
so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and
height LiDAR samples) from ground-level LiDAR scans. Beyond the Digi-
tal Surface Model (DSM or heightmap) provided by the height orthoimage,
the proposed method cost-effectively generates a reflectance channel that is
easily interpretable by human operators without relying on any optical ac-
quisition, calibration and registration. Moreover, it commonly achieves very
high resolutions (1cm2 per pixel), thanks to the typical sampling density of
static or mobile LiDAR scans.
Compared to orthoimages generated from aerial datasets, the proposed Li-
DAR orthoimages are acquired from the ground level and thus do not suffer
occlusions from hovering objects (trees, tunnels, bridges ...), enabling their
use in a number of urban applications such as road network monitoring and
management, as well as precise mapping of the public space e.g. for accessi-
bility applications or management of underground networks.
Its generation and usability however faces two issues : (i) the inhomogeneous
sampling density of LiDAR point clouds and (ii) the presence of masked ar-
eas (holes) behind occluders, which include, in a urban context, cars, tree
trunks, poles, pedestrians... (i) is addressed by first projecting the point
cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and
height images from which dense images estimated using a joint anisotropic
diffusion of the height and reflectance channels. (ii) LiDAR shadow areas
are detected by analysing the diffusion results so that they can be inpainted
using an examplar-based method, guided by an alignment prior.
Results on real mobile and static acquisition data demonstrate the effective-
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a. b. c. d.

Figure 1: a) Aerial orthoimage. b) Rasterized LiDAR pointcloud (reflectance attribute).
c) Interpolated LiDAR refectance with estimated occlusion mask in green. d) Proposed
LiDAR orthoimage with inpainted reflectance.

ness of the proposed pipeline in generating a very high resolution LiDAR
orthoimage of reflectance and height while filling holes of various sizes in a
visually satisfying way.

1. Introduction

Orthophotographies and Digital Surface Models (DSM), defined respec-
tively as the color and ground height orthoimages (i.e. raster maps defined
on a regular horizontal grid), are ubiquitous products in modern cartography.
They are widely used in many application fields such as remote sensing, geo-
graphical information and earth observation, mapping, environmental stud-
ies... Such orthoimages are traditionnaly computed from an aerial perspec-
tive (satellites, planes and more recently unmanned aerial vehicles (UAVs)).
Although these techniques provide a very well known and common approach
to the problem of orthoimage generation, they may be limited in terms of
accuracy and resolutions and they certainly suffer from occlusions caused by
the natural and urban environnement such as trees, tunnels, overhangs, tall
buildings ... (Fig. 1.a).

These limitations prevent orthoimages generated by above-ground datasets
to be used for a whole new set of applications that rely on a precise mapping
of the ground and which cannot suffer from such large occlusions. These
applications include, mostly in a urban context, accessibility assessment for
soft mobilities (disabled, wheelchairs, strollers...) and itinerary computa-
tions Serna and Marcotegui (2013), precise mapping of road marks Hervieu
et al. (2015), road limits or curbs McElhinney et al. (2010); El-Halawany
et al. (2011); Zhao and Yuan (2012); Hervieu and Soheilian (2013b), road
inventory Pu et al. (2011), road surface modelling and quality measurements
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Figure 2: Full orthoimage production pipeline from MLS. Framed rectangles are processing
steps, arrows are exchanged data. h0 and u0 are the projections of each point height and
reflectance respectively onto an horizontal grid. Mproj is a binary mask of pixels where
at least one point was projected.

Hervieu and Soheilian (2013a), mobile mapping registrations on aerial images
Tournaire et al. (2006), image based localization using ground landmarks Qu
et al. (2015), etc. Moreover, recent legislations in European countries call
for a subdecimetric accuracy mapping of underground networks (water and
gaz pipes, internet and phone wires, etc.) as the lack of accurate data has
lead to accidents and delays in many public works. Very high resolution or-
thoimaging with limited occlusions could help in meeting the requirements
of these legislations as it would provide sub-centimetric accuracy mapping of
the ground.

To maximize orthoimage resolution and to minimize occlusions, we pro-
pose to leverage ground-level LiDAR scans acquired by Mobile Laser Scan-
ning vehicles (MLS) or from fixed stations. The proximity of the acqui-
sition ensures a high resolution as well as a diminution of occluded areas.
Furthermore, as in Vallet and Papelard (2015), we also propose to derive
a gray image from the reflectance attribute of the LiDAR samples (which
measures backscattered energy) instead of relying on optical imagery (which
would introduce difficulties in dynamic environments and require precise co-
registration).
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1.1. Problem statement and contributions
The projection of a ground-level point cloud at centrimetric resolutions

creates a sparse image due to its inhomogeneous sampling density (Fig. 1.b).
The problem of filling in the holes created by the lack of information has
already been explored in Vallet and Papelard (2015). The authors per-
form Poisson interpolation (Pérez et al., 2003) in order to fill the projection.
However, in case of large holes, the reconstruction is not visually satisfying.
Moreover, the interpolation fills the whole image directly as it does not try
to distinguish the three classes of pixels with no values : (i) undersampled
ground pixels where interpolation makes sense, (ii) occluded ground pixels
that have not been measured but could be filled in with plausible content
and (iii) non-ground pixels that should not be filled (e.g. inside buildings).
We acknowledge that estimating values for case (ii) is debatable as resulting
estimates may not be derived from the missing local measurements. Our
proposition is to fill-in these occluded areas to facilitate the comprehension
of the orthoimage by human operators but to disable any operation, mea-
surement or processing in these areas.

We propose a framework that combines diffusion inpainting and examplar-
based inpainting for the joint production of high resolution and photo-realistic
reflectance and height orthoimages. Our main contribution is to provide a
fully automatic framework with an efficient set of default parameters. First,
we introduce a novel anisotropic diffusion technique that uses both texture
and height information. Second, we propose an examplar-based inpainting
method that is modified in order to take advantage of the specific attributes
present in LiDAR datasets.

1.2. Outline of the paper
In this paper, we propose in Section 2 a novel approach for the reconstruc-

tion of ground orthoimages that produces very satisfying results in terms of
visual quality and coherence. We first explain in Section 3 how the point
cloud can be projected on a 2D-pixel grid after filtering ground points. We
present a brief state-of-the-art on diffusion algorithms and we introduce a dif-
fusion model for the computation of dense images from the sparse projections
in Section 4. In Section 5, we present different examplar-based inpainting
techniques before introducing an inpainting method that takes height infor-
mation into account as well as assumptions about the alignment between
structures. Finally, in Section 6, we validate our framework by presenting
various examples of reconstruction made on real acquisition data.
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Figure 3: Highlighting of the different types of holes in the sparse projection. (a) is the
original point cloud colored with the reflectance, (b) is the sparse projection of the white
rectangle in (a) after extracting ground points, (c) is the sparse projection labelled with
the different kinds of holes.

2. Framework description

Orthoimage generation from LiDAR scans as been scarcely studied in
the past. Vallet and Papelard (2015) first extract the ground points by
considering the lowest points projected in each pixel. Next, they perform
Poisson interpolation to connect sparse pixels. In this paper, we introduce
an efficient and fully automatic pipeline to reconstruct an aerial image from
a LiDAR point cloud. The proposed framework is summed up in figure 2.

From the point cloud, we need to extract the ground points (eg. points
that do not belong to a mobile object or to an object that is lying on the
ground). This is done by computing an envelop Γ (see section 3). The re-
flectance and height values of these ground points are then projected in two
2D-images respectively: u0 and h0. This projection is done by removing
the z (height) coordinate and rounding the coordinates to the chosen resolu-
tion. We also build a maskMproj of the pixels where at least one point was
projected.

At this point, the projections u0 and h0 are sparse as they do not cover
all the pixels in the images. We can distinguish 3 classes of holes for which
the images are sparse:

• Areas that do not correspond to the ground points (inside of buildings,
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point that are too far from the sensor, ...) which can easily be detected
using Γ. These areas do not require any more processing as they should
ideally not be reconstructed.

• Under sampling of the LiDAR sensing which may be caused by scan
line separation distances (exagerated by high vehicle speed) or within
a scan line at large distances.

• Occlusions that appear when a relatively vertical object was blocking
the beams and prevents the sensor from acquiring ground points.

Figure 3 sums up the different kinds of holes that can appear in the pro-
jection. Some parts of the projection correspond to the inside of a building
(figure 3.c in orange), under sampling holes appear in between lines of acqui-
sition (figure 3.c in blue) and an occlusion is caused by a pole blocking the
laser beams (figure 3.c in green).

In order to reconstruct the missing information of the orthoimage, we
first perform diffusion on both u0 and h0 by coupling reflectance and height
in an anisotropic diffusion algorithm in order to remove holes due to under-
sampling. The resulting dense images are respectively called ud0 and hd0. The
occlusion maskMocc is then retrieved using the projection mask and math-
ematical morphology. Finally, we can reconstruct occlusion holes using an
examplar-based inpainting method that uses both reflectance and height in-
formation, as well as an assumption about the alignment between structures
to inpaint.

3. Projection of LiDAR point cloud

The projection of a point cloud onto a 2D pixel grid is a typical discretiza-
tion problem. It mostly requires to define a mapping between the point cloud
metric frame and the 2D-pixel grid. However, in the case of Digital Terrain
Model, it is also needed to filter out off-ground points (trees, urban struc-
tures, cars). We introduce a novel approach for ground point filtering in
section 3.1 and explain how the projections are done in section 3.2. More
details about the parametrization of the projection can be found in 3.3.

3.1. Filtering ground points
The definition of ground-points in a point cloud can be tideous as we have

to filter groups of point that represent relatively planar structures and which
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do not belong to any other objects that the ground itself. Horizontal planes
may usually be considered as ground structures. However, modern MLS
tends to be accurate enough to acquire ceilings through windows, creating
false positives. Vertical planes are also relevant (pavements, stairs), but not
in every cases (trucks, billboards). This problem has been investigated by
considering it as a classification problem (Rottensteiner and Briese, 2002) or
by performing advanced structural analysis (Kraus and Pfeifer, 2001; Brédif
et al., 2015). However, these solutions have shown their limitations in the
case of a scenario where a huge variety of different structures are present such
as a urban environment.

We propose a novel approach for ground point filtering based on the way
the acquisition is done. We aim to filter out hovering object or any point that
is over another one. As the points are acquired with a certain margin of error,
direct comparison is not suitable as the likelyhood of two points having the
exact same (x, y) coordinates is negligible. We first create an empty envelop
of the size of the projection where each pixel has an infinite value. This
envelop will help defining the boundaries of the 2D region that represents
the ground while ensuring that all the points that fall into the envelop really
are ground points. We then consider segments made by each point and its
relative emission point. Each segment is discretized in the envelop using
the Bresenham line algorithm (Bresenham, 1965). As the beam is perfectly
straight, we can estimate the height of the segment at any position of the
segment. Each pixel is then filled with the lowest height value of segments
that cross it. Then, we apply a threshold to limit too high points compared
to the ground level under the aquisition device. Figure 4 shows a slice of the
maximal envelop Γ computed on a set of beams that overlaps. We can see
that for every overlapping beams, only the portion of the lowest one is kept
in the envelop. Finally, we filter the point cloud by taking only points that
are under the envelop and the threshold, with an epsilon margin.

3.2. Sparse projections
Using the filtered point cloud, we want to produce two sparse images

corresponding to the reflectances and the heights in the sensor frame: u0

and h0 defined on the mask Mproj. The values for each pixel in u0 is the
mean of the reflectances of every points that is being projected in it. The
values in h0 are the same using the height in the sensor frame. Using the
median of all the values of the points projected in the same pixel instead
of the mean value could have been a more natural choice to prevent noise
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Figure 4: Slice of an envelop Γ obtained by evaluating several aligned beams coming from
the sensor S until they hit an object of the scene. The red line is the final threshold
applied to the envelop to exclude too high points.

from altering the result. However in practice, the amount of point that are
projected in every pixel is kept low and the reflectance value is homogeneous
locally. Therefore, the overall cost of computing the median value compared
to the improvement relatively to the mean value is not worthy. Finally, an
Mproj image is produced where pixels are valued 1 where at least one point
was projected and 0 elsewhere.

3.3. Parameters
The choice of the mapping between real coordinates and pixels mostly

depends on the density of the point cloud. In our case, with an acquisition
done using a RIEGL LMS-Q120i which produces 300 000 points per second,
the maximal acceptable resolution was 1px = 1cm2. The height threshold
is arbitrary but in the case of a urban scenario, it should be kept under
the height of the aquisition vehicle. More details about the parameters are
provided in 6.1.

4. Diffusion of sparse images

The two images obtained in the previous section are sparse in the sense
that they do not cover every pixels of the DTM. Therefore, we need to inter-
polate the images in order to get a dense representation of them. The goal is
to fill in gaps between relatively close pixels that are due to the acquisition
undersampling. In this section, we first explain what are the requirements
that the filling method needs to meet. Then we introduce a modification to
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Figure 5: Comparison of different diffusion techniques for filling stripe holes. (a) is the
point cloud, (b) its projection (rotated for clarity purpose), (c) is the Gaussian diffusion
result, (d) is the Perona-Malik algorithm result and (e) is the result of our proposed
modification. We can see that our modification provides a better conservation of big holes
while filling perfectly the stripe holes.

existing methods in order to enhance the results. Finally we show a compar-
ison of different methods to validate our proposed modification.

4.1. Choice of the approach and requirements
A typical approach for filling small holes by interpolation is to use diffu-

sion algorithms. Several diffusion techniques exist such as the total variation
Chambolle and Pock (2011), the generalized total variation Bredies et al.
(2010), structure tensor diffusion Weickert (1998); Bertalmio et al. (2000) or
partial differential equation diffusion Aubert and Kornprobst (2006).

Here, we focus on iterative solving methods which are more flexible. A ba-
sic diffusion algorithm is the so called Gaussian diffusion which is an isotropic
technique that consists in updating the image with its own Laplacian Koen-
derink (1984). However in the case of a urban scenario, an anisotropic diffu-
sion is more relevant as very high gradients appear at the edge of different
structures (roads, pavements, stairs) and need to be preserved.

The Perona-Malik algorithm (Perona and Malik, 1990) is a well known
algorithm for anisotropic diffusion. It is partially inspired from the Gaussian
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diffusion and is defined as follows:
∂u
∂t
− div(c(|∇u|)∇u) = 0 in Ω× (0, t)

∂u
∂N

= 0 in ∂Ω× (0, T )
u(0, x) = u0(x) in Ω

(1)

where u0 ∈ Ω is the input image, div is the divergence operator, ∇ is the
gradient operator, N is the normal vector to the boundary of Ω and c is
an increasing function. A common choice for c is the weighting function
c(|∇u|) = 1√

1+(|∇u|/α)2
, α being a weighting factor that quantifies how much

the gradient information needs to be considered. This technique ensures the
preservation of edges while ensuring smooth transitions between sampled
scan lines. Nevertheless, this technique only takes into account the gradients
of a single channel. In our context, the diffusion needs to be blocked in case
of a high gradient in the reflectance image as well as in the case of a high
gradient in the height image that could correspond to the junction between
the road and a pavement, or steps of stairs. Therefore, we need to modify
equation (1) in order to take both channels into account.

4.2. Our proposed algorithm
We propose here a modification to the Perona-Malik equation (1) by

coupling heights and reflectances as follows, using previously introduced no-
tations: 

∂u
∂t
− div(f(|∇u|, |∇h|)∇u) = 0 in Ω× (0, t)

∂h
∂t
− div(f(|∇u|, |∇h|)∇h) = 0 in Ω× (0, t)

∂u
∂N

= 0 in ∂Ω× (0, T )
∂h
∂N

= 0 in ∂Ω× (0, T )
u(0, x) = u0(x) in Ω
h(0, x) = h0(x) in Ω

(2)

where we recall that u0 is the reflectance image and h0 is the height image.
We introduce the new weighting function f that emerges from the one used
in equation (1) as follows:

f(|∇u|, |∇h|) =
1√

1 + |∇u|2
α2 + |∇h|2

β2

(3)

having α, β as weighting constants quantifying how gradients of reflectance
and height need to be considered. The choice of coupling both reflectance
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and height information into the same model is motivated by the fact that
reflectance and height gradients are not always at the same locations and
therefore, are complementary. Note that coupling various modalities in a
model has already been proposed in Auclair-Fortier and Ziou (2006) for cou-
pling multi-spectral images, however in that case authors present a model
specifically designed for merging multiple images representing the same ob-
ject at different wavelengths. Using our method, we can now take into ac-
count gradients coming from both u0 and h0.

4.3. Comparison with other diffusion techniques
Figure 5 illustrates a comparison between different diffusion methods.

We can see in figure 5.c that the Gaussian diffusion does not preserve any
edges. The Perona-Malik algorithm gives a better result but the diffusion
is not correctly blocked at the border of large holes (figure 5.d). This can
create discontinuities and create artifacts in the examplar-based inpainting
performed in the next section. Our proposed algorithm succeeds in filling the
holes due to undersampling and correctly blocks the diffusion at the borders
of high variation of height (occlusions, inside of buildings.)

Another important aspect of our modification is the preservation of the
second order statistical properties. Indeed, the noise of u is kept at the
same level in the reconstructed areas as it is in known areas. Therefore,
the result is suitable for being used in a statistical study. Table 1 presents
the results of the computation of the mean and the standard deviation of
the reconstructed areas using different kinds of diffusions. The comparison is
made on 104 px by comparing only the reconstruction of undersampling holes
against the ground truth (i.e. area where the aquisition device evolves at low
speed which prevents undersampling holes from appearing). The statistics
are only computed on the reflectance image as the height image is smooth
and thus, has very low level of noise. The proposed algorithm provides the
closest results to the ground truth. We estimate that this is mostly due to
the fact that the gradients in u and h provide complementary information to
the reconstruction.

4.4. Parameters
In practice, the proposed diffusion technique was implemented by solving

the PDE system with a first order explicit Euler scheme with respect to the
time variable. The number of iterations has to be chosen in order to fill
in stripe holes. It depends on the chosen resolution as very sparse images
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Table 1: Statistical properties of diffusion methods on 10 reflectance images
Diffusion technique Mean value (reflectance) STD (reflectance)

Ground truth 89.180 1.349
Gaussian 88.167 0.577

Perona and Malik (1990) 88.996 1.223
Anisotropic + altitudes 89.056 1.326

will require more iterations to fully fill the image. A good speed-up can
be obtained by first performing a nearest neighbor interpolation on both
u0 and h0 independently as it lowers drastically the number of iterations
needed. The weighting term for the reflectances α should be higher than the
one for height β in order to completely block the diffusion in case of large
height variation while connecting close pixels. Practical details will be given
in section 6.1. Note that only unknown pixels regarding Mproj should be
updated to prevent an oversmoothing of the final images.

5. Inpainting of occlusions

After the projection, some holes are not only caused by some undersam-
pling but also by the beam being blocked by an object (cars, poles, lights ...)
before reaching the ground. This leads to a ground projection with a lot of
information at the edge turned toward the sensor, but nothing when going
further. As occlusion holes are wider than stripe holes, the diffusion algo-
rithm proposed above is not suitable in order to reach a visually satisfying
result. In this section, we first see how occlusions holes are detected in the
image. We then present the problem of texture synthesis in our case and we
give a first solution. Finally, we introduce an improvement to this solution
based on assumptions made on the urban scenario.

5.1. Occlusion hole detection
The occlusion detection consists in defining which holes are caused by the

sampling rate and which holes are caused by a blocking of the laser beams.
This can be done by applying mathematical morphology on the projection
maskMproj before diffusion where each known pixel is valued 1 and all other
pixels are valued 0. At this point, everything with the 0 value is considered
as occlusion holes.

HavingMproj, a simple morphological operation known as closing Serra
(1982) is enough to detect occlusions and build the occlusion mask Mocc.
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The closing consists in applying a dilation of a certain radius to the mask
and then to apply an erosion of the same radius. This leads to a closing of
small 0-labelled areas surrounded by 1s. Choosing wisely the radius of the
closing ensures that undersampling holes are eliminated while preserving the
shape and the position of the occlusion holes.

As explained above, occlusion holes and stripe holes are not the only kind
of missing data after the projection. We need to remove the pixels that are
out of the final reconstruction (inside of buildings, regions that are too far
from the sensor ...). Typically, theose regions correspond to the parts where
the envelop is not defined in the image and can easily be removed from the
mask obtained after the closing.

5.2. Examplar-based inpainting
Among the variety of different inpainting algorithms, examplar-based al-

gorithms are known for being more effective and more reliable in filling large
areas (with large internal radius). Examplar-based inpainting consists in try-
ing to find the best candidate in the known region of the image for the patch
centered on a pixel lying on the border of the hole. Once found, the candidate
is used to fill the unknown part of the image by copying the color in its central
pixel Efros and Leung (1999) or the full patch Criminisi et al. (2004). The
operation is repeated until the hole is fully closed. More recent approaches,
such as Daribo and Pesquet-Popescu (2010); Wang et al. (2008) reconstruct
the texture using both color information and depth information. However
these algorithms require different acquisitions of the same view, which is not
applicable in our case as we aim at performing the reconstruction on a single
acquisition pass.

The urban scenario presents a huge variety of structures (roads, pave-
ments, stairs, gutters) as well as many different textures (roads, cobbles,
floor tiles). Thus, we decided to base our work on the Criminisi et al. Cri-
minisi et al. (2004) algorithm that was designed for the good preservation
of the structures in the reconstruction. More complex approaches exist that
rely on Criminisi et al. (2004) such as Buyssens et al. (2015); Lorenzi et al.
(2011) however it would have been less intuitive to adapt them to our con-
text. In Criminisi et al. (2004), authors put forward the idea that the order
in which areas are reconstructed have a high impact in the final result. They
introduce a priority term that takes into account the strength and the direc-
tion of the image’s gradient at the border of the unfilled area. A patch that
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Figure 6: Comparison of Criminisi et al. (2004) and our proposed modification on the
junction between the road and a pavement. (a) is the mask where the darkest region is
being reconstructed using examplar-based inpainting, (b) the result from Criminisi et al.
(2004), (c) our proposed optimization. The result is clearly better in (c) as the reconstruc-
tion conserves the structures of the image without creating new artifacts such as the one
appearing on the left of (b).

contains a strong gradient in the direction orthogonal to the border of the
region to reconstruct is evaluated before more uniform patches.

5.3. Modification to the original algorithm
Coupling reflectances and heights. The algorithm presented in Criminisi et al.
(2004) offers a very good technique for region filling. However, it can fail
when the area to fill is very large. Therefore, we introduce a modification to
the algorithm by taking the height information into account as a guide for
the reconstruction. The idea is to use the height information to restrain the
selection of best candidate patches to the areas of similar height by computing
the Sum of Squared Differences of the candidate patch in both the reflectance
and the height images. The SSD (Sum of Squared Differences) is defined as
follows:

SSD(P1,P2) =
∑
i,j∈Ω

(P1(i, j)− P2(i, j))2 (4)

having P1, P2 the two 2D-patches that are compared and Ω the domain of
definition of the image. In our modification, and for each candidate, a score
is attributed by combining both channels as follows:

Sp(Pt,Pc) = SSD(PR
t ,P

R
c ) + η × SSD(PH

t ,P
H
c ) (5)

where Pt is the target patch to be filled and Pc is a candidate patch. Pc

can be any patch in the image that has no pixel that belongs to an occlusion
hole. However, for speed-up purpose, we can limit the selection of Pc to
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Figure 7: Illustration of the assumption that the urban environment evolves in a similar
way than the path of the sensor. The straight green line shows the path of the sensor.
Each dashed line represents areas of same distance to the sensor.

be in a certain radius around Pt. η is a regularization parameter and the
superscripts R,H denote that the patch is taken in the reflectance image or
the height map respectively. The regularization parameter only appears for
the height map SSD as the height information is less important in order to
reach a visually satisfying result.

The impact of the use of the height map in the synthesis is very noticeable
in figure 6. The structure of the road is well preserved using the proposed
modification compared to the original algorithm in which artifacts appear
after some iterations. These artifacts mislead the reconstruction and the
result is visually incoherent.

Taking advantage of urban environment. Although the current modification
of the algorithm provides a very good solution for filling occlusion holes, the
reconstruction can fail sometimes when the hole is very large. This happens
for holes that are caused by cars or trucks where the area to reconstruct is
significantly larger than regular holes (106 pixels at a 1px = 1cm2 resolution
for a standard car and the portion of pavement behind it) and it can become
a common issue. Indeed, at the center of the holes the nearest known infor-
mation is too far away and the error accumulated along the iterations is likely
to fail the reconstruction. To improve the results in the concerned areas, we
advocate that the structure of a urban environment is very likely to evolve
in a similar way to the vehicle path as illustrated in figure 7. Therefore,
we can constrain the selection of candidates to patches that are at a similar
distance to the sensor than the current patch. The range attribute of the
LiDAR image provides this information for each point.

We define the new score equation as follows, using previously introduced
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notations:

Sf (Pt,Pc) =

[
1 +

(
|d(Pt)− d(Pc)|

γ

)2
]
× Sp(Pt,Pc) (6)

having d(P ) the distance between the sensor and the center of the patch
P and γ a regularization parameter that constrains the selection of patch
to a range interval around the current range. The range can be accessed
everywhere in the image by precomputing a signed distance map of the area
to the path of the vehicle (eg. where the range is the lowest).

Large patches and artifacts. When the reconstruction is done at a very high
resolution, large patches (103px) are likely to be required in order to correctly
represent the structural elements of the image. This might lead to abrupt
junctions between reconstructed patches. Therefore, we propose to enhance
the copy of the patch by performing the seam carving using graphcuts pre-
sented in Rubinstein et al. (2008). The goal is to compute the optimal cut
between Pt and Pc where they overlap to obtain a seamless result.

5.4. Parameters
η should be kept under 1 to ensure the visual coherence of the reconstruc-

tion. Parameter γ depends on the size of the occlusion. When γ = 1, the
regularization is very strong and the selection of the candidate patch is con-
strained on a narrow band of same distance to the sensor point. When the
value of the parameter is highly increased (γ > 104), no regularization oper-
ates and the algorithm behaves as if the range was not taken into account.
Therefore, one can alternate between these two values for γ depending on
the internal radius of the occlusion (see next section).

6. Results

We conclude this paper by presenting different results obtained using
the proposed framework. We first present a general set of parameters for
an automatic reconstruction of a set of orthoimages. We then demonstrate
the efficiency of the solution by showing various results and comparison to
existing methods. After that, we validate the quality of the framework using
numerical criterions. Finally, some details about the computation time are
drawn.
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6.1. Parameters
In the same way as other pipelines, this one comes with a set of parameters

that was used for producing every images displayed in this paper.

Projection. The objective of this study was to provide very high quality or-
thoimages. Therefore, all reconstructions were done at the maximal possible
resolution of our sensor: 1px = 1cm2. A threshold of 60cm from the road
level was used to filter out points after the computation of the envelop.

Diffusion. For the diffusion step, we found the best balance of results by
setting α = 5, β = 0.7 with 3 iterations and by first interpolating u0 and h0

using the nearest neighbor algorithm.

Mask extraction. In this step, a closing radius of 6px was enough to fill stripe
holes while leaving occlusions intact.

Inpainting. At 1px = 1cm2, the chosen patch size was 43x43px to fit the
smallest structuring element (cobbles). In all our experiment, η = 0.2 ended
up being a very good choice. Finally, we set the value of γ to 0.3 or 106, the
choice being made by automatically checking whether the internal radius of
the evaluated occlusion was higher than 50cm or not.

6.2. Qualitative analysis
A quick glance at the difference between traditional aerial orthophotog-

raphy and MLS orthoimage using our framework is given in figure 8. The
resolution provided by a typical aerial camera is about 50cm2 per pixel, where
our reconstruction is done at 1cm2 per pixel. Fine textures and very precise
details are noticeable in the reconstruction whereas only main structures can
be seen in the aerial orthophotography. Moreover, the aerial orthophotog-
raphy presents various occlusions such as trees that do not appear in our
result.

In figure 9, we show a visual comparison between the proposed framework
and the method introduced in Vallet and Papelard (2015), which is the state
of the art for the production of orthoimages using MMS LiDAR point cloud.
We can see that both algorithms perform about the same for stripe holes, but
our solution gives more satisfying results for large occlusions. The texture
is better reconstructed using our method. This will be later discussed in
Section 6.3.
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Figure 8: Comparison between aerial orthophotography with a standard resolution (50cm2

per pixel) (top) and MLS orthoimage using our model at 1cm2 per pixel (bottom). Tra-
ditional orthophotography provides limited resolution and suffers from occlusions brought
by the coverage of trees and other structures whereas our model provides unobstructed,
hight resolution orthoimages. The aerial image comes from Geoportail.

a. b.

Figure 9: Comparison between our proposed framework (a) and the one introduced in
Vallet and Papelard (2015) (b). Texture is better preserved using our framework.

More reconstruction results are displayed in Figure 10. Each step of the
pipeline is illustrated. We can see on Figure 10 top that the framework per-
forms a very good reconstruction on fine details such as cobbles. In Figure 10
bottom, 25% (∼ 5.105px) of the area is occluded, mostly due to the presence
of cars and poles. However, our framework succeeds plausible reconstruction
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a. b. c.

Figure 10: Various results on different urban scenes. (a) shows the original point clouds
projected on an horizontal grid (sparse). (b) are the results after stripe holes were filled.
Areas that present large occlusions are highlighted in green. (c) the final results of our
method. In both result, the orthoimage is successfully reconstructed while improving the
understandability of the scene.

Figure 11: Exemple of scene that follows the vehicule path. In this case, the use of the
range information is very relevant. The green dashed line denotes the vehicle path.

of the scene, leading to a result that is much more understandable than ini-
tially. Finally, figure 11 shows an extreme scenario where the use of the range
is relevant as the structure of the scene follows the same path as the road.
The environment is fully reconstructed (16%, ∼ 106px) while preserving the
structure of the road.
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a.

b. c.

Figure 12: Exemple of reconstruction on the Semantic 3D dataset. (a) is the area from
which the orthoimage is aquired, (b) is the projection of the ground points on an horizontal
grid, (c) is the final result. The final results provides a plausible estimation of the area
under the acquisition sensor.

In Figure 12, the framework is applied on data provided by the Seman-
tic3D dataset Hackel et al. (2017). This dataset is aquired using a static
LiDAR sensor. There, we can see that the area under the sensor as well as
occlusion on the ground are successfully recovered while preserving the fine
cobble texture.

The purpose of this pipeline is to generate both reflectance and height
orthoimages. In figure 13, we show how the two outputs can be combined
in order to obtain a 3D model of the road. Figure 13.a and 13.b are the
reflectance image and the height image of the area that is being modelled in
figure 13.c. We can see that the 3D model respects the topography of the
scene with the junction of the road and a pavement.

6.3. Quantitative analysis
Apart from the visual results, we also provide a numerical comparison

between the proposed framework and the one of Vallet and Papelard (2015).
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a b c

d

Figure 13: 3D model of the ground of a part of an orthoimage. (a) is the reflectance
image used as texture for the 3D model, (b) is the height image used as the height coor-
dinate of the 3D model, (c) is the mask where the darkest region was reconstructed using
examplar-based inpainting, (d) is the 3D model obtained using both reflectance and height
orthoimages.

Table 2: Numerical comparison between reconstructions

Image Artificial occlusion Real occlusion
STD Hist. dist. STD Hist. dist

Ground truth 4.51 - 4.79 -
Proposed framework 4.56 0.14 4.29 0.19

Vallet and Papelard (2015) 1.87 0.78 2.05 0.80

Measuring similarities between two images is a tough task as the plethora
of different metrics are all designed for a single aspect of the image (color
variation, gradient similarity, correlation, ...). In the case of texture synthesis,
the similarity cannot be directly compared as the goal is not to obtain exactly
the same result, but to obtain visual coherence in the reconstruction. Thus,
we advocate that the measure of the standard deviation and the distance
between histograms, also known as Wasserstein metric in Rabin et al. (2011),
provide simple and efficient metrics for evaluating the quality of our results.

Table 2 sums up the comparison of the inpainting step on two examples:
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a b c

Figure 14: Comparison between height images with and without occlusion on the junction
between a road and a pavement. (a) is the original height map, (b) is the reconstruction
of an occlusion in the same area. The occlusion corresponds to the darkest region of (c).
The mean square error of the reconstruction (b) compared to (a) on the occlusion region
is 2mm.

an image where the hole has been manually removed and an image where
the ground truth is available as the vehicle did a second pass in which the
occlusion disappear. For each example, we compute the standard deviation
of the region reconstructed by examplar-based inpainting. We also compute
the distance between the normalized histrograms of the ground truth and
each output. For both examples, our method provides a standard deviation
that is very close to the ground truth resulting in visually similar textures.

As the proposed framework also reconstructs the height map of the aquired
area, we provide a numerical analysis of this aspect. The choice of the met-
ric in that case is quite easier as the height map is more homogeneous than
the reflectance image, especially in a urban scenario as can be seen in fig-
ure 14. Therefore, the Normalized Mean Square Error is enough to estimate
how good the reconstruction is. We found out that in general the mean
square error was below 1cm. This validates the proposed framework for the
reconstruction of height map.

6.4. Computational speed
The performances of the framework in terms of computational speed are

mostly affected by the amount of occlusions and the resolution at which
the reconstruction is being made. As the framework is composed of several
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Table 3: Comparison of computation speed compared to the resolution
Image size 600x550px 2400x2200px

Image resolution 1px = 4cm2 1px = 1cm2

Percentage of stripe holes 13% 61%
Percentage of occlusion holes 22% 25%

2D Projection 2.13s 3.78s
Diffusion 1.54s 3.27s

Mask extraction 0.18s 0.91s
Examplar-based inpainting 23.81s 6.31min

Total 27.66s 6min38s

steps, we present the computation time of each step as well as the total time
of processing. All the results are given using MATLAB 2015a on a single
thread with an Intel Core i5 CPU at 3.40GHz.

The speed of computation is summed up in table 3. The evaluation is
done for the reconstruction of the same point set at different resolutions. The
choice of resolution and the amount of stripe holes do not affect much the
computation time in proportion. However, the inpainting of large occlusions
drastically increases the time of computation in the case of very high resolu-
tion. The computation speed of this step might be largely improved by using
approaches derivated from Patch-Match Barnes et al. (2009). Moreover, the
framework can be run in parallel as each step is independent of the next ones.

7. Conclusion and future work

We have proposed a complete framework to reconstruct high quality
ground orthoimage from a point cloud aquired with LiDAR. This frame-
work consists of several steps, which make use of classical modern imaging
techniques. By taking into account the multi-modal nature of the data, we
propose several modifications of these methods, leading to significantly better
results.

The framework is designed to work automatically with a set of parame-
ters that ensures satisfying results on a large variety of input data as demon-
strated by the results. Our approach performs at least as well as previous
techniques. In case of large occlusions or complex textures, it drastically
outperforms earlier works in terms of visual quality. Moreover, robustness
towards edges and structures conservation in both reflectance and height
domain has been demonstrated.
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Although the average results of the method are more than acceptable,
it can underperform in some specific cases. Indeed, the recognition of the
area to reconstruct using the envelop can sometimes fail when a massive non-
static object in the scene is considered (i.e. a building), this area therefore
not being reconstructed. Moreover, the use of examplar-based inpainting
introduces common issues such as aberrant synthesis when no similar patches
are available.

In the future, we will focus on improving the current framework to better
distinguish static structures and mobile objects, based on the work presented
in Schoenberg et al. (2010). Moreover, we also want to perform labelling
on the scene in order to produce a more relevant metric for evaluating the
results. Finally, we aim at using aerial optical data in order to provide colored
orthoimages, which promise very interesting challenges.
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