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Regularity of optimal spectral domains

Jimmy Lamboley∗, Michel Pierre†

May 27, 2016

Abstract

In this paper, we review known results and open problems on the question of regularity of the
optimal shapes for minimization problems of the form

min {λk(Ω), Ω ⊂ D, |Ω| = a} ,

where D is an open set in Rd, a ∈ (0, |D|), k ∈ N∗ and λk(Ω) denotes the k-th eigenvalue of the
Laplacian with homogeneous Dirichlet boundary conditions. We also discuss some related problems
involving λk, but leading to singular optimal shapes.

This text is a reproduction of the third chapter of the book [27] “Shape optimization and Spectral
theory” (De Gruyter) edited by A. Henrot.
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1 Introduction
The main goal of this paper is to review known results and open problems about the regularity of optimal
shapes for the minimization problems

min {λk(Ω), Ω ⊂ D, |Ω| = a} , (1)

where D is a given open subset of Rd, a ∈ (0, |D|), k ∈ N∗ and λk(Ω) is the k-th eigenvalue of the Laplace
operator on Ω with homogeneous Dirichlet boundary conditions. We will also consider the regularity
question for penalized versions of (1), and discuss as well the possible appearance of singularities for
optimal shapes, either for (1) or for related problems involving convexity constraints.

We refer to [27, Chapter 2] for all necessary definitions and for the question of existence of optimal
shapes. It is recalled in particular that, if D is bounded or if D = Rd, then Problem (1) has a solution
(say Ω∗) in the family of quasi-open subsets of Rd (as explained in [27, Chapter 2], the eigenvalues λk(Ω) may
be well-defined for all quasi-open sets Ω with finite measure as well as the space H1

0 (Ω)).

Here we analyze the question of the regularity of this optimal shape Ω∗.

As it will appear in this paper, this turns out to be a difficult and still widely open question. Even
deciding whether Ω∗ is open, is itself a difficult question and is not completely understood yet.

Is Ω∗ always open? Is at least one of the optimal Ω∗ open? What is the regularity of the
optimal k-th eigenfunctions uΩ∗?

As recalled in [27, Chapter 2], if D = Rd or more generally if D is ’large enough’:

• Ω∗ is a ball if k = 1,

• Ω∗ is the union of two disjoint identical balls if k = 2,

with uniqueness in both cases up to translations (and sets of zero-capacity). Here, D ’large enough’ means,
when k = 1, that it can contain a ball of volume a, and when k = 2 that it can contain two disjoints identical
balls whose total volume is a. Thus full regularity holds for the optimal shape in these two cases. But, the
question remains for ’large’ D with k ≥ 3 and for any k with ’small’ D. Then, the regularity analysis
of the optimal shapes in (1) is very similar in several ways to the analysis of the optimal shapes for the
Dirichlet energy, namely

min {Gf (Ω), Ω ⊂ D, |Ω| = a} , (2)

where f ∈ L∞(D) is given and

Gf (Ω) =

ˆ
Ω

[
1

2
|∇uΩ|2 − f uΩ

]
, uΩ ∈ H1

0 (Ω), −∆uΩ = f in Ω. (3)

(The solution uΩ of this Dirichlet problem is classically defined when Ω is an open set with finite measure. As
explained in [27, Chapter 2], this definition may be extended to the case when Ω is only a quasi-open set with
finite measure.)

Actually, for these two problems (1) and (2), the analysis of the regularity follows the same main steps
and offers the following main features. They will provide the content of Sections 2 and 3.

1. The situation is easier when the state function is nonnegative ! For the Dirichlet energy
case (2), for instance in dimension two, full regularity of the boundary holds for positive data f ,
inside D (see [8] and Paragraph 2.3.1 below). On the other hand, even in dimension two, it is
easily seen that singularities do necessarily occur at each point of the boundary of the optimal set
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Ω∗ where the state function uΩ∗ (as defined in (3)) vanishes and changes sign in a neighborhood.
The change of sign of uΩ∗ does imply that its gradient has to be discontinuous and, therefore, that
the boundary cannot be regular near these points. For instance, cusps will then generally occur in
dimension two (see e.g. [37]).

For the eigenvalue problem (1), state functions are the k-th eigenfunctions on Ω∗ of the Laplace-
Dirichlet operator. Thus the situation (and the analysis) will be quite different if k = 1 where
the first eigenfunction is nonnegative and if k ≥ 2 where the eigenfunction changes sign. This
partly explains why we devote the specific Section 2 to Problem (1) with k = 1. Another reason
is that the problem is then equivalent to a minimization problem where the variable are functions
rather than domains. We are then led to a free boundary formulation (see Paragraph 2.1) where
one has to understand the regularity of the boundary of [uΩ∗ > 0]. One can essentially obtain as
good regularity results as for the Dirichlet energy case with nonnegative data f , see [10]. Here we
strongly rely on the seminal paper [3] by Alt-Caffarelli about regularity of free boundaries.

On the other hand, the case k ≥ 2 is far from being so well understood and we will try to describe
what is the current state of the art (see Section 3).

2. A first step: regularity of the state function. For the Dirichlet energy case, the analysis
starts by studying the regularity of uΩ∗ as defined in (3). It is proved (see [9]) that uΩ∗ is locally
Lipschitz continuous on D, this for any optimal shape Ω∗ and no matter the sign of uΩ∗ . This
Lipschitz continuity is the optimal regularity we can expect for uΩ∗ , as it vanishes on D \ Ω∗, and
is expected to have a non vanishing gradient on ∂Ω∗ from inside Ω∗. As expected, the proof in the
case uΩ∗ changes sign is quite more involved and requires for instance the Alt-Caffarelli-Friedman
Monotonicity Lemma (proved in [4], [20], see Lemma 3.4 below).

For the optimal eigenvalue problem (1) with k = 1, it can be proved as well that the corresponding
eigenfunction on Ω∗ is locally Lipschitz continuous on D (see Theorem 2.15). For k ≥ 2 and D = Rd,
it has been proved in [14] that one of the k-th eigenfunction is Lipschitz continuous (see Theorem
3.3) (note that the optimal eigenvalue is generally expected to be multiple). However, the case D
bounded and k ≥ 2 is still to be understood. The main difference is that, when D = Rd, Problem
(1) is equivalent to the penalized version

min
{
λk(Ω) + µ|Ω|, Ω ⊂ Rd

}
, (4)

for some convenient µ ∈ (0,∞) (see Proposition 3.1). And, as explained below, more regularity
information may be derived on optimal state functions for penalized versions.

3. Penalized versions. In order to obtain information on the regularity of Ω∗ or uΩ∗ , a natural tool
is to make admissible perturbations of Ω∗ and use its minimization property. Obviously, there is
more freedom to choose perturbations on the penalized version (4) where the volume constraint
|Ω| = a is relaxed, rather than on the constrained initial version (1). Actually, the analysis of (1)
when k = 1 starts by showing that (1) is equivalent to the penalized version

min
{
λ1(Ω) + µ[|Ω| − a]+, Ω ⊂ D

}
, (5)

for µ large enough (see Proposition 2.6). Then, analysis of the regularity may be more easily made
on the optimal shapes of (5). In Paragraph 2.3.2, we make an heuristic analysis of this “exact
penalty” property for general optimization problems where not only the penalized version converges
to the constrained problem as the penalization coefficient µ → ∞, but more precisely that the
two problems are equivalent for µ large enough. Optimal such factors µ play the role of Lagrange
multipliers. Actually, this approach is used again, in a local way in Paragraph 2.3.3, to prove that
the ’pseudo’-Lagrange multiplier does not vanish (see Proposition 2.23). It is also used in [27,
Chapter 7] to study the regularity of optimal shapes for similar functionals.

4. How to obtain the regularity of the boundary of Ω∗? Knowing that the state function is
Lipschitz continuous is a first main step in the study of the regularity of the boundary of the optimal
set, but obviously not sufficient.

For example for k = 1, this boundary can be seen as the boundary of the set [uΩ∗ > 0]. If we were
in a regular situation (say u is C1 on Ω∗), then knowing that the gradient of uΩ∗ does not vanish
at the boundary would imply regularity of this boundary by the implicit function theorem.
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Indeed, the next main step is (heuristically) to prove that the gradient of the state function does not
degenerate at the boundary. This is what is done and then used in Paragraph 2.3.3 for the optimal
sets of (1) when k = 1. Full regularity of the boundary is proved in dimension two and regularity
of the reduced boundary is proved in any dimension (see Theorem 2.19). Here we strongly rely on
the seminal paper [3] by Alt-Caffarelli as explained in details in Section 2.3.1. Note that it is also
used in [27, Chapter 7] as mentioned at the end of Point 3 above. Nothing like this is known when
k ≥ 2. It is already a substantial piece of information to sometimes know that Ω∗ is an open set !
(see Section 3).

In Section 4, we partially analyze the regularity of Ω∗ solution of (1) up to the boundary of the box
D, when k = 1. We notice in particular that it is natural to expect the contact to be tangential (although
this is not proved anywhere as far as we know), but we cannot expect in general that the contact be
very smooth; we prove indeed, for example when D is a strip (too narrow to contain a disc of volume a),
that the optimal shape is C1,1/2 and not C1,1/2+ε with ε > 0. In order to show that this behavior is not
exceptional and is not only due to the presence of a box constraint, we show that a similar property is
valid for solutions to the problem

min {λ2(Ω),Ω open and convex, |Ω| = a} .

This last problem enters the general framework of convexity constraint, which is quite challenging
from the point of view of calculus of variations. We conclude this paper with Section 5 where we discuss
some problems in this framework. They are of the form

min {J(Ω),Ω open and convex} ,

where J involves λ1, and possibly other geometrical quantities (such as the volume |Ω| or the perimeter
P (Ω)), and which lead to singular optimal shapes, such as polygons (in dimension 2). Thanks to the
convexity constraint, it is allowed to consider the question of maximizing the perimeter and/or the first
Dirichlet eigenvalue, and in this direction we discuss a few recent results about some reverse Faber-Krahn
inequality.

Remark 1.1. The question of regularity could also be considered for the following optimization problems:

min {λk(Ω), Ω ⊂ D,P (Ω) = p} , min {P (Ω) + λk(Ω), Ω ⊂ D, |Ω| = a}

where P denotes the perimeter (in the sense of geometric measure theory), and D is either a bounded
smooth box, or Rd. In these cases, as it has been shown in [24, 23], the regularity of optimal shapes is
driven by the presence of the perimeter term. More precisely it can be shown that they exist (which
is not trivial if D = Rd) and that they are quasi-minimizers of the perimeter, and therefore smooth up
outside a singular set of dimension less than d− 8.

2 Minimization for λ1

In this section, we focus on the regularity of the optimal shapes of the following problem:

min {λ1(Ω), Ω ⊂ D, Ω quasi− open, |Ω| = a} , (6)

where D is an open set in Rd, a ∈ (0, |D|) and k ∈ N∗.
Thanks to the Faber-Krahn inequality, it is well-known that, if D contains a ball of volume a, then this

ball is a solution of the problem, and is moreover unique, up to translations (and to sets of zero-capacity).
Therefore, the results of this section are relevant only if such a ball does not exist.

2.1 Free boundary formulation
We first give an equivalent version of problem (6) as a free boundary problem, namely an optimization
problem in H1

0 (D) where domains are level sets of functions.

Notation. For w ∈ H1
0 (D), we will denote Ωw = {x ∈ D;w(x) 6= 0}.
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Recall that for a bounded quasi-open subset Ω of D (see [27, Chapter 2])

λ1(Ω) = min

{ˆ
Ω

|∇v|2; v ∈ H1
0 (Ω),

ˆ
Ω

v2 = 1

}
. (7)

Definition 2.1. In this section, we denote by uΩ any nonnegative minimizer in (7), i.e. such that

uΩ ∈ H1
0 (Ω),

ˆ
Ω

|∇uΩ|2 = λ1(Ω),

ˆ
Ω

u2
Ω = 1.

Remark 2.2. Choosing in (7) v = v(t) := (uΩ + tϕ)/‖uΩ + tϕ‖L2(Ω) with ϕ ∈ H1
0 (Ω), and using that

the derivative at t = 0 of t→
´

Ω
|∇v(t)|2 vanishes leads to

∀ϕ ∈ H1
0 (Ω),

ˆ
Ω

∇uΩ∇ϕ = λ1(Ω)

ˆ
Ω

uΩϕ. (8)

If Ω is an open set, (8) means exactly that −∆uΩ = λ1uΩ in the sense of distributions in Ω.
Note that if uΩ is a minimizer in (7), so is |uΩ|. Therefore, with no loss of generality, we can assume

that uΩ ≥ 0 and we will always do it in this section on the minimization of λ1(Ω). If Ω is a connected open
set, then uΩ > 0 on Ω. This is a consequence of the maximum principle applied to −∆uΩ = λ1(Ω)uΩ ≥ 0
on Ω. This extends (quasi-everywhere) to the case when Ω is a quasi-connected quasi-open set, but the
proof requires a little more computation.

Since Ω 7→ λ1(Ω) is nonincreasing with respect to inclusion, any solution of (6) is also solution of

min {λ1(Ω), Ω ⊂ D, Ω quasi− open, |Ω| ≤ a} . (9)

The converse is true in most situations, in particular if D is connected, see Remark 2.5, Corollary 2.17
and the discussion in Section 2.4.1. Note that it may happen that if D is not connected, then a solution
to (9) does not satisfy |Ω| = a.

Nevertheless, we will first consider Problem (9) and this will provide a complete understanding of (6)
as well. We start by proving that (9) is equivalent to a free boundary problem.

Proposition 2.3. 1. Let Ω∗ be a quasi-open solution of the minimization problem (9) and let u = uΩ∗ .
Then ˆ

D

|∇u|2 = min

{ˆ
D

|∇v|2; v ∈ H1
0 (D);

ˆ
D

v2 = 1, |Ωv| ≤ a
}
. (10)

2. Let u be solution of the minimization problem (10). Then Ωu is solution of (9).

Proof. For the first point, we choose v ∈ H1
0 (D) with |Ωv| ≤ a and we apply (9) to Ω = Ωv. This gives´

D
|∇u|2 = λ1(Ω∗) ≤ λ1(Ωv) and we use the property (7) for λ1(Ωv) so that

ˆ
D

|∇u|2 ≤ min

{ˆ
D

|∇v|2; v ∈ H1
0 (D),

ˆ
D

v2 = 1, |Ωv| ≤ a
}
.

But equality holds since u ∈ H1
0 (Ω∗) ⊂ H1

0 (D), and |Ωu| = |Ω∗| ≤ a.
For the second point, let u be a solution of (10). Then, |Ωu| ≤ a,

´
D
u2 = 1. Let Ω ⊂ D quasi-open

with |Ω| ≤ a and let uΩ as in Definition 2.1. Then

λ1(Ωu) ≤
ˆ
D

|∇u|2 ≤
ˆ
D

|∇uΩ|2 = λ1(Ω).

Remark 2.4. We will now work with the functional problem (10) rather than (9). Note that if D is
bounded (or with finite measure), then existence of the minimum u follows easily from the compactness
of H1

0 (D) into L2(D) applied to a minimizing sequence (that we may assume to be weakly convergent in
H1

0 (D) and strongly in L2(D)).
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Remark 2.5. As we explain below, the two different following situations may occur. If D is connected
and Ω∗ solves (9), then a∗ := |[uΩ∗ > 0]| = a and Ω∗ = [uΩ∗ > 0]. If however D is not connected, it may
happen that a∗ < a; then uΩ∗ > 0 on some of the connected components of D and identically zero on
the others.

Indeed, if a∗ < a, then for all ball B ⊂ D with measure less than a− a∗ and all ϕ ∈ H1
0 (B), we may

choose v = v(t) = (u+ tϕ)/‖u+ tϕ‖L2(D) with u := uΩ∗ ≥ 0 in (10). Writing that the derivative at t = 0
of t 7→

´
D
|∇v(t)|2 vanishes gives

ˆ
D

∇u∇ϕ = λa

ˆ
D

uϕ with λa :=

ˆ
D

|∇u|2,

and this implies : −∆u = λau in D. By strict maximum principle in each connected component of D,
either u > 0 or u ≡ 0. If D is connected, we get a contradiction since a < |D|. Therefore necessarily
a∗ = a if D is connected.

We refer to Corollary 2.17 and Proposition 2.28 for a complete description of the regularity when D
is not connected.

2.2 Existence and Lipschitz regularity of the state function
2.2.1 Equivalence with a penalized version

As announced in the introduction, we will first prove that (10) is equivalent to a penalized version.

Proposition 2.6. Assume |D| < +∞. Let u be a solution of (10) and λa :=
´
D
|∇u|2. Then, there

exists µ > 0 such that

ˆ
D

|∇u|2 ≤
ˆ
D

|∇v|2 + λa

[
1−

ˆ
D

v2

]+

+ µ [|Ωv| − a]
+
, ∀v ∈ H1

0 (D). (11)

Remark 2.7. Given a quasi-open set Ω ⊂ D, and choosing v = uΩ in (11), we obtain the penalized
’domain’ version of (9), where Ω∗ is solution of (9)

λ1(Ω∗) ≤ λ1(Ω) + µ[|Ω]− a]+, ∀Ω ⊂ D, Ω quasi− open. (12)

Proof of Proposition 2.6. Note first that, by definition of u and of λa, for all v ∈ H1
0 (D) with |Ωv| ≤ a,

we have
´
D
|∇v|2 − λa

´
D
v2 ≥ 0, or

ˆ
D

|∇u|2 ≤
ˆ
D

|∇v|2 + λa

[
1−

ˆ
D

v2

]
. (13)

Let us now denote by Jµ(v) the right-hand side of (11) and let uµ be a minimizer of Jµ(v) for v ∈ H1
0 (D)

(its existence follows by compactness of H1
0 (D) into L2(D), see also Remark 2.4). Up to replacing uµ by

|uµ|, we may assume uµ ≥ 0. Using that Jµ(uµ) ≤ Jµ(uµ/‖uµ‖2), we also deduce that ‖uµ‖22 =
´
D
u2
µ ≤ 1.

For the conclusion of the proposition, it is sufficient to prove |Ωuµ | ≤ a since then

Jµ(uµ) ≤ Jµ(u) =

ˆ
D

|∇u|2 ≤ Jµ(uµ),

the last inequality coming from (13).
Assume by contradiction that |Ωuµ | > a and introduce ut := (uµ − t)+. Then Jµ(uµ) ≤ Jµ(ut). This

implies, using that |Ωut | > a for t small,
ˆ

[0<uµ<t]

|∇uµ|2 + µ |[0 < uµ < t]| ≤ λa
ˆ

[0<uµ<t]

u2
µ + 2tλa

ˆ
D

uµ.

Using the coarea formula (see e.g. [28], [30]), this may be rewritten for t ≤ t0 ≤
√
µ/λa as

ˆ t

0

ds

ˆ
[uµ=s]

[
|∇uµ|+

µ− λas2

|∇uµ|

]
dHd−1 ≤ 2tλa

ˆ
D

uµ ≤ 2tλa|Ωuµ |1/2.
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But the function x ∈ (0,∞) 7→ x + (µ − λas2)x−1 ∈ [0,∞) is bounded from below by 2
√
µ− λas2 and

also by 2
√
µ− λat20 as soon as s2 ≤ t2 ≤ t20 ≤ µ/λa. It follows that

∀ t ∈ [0, t0), 2
√
µ− λat20

ˆ t

0

ˆ
[uµ=s]

dHd−1 ≤ 2tλa|Ωuµ |1/2. (14)

We now use the isoperimetric inequality:
´

[uµ=s]
dHd−1 ≥ C(d) |[uµ > s]|

d−1
d . We divide the inequality

by t and we let t→ 0, then t0 → 0, to deduce

2
√
µC(d)|Ωuµ |

d−1
d ≤ 2λa|Ωµ|1/2, and finally 2

√
µC(d) a

d−2
2d ≤ 2λa.

Thus, if d ≥ 2, |Ωuµ | > a is impossible if µ > µ∗ := λ2
aC(d)−2a(2−d)/d. Therefore the conclusion of

Proposition 2.6 holds for any µ > µ∗.
If d = 1, we have √µC(1) ≤ λa|Ωµ|1/2. On the other hand, by definition of uµ we also have

|Ωuµ | ≤ a+λ1(Ω1)/µ for some fixed Ω1 ⊂ D with |Ω1| = a. We deduce an upper bound for µ as well.

Remark 2.8. With respect to the heuristic remarks made in Paragraph 2.3.2, it is interesting to notice
that our problem here is not in a ’differentiable setting’. However, we do perform some kind of differ-
entiation in the direction of the perturbations t 7→ (uµ − t)+. This provides the upper bound µ∗ on µ
which plays the role of a Lagrange multiplier. This remark is a little more detailed in Paragraph 2.3.2.
Note that µ∗ does not depend on |D|. The assumption |D| <∞ was used only to prove existence of the
minimizer uµ.

Remark 2.9 (Sub- and super-solutions). Note that to prove Proposition 2.6, we only use perturbations
of the optimal domain Ωu from inside. This means that the same result is valid for -sometimes called-
shape subsolutions where (10) is assumed only for functions v for which Ωv ⊂ Ωu.

Next, we will prove Lipschitz continuity of the functions u solutions of the penalized problem (11).
Actually, even more interestingly, Lipschitz continuity will hold for super-solutions of (11) that is when
the inequality (11) is valid only for perturbations from outside, i.e. such that Ωu ⊂ Ωv.

2.2.2 A general sufficient condition for Lipschitz regularity

We now state a general result to prove Lipschitz regularity of functions, independently of shape opti-
mization. It applies to signed functions as well and will be used again in the minimization of the k-th
eigenvalue.

Proposition 2.10. Let U ∈ H1
0 (D), bounded and continuous on D and let ω := {x ∈ D;U(x) 6= 0}.

Assume ∆U is a measure such that ∆U = g on ω with g ∈ L∞(ω) and

|∆|U || (B(x0, r)) ≤ Crd−1 (15)

for all x0 ∈ D with B(x0, 2r) ⊂ D, r ≤ 1 and U(x0) = 0. Then U is locally Lipschitz continuous on D.
If moreover D = Rd, then U is globally Lipschitz continuous.

Remark 2.11. Note that if U is locally Lipschitz continuous on D with ∆U ≥ 0, then for a test function
ϕ with

ϕ ∈ C∞0 (B(x0, 2r)), B(x0, 2r) ⊂ D, 0 ≤ ϕ ≤ 1,
ϕ ≡ 1 on B(x0, r), ‖∇ϕ‖L∞(B) ≤ C/r,

(16)

we have

∆U(B(x0, r)) ≤
ˆ
D

ϕd(∆U) = −
ˆ
D

∇ϕ∇U ≤

‖∇U‖L∞ |Ωϕ|‖∇ϕ‖L∞ ≤ C‖∇U‖L∞ rd−1.

This indicates that the estimate (15) is essentially a necessary condition for the Lipschitz continuity of
U . This theorem states that the converse holds in some cases which are relevant for our analysis as it
will appear in the next paragraph.
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Remark 2.12. In the proof of Proposition 2.10, as in [9], we will use the following identity which is
useful to estimate the variation of functions:

 
∂B(x0,r)

U(x)dσ(x)− U(x0) = C(d)

ˆ r

0

s1−d
[ˆ

B(x0,s)

d(∆U)

]
ds. (17)

This is easily proved for regular functions U by integration in s of

d

ds

 
∂B(0,1)

U(x0 + sξ)dσ(ξ) =

 
∂B(0,1)

∇U(x0 + sξ) · ξ = C(d)s1−d
ˆ
B(x0,s)

∆U,

which implies that for a.e. 0 < r1 < r2,
 
∂B(x0,r2)

U(x)dσ(x)−
 
∂B(x0,r1)

U(x)dσ(x) = C(d)

ˆ r2

r1

[
s1−d

ˆ
B(x0,s)

∆U

]
ds.

It extends to functions U ∈ H1(D) where ∆U is a measure with´ r
0
s1−d ´

B(x0,s)
d(|∆U |)ds <∞. We may then consider that U is precisely defined at x0 as:

U(x0) = lim
r→0+

 
∂B(x0,r)

U(x)dσ(x), (18)

and (17) holds with this precise definition of U(x0).

Proof of Proposition 2.10. We want to prove that ∇U ∈ L∞loc(D). We can first claim that ∇U = 0 a.e.
on D \ ω. On the open set ω, we have ∆U = g ∈ L∞(ω) so that at least U ∈ C1(ω).

Let us denoteDδ = {x ∈ D; d(x, ∂D) > δ} (we start with the caseD 6= Rd). We will bound∇U(x0) for
x0 ∈ ω∩Dδ. The meaning of the constant C will vary but always depend only on δ, ‖U‖L∞(D), ‖g‖L∞(D), d
and on the constant C in the assumption (15).

Let y0 ∈ ∂ω be such that |x0 − y0| = d(x0, ∂ω) := r0. Then r0 > 0 and B(x0, r0) ⊂ ω. We have
U(y0) = 0 since y0 ∈ ∂ω and U is continuous. Let us introduce s0 := min{r0, 1}, B0 := B(x0, s0) and
V ∈ H1

0 (B0) such that ∆V = g on B0. Since g ∈ L∞, by scaling we obtain

‖V ‖L∞(B0) ≤ Cs2
0, ‖∇V ‖L∞(B0) ≤ Cs0, C = C(‖g‖L∞).

Since U − V is harmonic on B0, we also have |∇(U − V )(x0)| ≤ d
s0
‖U − V ‖L∞(B0) so that

|∇U(x0)| ≤ |∇V (x0)|+ ds−1
0 ‖U − V ‖L∞(B0) ≤ C

[
s0 + s−1

0 ‖U‖L∞(B0)

]
. (19)

If s0 ≥ δ/16, we deduce from (19): |∇U(x0)| ≤ C(δ, ‖U‖L∞ , ‖g‖L∞). We now assume δ ≤ 16.
If s0 < δ/16 i.e. r0 = s0 < δ/16, since x0 ∈ Dδ, d(y0, ∂D) ≥ d(x0, ∂D) − d(x0, y0) ≥ δ − r0 ≥ 15r0

which implies B(x0, r0) ⊂ B(y0, 2r0) ⊂ B(y0, 8r0) ⊂ D. Thanks to assumption (15), U(y0) = 0 and to
formula (17) applied with U replaced by |U |, we deduce

ffl
∂B(y0,4r0)

|U(z)|dσ(z) ≤ C r0. Finally, using the
representation (U − V )(x) =

ffl
B(y0,4r0)

U(z)Px(z)dσ(z) for all x ∈ B(y0, 2r0) where Px(·) is the Poisson
kernel at x, we have

‖U − V ‖L∞(B0) ≤ ‖U − V ‖L∞(B(y0,2r0)) ≤ C
 
∂B(y0,4r0)

|U(z)| dσ(z) ≤ C r0.

This together with (19) (where s0 = r0) and ‖V ‖L∞(B0) ≤ Cr2
0, this implies |∇u(x0)| ≤ C.

Now if D = Rd, either ω = Rd and (19) gives the estimate (r0 = +∞, s0 = 1), or ω 6= Rd: then we
argue just as above, replacing δ/16 by 1 in the discussion.

In Proposition 2.10, the fonction U is assumed to be continuous on D. For our optimal eigenfunctions,
this will be a consequence of the following lemma.

Lemma 2.13. Let U ∈ H1
0 (D) such that ∆U is a measure satisfying

|∆U | (B(x0, r)) ≤ Crd−1, (20)

for all x0 ∈ D with B(x0, 2r) ⊂ D, r ≤ 1. Then U is continuous on D.
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Proof. Assumption (20) implies that
´ r

0
s1−d|∆U |(B(x0, s)) <∞ so that (18) and (17) hold. Let x0, y0 ∈

D and r > 0 small enough so that B(x0, 2r) ⊂ D,B(y0, 2r) ⊂ D. We deduce, using (20) again and the
representation (18):

|U(x0)− U(y0)| ≤
∣∣∣ffl∂B(x0,r)

U −
ffl
∂B(y0,r)

U
∣∣∣+ C r ≤ffl

∂B(0,r)
|U(x0 + ξ)− U(y0 + ξ)|dσ(ξ) + C r.

But by continuity of the trace operator from H1(B(0, r)) into L1(B(0, r)), this implies

|U(x0)− U(y0)| ≤ C(r)‖U(x0 + .)− U(y0 + .)‖H1(B(0,r)) + C r.

Thus
lim sup
y0→x0

|U(x0)− U(y0)| ≤ C r.

This being valid for all small enough r, continuity of U at x0 follows and therefore continuity on D as
well.

Remark 2.14. Looking at the proof, we easily see that the assumptions could be weakened in Lemma
2.13: U ∈ W 1,1

0 (D) would be sufficient and rd−1 could be replaced in (20) by rd−2ε(r) with ε(r)/r
integrable on (0, 1).

2.2.3 Lipschitz continuity of the optimal eigenfunction

Theorem 2.15. Let u be a solution of (10). Then u is locally Lipschitz continuous on D.

Proof. Up to replacing u by |u|, we may assume that u ≥ 0. We will first show that U = u satisfies the
assumptions of Lemma 2.13. It will follow that u is continuous on D. Therefore, we will have −∆u = λau
on the open set ω = [u > 0] (see Remark 2.2). Then we will prove (see also Remark 2.16 below) that

−∆u ≤ λau in D. (21)

It will imply that ∆u is a measure and also, by an easy bootstrap that u ∈ L∞(D). Thus the assumptions
of Proposition 2.10 will be satisfied and local Lipschitz continuity on D will follow.

By Proposition 2.6, u is also solution of Problem (11). We apply this inequality with v = u+ tϕ where
t > 0, ϕ ∈ H1

0 (D). Then

0 ≤
ˆ
D

2∇u∇ϕ+ t|∇ϕ|2 + λa
[
−2uϕ− tϕ2

]+
+
µ

t
[|Ωu+tϕ| − a]

+
. (22)

Choosing first ϕ = −pn(u)ψ where ψ ∈ C∞0 (D), ψ ≥ 0, and pn(r) = min{r+/n, 1}, we obtain with
qn(r) =

´ r
0
pn(s)ds and after letting t→ 0 (note that |Ωu+tϕ| = |Ωu| ≤ a)

0 ≤
ˆ
D

−2p′n(u)|∇u|2ψ − 2∇qn(u)∇ψ + 2λaupn(u)ψ.

Note that upn(u) → u+ = u, qn(u) → u+ = u in a nondecreasing way as n increases to +∞. Using
p′n(u)|∇u|2 ≥ 0, we obtain at the limit that ∆u+λau ≥ 0 in the sense of distributions in D, whence (21).

Choosing ϕ ∈ C∞0 (D)+ in (22) leads to −2
´
D
∇u∇ϕ ≤

´
D
t|∇ϕ|2 + µ

t |Ωϕ| or

2〈∆u+ λau, ϕ〉 ≤
ˆ
D

2λauϕ+ t|∇ϕ|2 +
µ

t
|Ωϕ|. (23)

Minimizing over t ∈ (0,∞) gives

〈∆u+ λa, ϕ〉 ≤
ˆ
D

λauϕ+ ‖∇ϕ‖L2 [µ|Ωϕ|]1/2 . (24)

Let now x0 ∈ D such that B(x0, 2r) ⊂ D and let ϕ ∈ C∞0 (B(x0, 2r))
+ as in (16). Using also u ∈ L∞, we

deduce that
|∆u| (B(x0, r)) ≤ (∆u+ λau) ((B(x0, r)) + λa

ˆ
B(x0,r)

u ≤ Crd−1,

whence the estimate (15).
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Remark 2.16. Here, we strongly use the positivity of u. Actually, u is an eigenfunction for the eigenvalue
λa on Ωu. Since it is open, we have ∆u + λau = 0 on Ωu (see Remark 2.2). Knowing moreover that
u ≥ 0, only with that much information, one can prove that ∆u+ λau ≥ 0 on D. For this, note that to
prove it above, we used the test functions ϕ = −pn(u)ψ which satisfies Ωϕ ⊂ Ωu and therefore belong to
H1

0 (Ωu). Thus applying (8) in Remark 2.2 with this ϕ is sufficient (and we finish as above).
Next this positivity of the measure ∆u + λau allows to directly estimate the mass of |∆u| on balls

only with the information (24). This will not be the case when dealing with k-th eigenfunctions when
k ≥ 2 (see the remarks and comments on the use of the Monotonicity Lemma 3.4).

Let us now state a corollary of Proposition 2.15 for the initial actual shape optimization problem (6).

Corollary 2.17. Assume D is open and with finite measure. Then there exists an open set Ω∗ which is
solution of (6). Moreover, for any (quasi-open) solution Ω∗ of (6), uΩ∗ is locally Lipschitz continuous on
D. If D is connected, then all solutions Ω∗ of (6) are open.

Remark 2.18. If D is not connected, then it may happen that Ω∗ is not open: we refer for instance to
Example 2.27. However uΩ∗ is always locally Lipschitz continuous. Let us mention that the existence
of an optimal open set for (6) had first been proved in [34]. A different penalization was used and the
corresponding state function was proved to converge to a Lipschitz optimal eigenfunction.

Proof of Corollary 2.17. If D is of finite measure, as already seen, Problem (10) has a solution u. By
Theorem 2.15, it is locally Lipschitz continuous on D. In particular Ωu is open. If |Ωu| = a, then
Ω∗ := Ωu is an open solution of (6). If |Ωu| < a, then any open set Ω∗ satisfying Ωu ⊂ Ω∗ ⊂ D, |Ω∗| = a
is also a solution since then, by monotonicity λ1(Ω∗) ≤ λ1(Ωu) (and there are such Ω∗ like for instance
Ω∗ := Ωu ∪B(x0, r) ∩D where x0 ∈ D and r is chosen so that |Ω∗| = a ).

Now let Ω∗ be a solution of (6). Then, by Proposition 2.3, uΩ∗ is solution of the minimization
problem (10). By Theorem 2.15, it is locally Lipschitz continuous in D. As proved in Remark 2.5, if D
is connected, then Ω∗ = [uΩ∗ > 0]. Therefore Ω∗ is open.

2.3 Regularity of the boundary
In this section, we go deeper in the analysis of the free boundary problem (10), and we explain the
strategy to prove the regularity of the boundary of any solution to (6). Here is the main result of this
section:

Theorem 2.19 (Briançon-Lamboley [10]). Assume D is open, bounded and connected. Then any solution
of (6) satisfies:

1. Ω∗ has locally finite perimeter in D and

Hd−1((∂Ω∗ \ ∂∗Ω∗) ∩D) = 0, (25)

where Hd−1 is the Hausdorff measure of dimension d− 1, and ∂∗Ω∗ is the reduced boundary (in the
sense of sets with finite perimeter, see [28] or [30]).

2. There exists Λ > 0 such that

∆uΩ∗ + λ1(Ω∗)uΩ∗ =
√

ΛHd−1b∂Ω∗,

in the sense of distribution in D, where Hd−1b∂Ω∗ is the restriction of the (d−1)-Hausdorff measure
to ∂Ω∗.

3. ∂∗Ω∗ is an analytic hypersurface in D.

4. If d = 2, then the whole boundary ∂Ω∗ ∩D is analytic.

2.3.1 Regularity for free boundary problems

In this section, we give a small overview of the literature about regularity of free boundaries, related to
the problem (6) or (9); we insist that it is by far not exhaustive as the literature on the subject is huge.
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It has been seen in Section 2.1 that problem (9) is equivalent to a free boundary problem: this will
allow us to use some of the deep and well-known results on the subject. The seminal paper [3] is dealing
with the following model problem:

min

{ˆ
D

|∇u|2 +

ˆ
D

g(x)2
1Ωu , u ∈ H1(D), u = u0 on ∂D

}
(26)

where u0 ∈ H1(D) is a given positive boundary data, D is an open bounded set, and we recall that
Ωu = {u 6= 0}. In [3], different results were given about the regularity of the free boundary ∂Ωu where u
solves (26). Let us first notice that it is expected to obtain some regularity from the optimality condition,
which is

∆u = 0 in Ωu, |∇u| = g on ∂Ωu ∩D, (27)

where this has to be understood in a weak sense (see below). In the paper [42], it is for example shown
that if ∂Ωu is assumed to be C1,α (locally inside D) for some α > 0 and g is smooth (say analytic),
then ∂Ωu is actually locally analytic. As usual though, the most difficult part is to obtain regularity for
∂Ωu from scratch, and in particular, to give sense to (27). In [32], these results have been adapted to a
different situation, namely

min

{ˆ
D

|∇u|2 − 2fu+ g2
1Ωu , u ∈ H1(D), u = u0 on ∂D

}
(28)

where f is a given nonnegative bounded function (in [32] they actually have D = Rd and no boundary
condition: nevertheless, their results can easily be adapted to this situation, and for more clarity we
prefer to deal with this problem here). In that case, the Euler-Lagrange equation is given by{

−∆u = f in Ωu,

|∇u| = g on ∂Ωu ∩D.
(29)

These equations, especially the second one that defines the free boundary condition, makes sense a priori
only if it is known that u ∈ H1(D) and ∂Ωu are smooth. Therefore, there are different way of formulating
this boundary condition in a weak sense:

• Shape derivative formulation (see [3, Theorem 2.5]): for any ξ ∈ C∞0 (D),

lim
ε→0

ˆ
∂{u>ε}

(|∇u|2 − g2)(ξ · ν)dHd−1 = 0, (30)

where ν is the outward normal vector.

• Weak solution ([3, 32]): u ∈ H1(D) is called a weak solution of (29) if

1. u is continuous and nonnegative,

2. u satisfies, in the sense of distribution in D:

∆u+ f = gHd−1b∂∗Ωu in D. (31)

3. there exists 0 < c ≤ C such that for all balls Br(x) ⊂ D with x ∈ ∂Ωu,

c ≤ 1

r

 
∂Br(x)

udHd−1 ≤ C,

As stated in [3, Theorem 5.5], if g is continuous, then local minimum for (26) are weak solutions in
this sense, and in particular Hd−1(∂Ωu \∂∗Ωu) = 0, so in (31) the term Hd−1b∂∗Ωu can be replaced
by Hd−1b∂Ωu although this is not true in general (note that in [32] they use a weaker notion of
weak solutions, though this one is more suitable for regularity results).

• Viscosity formulation: though we will not use this framework here, let us emphasize the complete
regularity theory developed for viscosity solutions to (29) (see [17, 19, 18, 16]). Lots of proofs have
been drastically simplified compared to the original paper [3], see also [25].
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For our purpose, we focus on the use of the notion of weak solutions, and here are the two main results
about the regularity for these solutions:

Theorem 2.20 (Theorem 8.2 in [3], Theorem 2.17(a) in [32]). Suppose f ∈ L∞(D), f ≥ 0, g is Hölder
continuous in D and there exists c > 0 such that g ≥ c in D. Then if u is a weak solution (see the
definition above), ∂∗Ωu is locally C1,α in D, for some α > 0, and moreover

Hd−1((∂Ωu \ ∂∗Ωu) ∩D) = 0. (32)

In the two-dimensional case, we can improve this statement.

Theorem 2.21 (Theorem 8.3 in [3]). Under the same assumption as Theorem 2.20, if moreover d = 2
and  

Br∩Ωu

(g2 − |∇u|2)+−→
r→0

0

then
∂Ωu = ∂∗Ωu (in D)

and therefore ∂Ωu is locally C1,α in D.

These two results are the main achievement of [3], see Sections 5 to 8 in this paper. This relies
in particular on the proof of the fact that “flatness implies regularity”, in other words if the boundary
is assumed to be a bit flat (therefore avoiding the singularity described in Paragraph 2.4.2), then it is
actually smooth.

Different generalizations or simplifications of the proofs of these results did appear in the literature
after the paper [3]. As we noticed just before, a complete regularity theory for viscosity solutions of
(29) has been developped, and we can find in [25] a simplified proof of a version Theorem 2.20 for these
viscosity solutions. See also Section 2.4.2 for further results and in particular an improvement of (32).

As we already noticed at the beginning of this paragraph, once a C1,α regularity is obtained for ∂∗Ωu
(or ∂Ωu), then depending on the assumption on the regularity of the data f and g, we can easily improve
this regularity: namely as proven in [42], if f is Cm,β and g is Cm+1,β , then ∂∗Ωu (or ∂Ωu is d = 2) is
Cm+2,β ; moreover, if f and g are analytic, so is ∂∗Ωu.

2.3.2 Some heuristic remarks on “exact penalty” property

As seen in Paragraph 2.2.1 and as it will be used again in the next Paragraph 2.3.3 and in Section 3,
regularity results are proved by strongly using the so-called “exact penalty” property. It says that our
constrained problems (like (9), (48)) are equivalent to penalized versions (like (12), (39), (40), (49) or
(51))) at least for well chosen or large enough penalty factors: this property goes quite beyond the weaker
property that the penalized version ’converges’ to the constrained one as the penalty factor tends to ∞),
see Propositions 2.6, 2.23, 3.1 and Remark 3.2. This general question is analyzed in the literature of
optimization theory: we refer for instance to [39, Section VII] for the basic theory or to [6] for some
interesting results in this direction. Though our optimization problems do not seem to fit in their
demanding framework (in particular for differentiability or convexity assumptions), they nevertheless
present the same features.

Let us describe some main questions and answers, together with ’heuristical proofs’ inspired from this
literature, for the following abstract optimization problem

min {f(x), g(x) = a} (33)

where f, g : X → [0,∞), a > 0 and X is a real Banach space. Let us say we want to prove that any
solution x0 of (33) is also solution of the penalized following version:

min {f(x) + µ [g(x)− a] , g(x) ≥ a} , (34)

(the same problem with the constraint g(x) ≤ a instead, is similar). We concentrate on the two following
questions:

• If x0 is a solution of (33), is it still a (local) solution of (34) for some (finite) value of µ? Or in the
terminology introduced in Remark 2.9, is x0 a super-solution of the penalized version (34) for some
µ > 0?
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• If so, what is the link between the best (=smallest) possible µ and the Lagrange multiplier Λ
associated with x0, that is the real number Λ such that

f ′(x0) + Λ g′(x0) = 0 ? (35)

Again the proof of the regularity result of Theorem 2.19 and in particular its point 2) strongly relies
on this comparison and on the main fact that Λ > 0.

Let us start with the first question: in many situation, the answer to this question is yes. As a
heuristic proof of this fact, let us assume that f, g are smooth enough (say C1), and that there exists a
solution xµ to (34) for every µ ∈ (0,∞). First notice that if g(xµ) = a, then it is admissible for (33), and
we easily deduce that x0 is then also a solution to (34). Assume instead that g(xµ) > a for every µ > 0
and let us look for a contradiction. To that end, we write the optimality condition for (34), which gives
(since the constraint is not saturated)

f ′(xµ) + µ g′(xµ) = 0. (36)

Assuming some compactness on the set {xµ}µ>0, xµ converges (up to a subsequence) to some x̃0 as
µ→ +∞. It is clear, using f(xµ) + µ(g(xµ)− a) ≤ f(x0) that g(x̃0) = a (and that x̃0 solves (33)). But
then (36) leads to a contradiction as µ → ∞ at least if we (naturally) asssume that a is not a critical
value of g (i.e. g′(x̃0) 6= 0).

About the second question, we first notice that a necessary condition on µ so that x0 (solution of
(33)) be also solution of (34) is µ ≥ Λ, where Λ is the Lagrange multiplier associated with x0 as defined
in (35). Indeed, the optimality condition for (34) is then satisfied at x0 and classically means (Karush-
Kuhn-Tucker conditions) that there exists γµ such that

f ′(x0) + µg′(x0) + γµg
′(x0) = 0, and γµ ∈ (−∞, 0],

the sign of γµ coming from the fact that the constraint is “g ≥ a”. Therefore, again if a is not a critical
value of g, this implies: Λ = µ+ γµ ≤ µ.

It is then natural to hope that for any µ > Λ, a solution of (33) is also a solution of (34). With some
strong convexity assumptions, this is actually the case as proved for example in [6]. Since we are here far
from this kind of ’convex’ situation, let us refer heuristically to a weaker and local result which will be
quite in the spirit of one of the main steps in the proof of Theorem 2.19. More precisely, let us replace
(34) by the following ’local’ version where h > 0 is fixed:

min {f(x) + µ [g(x)− a] , g(x) ∈ [a, a+ h]} . (37)

Then the previous remarks made for (34) are still valid: if f, g are C1 and that we have some adequate
compactness properties, for µ large enough, x0 is solution of this penalized problem; moreover, this
requires µ ≥ Λ where Λ is defined in (35).

Let us prove that µ > Λ is indeed (generally) sufficient. For this, we assume that Λ is the only
Lagrange multiplier for the constrained problem (33) or more generally that it is the upper (finite) bound
of the Lagrange multipliers (we indeed have to take into account that there may be several solutions to
(33), associated to different Lagrange multipliers).

Let µ = Λ + ε, ε > 0 be fixed. Let xh be the solution of (37) and assume g(xh) > a for every h > 0.
Equation (36) is satisfied as before. Similarly also, using compactness, we may assume that xh converges
to some x̃0, which is solution of (33) since the constraints on xh lead to g(x̃0) = a. Therefore, on one
hand, passing to the limit in (36), we obtain

f ′(x̃0) + (Λ + ε)g′(x̃0) = 0,

while on the other hand f ′(x̃0) +λg′(x̃0) = 0 holds for some λ ≤ Λ, whence a contradiction (assuming as
before that g′(x̃0) 6= 0).

2.3.3 Penalization of the volume constraint in Problem (10)

Our Problem (10) was proved to be equivalent to the penalized version (11) in Proposition 2.6 (see
also (12) for a penalized “domain” version). Actually, we can check that, according to the previous

13



heuristic analysis, if our problem was differentiable, then the best penalized factor µ∗ would essentially
be the Lagrange multiplier Λ of the constraint problem. Let us formally make the computation. The
Euler-Lagrange equation for Problem (6) inside D is

−|∇uΩ∗ |2 + Λ = 0 on ∂Ω∗ or also − ∂νuΩ∗ =
√

Λ on ∂Ω∗.

Integrating −∆uΩ∗ = λauΩ∗ on Ω∗ gives

P (Ω∗)
√

Λ = −
ˆ
∂Ω∗

∂νuΩ∗ = −
ˆ

Ω∗
∆uΩ∗ = λa

ˆ
Ω∗
uΩ∗ ≤ λa|Ω∗|1/2.

Inserting now the isoperimetric inequality P (Ω∗) ≥ C(d)|Ω∗|(d−1)/d, we obtain exactly the estimate
Λ ≤ µ∗ where µ∗ is defined at the end of the proof of Proposition 2.6. Actually, the proof of this propo-
sition is nothing but a rigourous justification of the computation we just made here.

Now, the proof of the regularity of the boundary stated in Theorem 2.19 will require to make a “local”
penalized version of the type (37). But the heuristic tools described in the previous papragraph are
difficult to justify rigourously. Let us list the difficulties we face to apply such strategy to (6) and lead
to a complete proof of Proposition 2.23 stated below:

• Compactness and continuity arguments are used several times, including in order to get existence
for problems (34) or (37). This requires to obtain H1 bounds, and weak H1 continuity of the
functionals.

• We use Euler-Lagrange equations, which requires that functionals are differentiable. As the natural
choice of space is X = H1

0 (D) it is important to notice here that the functionals (mainly the
constraint) are not classically differentiable. Therefore, at every step of the proof we write the
Euler-Lagrange equation in a very weak way, using shape derivatives: in other words, if u ∈ H1

0 (D)
is a minimizer for our problem, we compare u to u◦Tt where t is a small parameter, and Tt : D → D
is a family of smooth vector fields, close to the Identity in the C1 norm. This gives, in our case:
for all Φ ∈ C∞0 (D,Rd),

ˆ
D

2(DΦ∇u,∇u)−
ˆ
D

|∇u|2∇ · Φ + λa

ˆ
D

u2∇ · Φ = Λ

ˆ
Ωu

∇ · Φ

(which is another way to formulate (30)).

• Because of the difficulties stated above, we need to localize the argument. Namely, we fix B a ball
centered at a point of ∂Ωu0

and we prove that if the radius of B is small enough, then we can
penalize the constraint if we restrict the test-functions to H1

0 (B) ⊂ H1
0 (D).

• For our purpose, we also need to study the penalization procedure for sets Ω such that |Ω| < a (see
(39)). Using the monotonicity of λ1, it is easy to see that having a vanishing penalization µ = 0 is
valid in that case. However, it is important for the rest of the proof to explain that some positive
values of the penalization parameter µ are also valid, at least when |Ω| is close to a. This rely
on the fact, as explained above, that this parameter µ can be chosen as close to Λ (the Lagrange
multiplier for problem (6)) as one wants, and on the fact that Λ is positive. This fact is highly
non-trivial, see Remark 2.24.

Remark 2.22. Of course, if we were studying the following penalized problem

min {λ1(Ω) + µ|Ω|, Ω ⊂ D} , (38)

we would not be facing the same difficulties. This problem is easier to analyze, and the result of Theorem
2.19 is actually also valid for solutions of (38).

When D = Rd (or more generally when D is star-shaped), using the homogeneity properties of the
functionals Ω 7→ λ1(Ω), |Ω|, one can find an explicit µ so that problem (6) is equivalent to (38). This is
proved in Proposition 3.1 (even for the λk-problem). Therefore, in a sense, the regularity theory is easier
in that case (though as noticed before, this case is not very relevant for D = Rd since we already know
that Ω∗ is a ball).
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We know state the following theorem, which is a main step in the proof of Theorem 2.19: let u be a
solution of (10) and BR be a ball included in D and centered on ∂Ωu ∩D. We define

F = {v ∈ H1
0 (D), u− v ∈ H1

0 (BR)}.

We denote J(w) =
´
D
|∇w|2 − λa

´
D
w2 for w ∈ H1

0 (D). For h > 0, we denote by µ−(h) the biggest
µ− ≥ 0 such that,

∀ v ∈ F such that a− h ≤ |Ωv| ≤ a, J(u) + µ−|Ωu| ≤ J(v) + µ−|Ωv|. (39)

We also define µ+(h) as the smallest µ+ ≥ 0 such that,

∀ v ∈ F such that a ≤ |Ωv| ≤ a+ h, J(u) + µ+|Ωu| ≤ J(v) + µ+|Ωv|. (40)

Proposition 2.23. Let u,BR and F as above. Then for R small enough (depending only on u, a and
D), there exists Λ > 0 and h0 > 0 such that,

∀ h ∈ (0, h0), 0 < µ−(h) ≤ Λ ≤ µ+(h) < +∞,

and, moreover,
lim
h→0

µ+(h) = lim
h→0

µ−(h) = Λ. (41)

The proof is detailed in [10], and follows the heuristic proof from Paragraph 2.3.2 with the main steps
and difficulties described just above.

Remark 2.24. As we noticed before, the most difficult statement here (and the most needed one in the
next Paragraph) is the fact that Λ > 0, which implies that µ−(h) > 0 for h small enough. The proof of
this fact can be found in [8, Propositions 6.1 and 6.2] or [10, Proposition 2.6]: the main idea is to prove
that if Λ = 0, then −∆u = λu in the whole box D, as in a weak sense, |∇u| = Λ = 0 on ∂Ωu, which
implies that the measure ∆u has no singularity across ∂Ωu. Once this fact is proven, we easily get a
contradiction.

Remark 2.25. Note that a related but different approach has been followed in [1] where they deal with
the constrained version of (26), namely

min

{ˆ
D

|∇u|2, u ∈ H1(D), |Ωu| = a, u = u0 on ∂D
}
. (42)

They introduce the penalized version

min

{ˆ
D

|∇u|2 + fε(|Ωu|), u ∈ H1(D), u = u0 on ∂D
}
, (43)

where fε(x) = 1
ε (x− a) if x ≥ a and fε(x) = ε(x− a) if x ≤ a. They prove that the regularity theory can

be applied to uε, and that for ε small enough, uε is such that |Ωuε | = a and therefore uε actually solves
(26). Though the results look very similar and are indeed based on similar observations, namely that the
main point is to prove the estimate 0 < c ≤ µε ≤ C where |∇uε|2 = µε is the optimality condition for
(43), we notice two main differences with the approach described above:

• first, the strategy in [1] leads to the weaker result that there exists smooth solutions to the con-
strained problem (42) (namely uε for ε small enough), while we get here that any solution is smooth,

• next, the authors use in [1] the regularity theory in order to assert that solutions of (43) are actually
also solutions to (42) for ε small enough. For this step, they apply the regularity theory from [3] to
uε, in order to prove the estimate 0 < c ≤ µε ≤ C mentioned before. The approach described here
relies on weaker properties and can therefore be applied to a wider class of examples. Several ideas
can for instance be applied to the analysis of (2) where f is not a priori assumed to be nonnegative
(see [8]). A complete regularity theory is however still to be done for this ’not signed’ situation as
we particularly discuss in the next Section.

Nevertheless, it is of course interesting to apply the ideas of [1] to (6). This has been done in the literature
in [58]. See also [34] where a similar penalization is studied to prove that there exists an open set which
solves (6), and [27, Chapter 7] where the same penalization is used as well.
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2.3.4 Conclusion

Let u be a solution of (10) and BR,F as in the previous paragraph. Before giving a sketch of the proof
of Theorem 2.19, we need the following Lemma, which gives a rigorous sense to the fact that, at a point
x ∈ ∂Ωu, the gradient of u is bounded from above and from below.

Lemma 2.26. There exist C1, C2, r0 > 0 such that, for B(x0, r) ⊂ B with r ≤ r0,

if
1

r

 
∂B(x0,r)

u ≥ C1 then u > 0 on B(x0, r),

if
1

r

 
∂B(x0,r)

u ≤ C2 then u ≡ 0 on B(x0, r/2).
(44)

The detailed proof is given in [10], and we describe here the main ingredients. The first part was
already proven earlier as we have seen that u is Lipschitz, but one can now give a slightly different proof
of this fact, following the arguments from [3]. The idea is to use (40) for a suitable test function, namely
v such that −∆v = λav in B(x0, r) and v = u on B(x0, r)

c. Again, it is interesting to notice that we
only use perturbation from outside, namely v such that Ωu ⊂ Ωv.

The second part says that the gradient does not degenerate on the free boundary, and as we noticed
before, this rely on the fact that Λ > 0 and that we can penalize the volume constraint for some positive
µ−(h). Similarly to the previous point, we now use (39) for v defined such that v = 0 in B(x0, r/2),
−∆v = λau on B(x0, r) \B(x0, r/2) and v = u on B(x0, r)

c.
With this result, we are in position to give the main steps for the proof of Theorem 2.19.

1. The proof is now, using (44) in Lemma 2.26, the same as in [32] or in [3]: we first show a volume
density estimate, namely that that there exists C1, C2 and r0 such that, for every B(x0, r) ⊂ B
with r ≤ r0,

0 < C1 ≤
|B(x0, r) ∩ Ωu|
|B(x0, r)|

≤ C2 < 1,

and also an estimate for the measure (∆u+ λau)

C1r
d−1 ≤ (∆u+ λau)(B(x0, r)) ≤ C2r

d−1.

The proof is the same as in [32] with λau instead of f . It gives directly (using classical Geometric
Measure Theory arguments, see section 5.8 in [28]) the first point of Theorem 2.19, namely that Ω∗

has local finite perimeter and Hd−1((∂Ωu \ ∂∗Ωu) ∩D) = 0.

2. For the second point, we see that ∆u+λau is absolutely continous with respect to Hd−1b∂Ωu which
is a Radon measure (using the first point), so we can use Radon-Nikodym’s Theorem. To compute
the Radon’s derivative, we argue as in Theorem 2.13 in [32] or (4.7,5.5) in [3]. The main difference
is that here, we have to use (41) in Proposition 2.23 to show that, if u0 denotes a blow-up limit of
u(x0 + rx)/r (when r goes to 0), then u0 is such that,

ˆ
B(0,1)

|∇u0|2 + Λ|{u0 6= 0} ∩B(0, 1)| ≤
ˆ
B(0,1)

|∇v|2 + Λ|{v 6= 0} ∩B(0, 1)|,

for every v such that v = u0 outside B(0, 1). To show this, in [3] or in [32] the authors use only
perturbations in B(x0, r) with r goes to 0, so using (41), we get the same result. We can compute
the Radon’s derivative and get (in B)

∆u+ λau =
√

ΛHd−1b∂Ωu,

which means we have proven the second point in Theorem 2.19.

3. Now, u is a weak-solution in the sense recalled in Paragraph 2.3.1, and with Theorem 2.20 we
directly get the regularity of ∂∗Ωu.

4. If d = 2, in order to have the regularity of the whole boundary, we have to show that Theorem 6.6
and Corollary 6.7 in [3] (which are stated for solutions and not weak-solutions) are still true for our
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problem. The corollary directly comes from the theorem. So we need to show that, if d = 2 and
x0 ∈ ∂Ωu, then

lim
r→0

 
B(x0,r)

max{Λ− |∇u|2, 0} = 0. (45)

As in [3, Theorem 6.6], the idea is to use (39) with v = max{u − εζ, 0} and ζ ∈ C∞0 (B)+, and
h = |0 < u ≤ εζ| ≤ |{ζ 6= 0}|, and we get

ˆ
{0<u<εζ}

(Λ− |∇u|2) ≤
ˆ
{u≥εζ}

ε2|∇ζ|2 + (Λ− µ−(h))h.

The only difference now with [3] is the last term. Using Proposition 2.23 again, we see that
(Λ − µ−(h))h = o(h), so we can choose the same kind of ζ and ε as in [3] to get (45) (see also
Theorem 5.7 in [8] for more details).

2.4 Remarks and perspectives
2.4.1 About the connectedness assumption

In this paragraph, we discuss the hypothesis “D is connected” in Theorem 2.19. We begin with the
following example, taken from [9] which proves that the optimal set Ω∗ may be irregular if D is not
connected, although uΩ∗ is very regular.

Example 2.27. (from [9]) We choose D = D1 ∪ D2, where D1, D2 are disjoint disks in R2 of radius
R1, R2 with R1 > R2. If a = πR2

1 + ε, then the solution u of (10) coincides with the first eigenfunction
of D1 and is identically 0 on D2, and thus Ωu = D1 and |Ωu| < a.
In this case, we can choose any open subset ω of D2 with |ω| = ε. Then Ω∗ := D1 ∪ ω is a solution of
(9). Since ω may be chosen as irregular as one wants, this proves that optimal domains are not regular
in general.

However, we are able to prove the following proposition.

Proposition 2.28 (The non-connected case). If we suppose that D is not connected and with finite
measure, the problem (10) still has a solution u which is locally Lipschitz continuous in D. If ω is any
open connected component of D, we have three cases:

1. either u > 0 on ω,

2. or u ≡ 0 on ω,

3. or 0 < |Ωu ∩ ω| < |ω| : in that case Ωu ⊂ ω and ∂Ωu has the same regularity as stated in Theorem
2.19.

If |Ωu| < a, then only the first two cases can appear.

Remark 2.29. It follows from Proposition 2.28 that we obtain the same regularity as in the connected
case. Indeed, in the first two cases, ∂Ωu ∩ ω = ∅.

Remark 2.30. To summarize, in all cases, there exists a solution Ω∗ to (9) which is regular in the sense
of Theorem 2.19, but there may be some other non regular optimal shape. And if D is connected, any
optimal shape is regular.

Proof of Proposition 2.28. The existence and the Lipschitz regularity are stated in Theorem 2.15. In
particular Ωu is open. If |Ωu| < a, then by Remark 2.5, we are in one the two first situations. Let us now
assume that |Ωu| = a. Then, as proved below:

A) either |Ωu ∩ ω| = |ω|: then we are again in the first situation,

B) or |Ωu ∩ ω| < |ω|: then Ωu ⊂ ω and u is solution of (10) with D replaced by ω. In particular, the
regularity result of Theorem 2.19 applies (whence Point 3.).
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To obtain A) and B), recall first that u|ω ∈ H1
0 (ω): indeed, u is the limit in H1

0 (D) of un ∈ C∞0 (D).
Then (un)|ω ∈ C∞0 (ω) and converges in H1(ω) to u|ω. Since also u ∈ H1

0 (Ωu), it follows that u|Ωu∩ω ∈
H1

0 (Ωu ∩ ω). On the other hand, −∆u = λau on Ωu and therefore on Ωu ∩ ω so that λ1(Ωu ∩ ω) = λa.
In the case A), we remark that, by minimality in (10) (since |ω| ≤ a), and by monotonicity of λ1(·)

λa =

ˆ
D

|∇u|2 ≤
ˆ
D

|∇uω|2 = λ1(ω) ≤ λ1(Ωu ∩ ω) = λa.

We also have λa =
´

Ωu∩ω |∇u|
2/

´
Ωu∩ω u

2 =
´
ω
|∇u|2/

´
ω
u2. Since ω is connected, λ1(ω) is simple and

therefore uω = u|ω/‖u|ω‖L2(ω) and u = uω > 0 on ω (see Remark 2.5).
In the case B), if we had |Ωu ∩ ω| < a, then we could find an open set ω̂ such that

Ωu ∩ ω ⊂ ω̂ ⊂ ω, λ1(ω̂) < λ1(Ωu ∩ ω) = λa, |ω̂| ≤ a,

and this would be a contradiction with the minimality of λa. Thus |Ωu ∩ ω| = a ≥ |Ωu|, that is
|Ωu∩ω| = |Ωu| which implies that u = 0 a.e. (and therefore eveywhere) on the complement of ω. Whence
Ωu ⊂ ω.

2.4.2 Full regularity and improvement of the estimate of the singular set

It is natural to ask whether the regularity stated in Theorem 2.19 can be improved. As it mainly rely on
the use of the theory of Free boundary regularity for problem (29), we state here the different improvement
that have been made in the literature since the original paper [3]:

• When concerned with regularity for weak solutions of (29), it is important to notice that regularity
does not occur in general in dimension 3 or higher. Indeed, we recall here the construction of [3,
Example 2.7]: using the spherical coordinates (r, φ, θ) so that x = r(cosφ sin θ, sinφ sin θ, cos θ), we
search for a function u of the form rh(θ), harmonic in B(0, 1) ⊂ R3:

∆u = 1
r2 ∂r(r

2∂ru) + 1
r2 sin θ∂θ(sin θ∂θu) + 1

r2 sin2 θ
∂2
φu =

= 1
r sin θ [2 sin θ.h(θ) + (sin(θ).h′)′(θ)] .

Adding the condition h′(π2 ) = 0 we obtain the explicit solution

h(θ) = 2 + cos(θ) log
1− cos θ

1 + cos θ
.

Then, defining u(x) = rh+(θ) and θ0 the unique zero of h in (0, π2 ), we have that Ωu = {(r, θ, φ), θ0 <
θ < π − θ0} is singular. Moreover, it is easy to notice that in the basis (er, eθ, eφ) we have

∇u = ∂ru.er +
1

r
∂θu.eθ +

1

r sin θ
∂φu.eϕ = h(θ)er + h′(θ)eθ in Ωu,

so that
|∇u| = h′(θ0) on ∂Ωu \ {0}.

It is easy to see that this function satisfies the shape derivative formulation of the free boundary
(30), and is also a weak solution defined in Section 2.3.1. This proves that there exist critical sets
for problem (26) in R3 that are singular. It can be seen that this example is not a minimizer; see
also [40].

Nevertheless, it is proven in [59] by G. Weiss that, for weak solutions (as defined in Section 2.3.1),
in the case f = 0 and g is a positive constant:

dimH(∂Ωu \ ∂∗Ωu) ≤ d− 3, (46)

(and in the case d = 3 it is known that singularities are isolated points) which recovers Theorem
2.21 and improves the estimate (32). This result is optimal as the previous critical set in R3 has a
0-dimensional singularity.
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• In another work of G. Weiss [60], a better estimate is obtained for the singular set of minimizers
for (26), and he also gives a strategy to obtain an optimal estimate: indeed the author proves there
exists k∗ ∈ N ∪ {+∞} such that if u solves (26), then

dimH(∂Ωu \ ∂∗Ωu) ≤ d− k∗ (47)

(where we understand ∂Ωu \ ∂∗Ωu = ∅ if d − k∗ < 0) and he gives a characterization of k∗ as
the minimal dimension so that there exists a singular homogeneous minimizer. This result rely
on a monotonicity formula to prove that blow-ups are homogeneous, and a dimension reduction
argument, similar to Federer’s strategy in the regularity theory for perimeter minimizers. As it was
known from [3] that there is no singularity in dimension 2 (see Theorem 2.21) for weak solutions
(and so for minimizers), it is known that k∗ ≥ 3 and therefore Weiss recovers the estimate (46) of
weak solutions, and gives a strategy to improve it.

• After Weiss’ results, three improvements have been given about the number k∗:

1. in [21] it is proven there is no singular cone in R3, and therefore k∗ ≥ 4,
2. in [26] it is proven that there exists a singular cone in R7, and therefore k∗ ≤ 7.
3. in [41] it is proven that there is no singular cone in R4, and therefore k∗ ≥ 5.

Let us conclude that it is conjectured that k∗ = 7.

It is natural to expect that the regularity for the free boundary problem (10) is very similar, therefore
we propose:

Open problem 2.31. Prove that solutions Ω∗ to problem (6) are such that

∂Ω∗ = ∂∗Ω∗ if d < 7, and dimH(∂Ω∗ \ ∂∗Ω∗) ≤ d− 7 if d ≥ 7.

Of course, this open problem can be decomposed into two different open questions: first show that
Weiss’ results can be applied to the solutions of (6), and that an estimate like (47) can be obtained with
a critical exponent k] (which may actually be the same as k∗), then identify k].

3 Minimization for λk
Here we consider the general minimization problems with k ≥ 1, µ ∈ (0,∞), 0 < a < |D|:

min{λk(Ω); Ω ⊂ D, Ω quasi− open |Ω| = a}, (48)

min{λk(Ω) + µ|Ω|; Ω ⊂ D, Ω quasi− open}. (49)

Applying the existence results of [27, Chapter 2], we know that (48) and (49) have solutions when D = Rd

(and this is a highly nontrivial result). They are moreover bounded and with finite perimeter. Actually,
the existence proof requires to prove some a priori regularity properties for the expected optima (see [27,
Chapter 2])).

3.1 Penalized is equivalent to constrained in Rd

A main remark is that when D = Rd, then the two problems (48) and (49) are equivalent for a good choice
of µ. Obviously, any solution Ω∗ of (49) is a solution of (48) with a = |Ω∗|, and this for all µ ∈ (0,∞).
Conversely

Proposition 3.1. Let D = Rd. Then a solution of (48) is solution of (49) with µ = 2λk(Ω∗)/ad.

Proof. Let Ω∗ be a solution of (48) and let µ := 2λk(Ω∗)/ad. Then for all quasi-open set Ω with |Ω| < +∞,
we have

λk(Ω∗) ≤ λk
(

(a|Ω|−1)1/dΩ
)

= (a−1|Ω|)2/dλk(Ω), (50)

which implies that for all t > 0

g(t) := a2/dt−2λk(Ω∗) + a1+2/dµ td ≤ t−2|Ω|2/dλk(Ω) + a1+2/dµ td.
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The minimum of t ∈ (0,∞) 7→ g(t) is reached at t = 1 so that g(1) ≤ t−2|Ω|2/dλk(Ω) + a1+2/dµ td for all
t ∈ (0,∞). Choosing t = (a−1|Ω|)1/d leads to

a−2/dg(1) = λk(Ω∗) + µ|Ω∗| ≤ λk(Ω) + µ|Ω|.

Remark 3.2. It is interesting to notice that, if D is star-shaped (say around the origin), that is
[
Ω ⊂

D → tΩ ⊂ D, ∀ t ∈ [0, 1]
]
, then a solution Ω∗ of (48) is also a super-solution of (49) with the same µ as

in Proposition 3.1 that is

λk(Ω∗) + µa ≤ λk(Ω) + µ|Ω| for all Ω∗ ⊂ Ω ⊂ D. (51)

Indeed, we do the same proof as above, using that if Ω∗ ⊂ Ω ⊂ D, then a|Ω|−1 ≤ 1 so that (a|Ω|−1)1/dΩ ⊂
D and (50) holds. The rest of the proof remains unchanged.

3.2 A Lipschitz regularity result for optimal eigenfunctions
The following result is proved in [14], [57].

Theorem 3.3. Let D = Rd and let Ω∗ be a solution of the minimization problem (48) or (49). Then
there exists an eigenfunction associated with λk(Ω∗) which is Lipschitz continuous.

The proof of this result is quite more involved than for the case k = 1. According to Proposition 2.10,
it would be sufficient to prove that one of the eigenfunctions u = uΩ∗ satisfies

|∆|u|| (B(x0, r)) ≤ Crd−1, (52)

around each x0 where u(x0) = 0. This property can actually be proved under the extra (strong) as-
sumption that λk(Ω∗) > λk−1(Ω∗). This is very restrictive, but it is nevertheless a starting point of the
proof.

If this strict inequality does not hold, the strategy of [14] is to consider a series of auxiliary approx-
imate shape optimization problems involving the lower i-th eigenvalues for i ≤ k. Using extensively
that (52) holds even for super-solutions, they prove that the approximate state functions are uniformly
Lipschitz continuous and converge to one of the k-th eigenfunctions, whence the result.

Let us describe a little more the main steps of this proof.

1. A first step in reaching (52) is to try to prove that, for all functions ϕ ∈ C∞0 (B(x0, r)), we have an
estimate like we proved in the case k = 1 (see (24)), namely

|〈∆u+ λku, ϕ〉| ≤ C |B(x0, r)|1/2‖∇ϕ‖L2 . (53)

This will actually be proved only under the extra assumption that λk(Ω∗) > λk−1(Ω∗), see below.
A main point for what is coming below is that this estimate will hold for any super-solution of the
penalized problem (49).

As we saw in the proof of Theorem 2.15, (53) directly implies (52) when u ≥ 0 (see Remark 2.16 for
more comments on this point). In the general case, (53) only provides an estimate of |∆u+|(B(x0, r))
in terms of |∆u−|(B(x0, r)) and conversely. Therefore we need one more information to bound both
of them. This is given by the Monotonicity Lemma 3.4 below.

2. At this point, it is at least possible to prove the continuity of u. The proof is rather direct at points
x0 where u(x0) 6= 0 (since we formally have ∆u+λau = 0 around this x0). Continuity at points x0

of the free boundary where u(x0) = 0 is more involved and uses the estimate (53).

3. As just explained, the lacking information to estimate |∆(u+ +u−)|(B(x0, r)) may be done around
points x0 where u(x0) = 0 thanks to the following celebrated Monotonicity Lemma by Caffarelli-
Jerison-Kenig [20] which says the following:
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Lemma 3.4. Let U ∈ H1(B(0, R)) and

∆U+ ≥ −a, ∆U− ≥ −a on B(0, R) for some a ≥ 0.

Set

Φ(r) :=

(
1

r2

ˆ
B(0,r)

|∇U+|2

|x|d−2

)(
1

r2

ˆ
B(0,r)

|∇U−|2

|x|d−2

)
.

Then,

• if a = 0, r ∈ (0, R) 7→ Φ(r) is nondecreasing.

• in all cases, there exists C such that

∀r ∈ (0, R/2), Φ(r) ≤ C

[
1 +

ˆ
B(0,R)

U2

]
. (54)

The case a = 0 was first proved in the seminal paper [4] by Alt-Caffarelli-Friedman and in this
case, we do have an actual monotonicity property. The estimate (54) implied by this monotonicity
lemma when a = 0 was extended to the non-homogeneous case in [20]. This was proved under a
continuity assumption for U which was later dropped by B. Velichkov [57], [56].

This lemma essentially says that for such functions U , both ∇U+ and ∇U− cannot be bad at the
same time around x0. Thus, if there exists some control on one by the other (and this is given by
(53)), then we control both of them. The complete proof of this may be found in [9] (see also in
[14], [57]).

4. Now, the question is: how does one prove (53)? The starting point is the ’supersolution property’

λk(Ω∗) ≤ λk(Ω∗ ∪B(x0, r)) + µ |B(x0, r)| (55)

implied by (49). In the case of k = 1, we apply the optimal property to the optimal eigenfunction
u and to the perturbation u+ tϕ, ϕ ∈ C∞0 (B(x0, r) to obtain

ˆ
D

|∇u|2 ≤
ˆ
D

|∇(u+ tϕ)|2 + µ |B(x0, r)|,

from which we easily deduce (53) (see the proof of Theorem 2.15 for such an argument). But, for
higher eigenfunctions k ≥ 2, one cannot work so easily with test functions due to the more complex
variational functional characterization. Then, two main ideas are used in [14].

5. Case λk(Ω∗) > λk−1(Ω∗) : it can be proved (see [14],[57]) that for all v ∈ H1
0 (B(x0, r)) with´

|∇v|2 ≤ 1 and for r ∈ (0, r0),

λk(Ω∗ ∪B(x0, r)) ≤
´
|∇(u+ v)|2 + (λk−1(Ω∗) + 1)

´
|∇v|2´

(u+ v)2 −
´
|∇v|2/2

.

Plugging this information into (55) gives after a simple computation

|〈∆u+ λk(Ω∗)u, v〉| ≤ C|B(x0, r)|+ Ck

ˆ
|∇v|2, Ck = 1 + λk−1(Ω∗)/2 + λk(Ω∗)/4.

The choice of v := |B(x0, r)|1/2ϕ/‖∇ϕ‖L2 (r small enough) leads to the estimate (53) and the
expected (52) follows as well as Lipschitz continuity.

6. Case λk(Ω∗) = λk−1(Ω∗): this is the most difficult case, and also the most frequent since optimal
eigenvalues are often multiple. Then the idea of [14] is to consider the problem with ε > 0 small:

min{(1− ε)λk(Ω) + ελk−1(Ω) + 2µ |Ω|; Ω ⊃ Ω∗}, (56)

which does have a quasi-open solution (see [27, Chapter 2]). Then, there are two cases (A) and (B):
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(A) Suppose there exists a sequence of optimizers Ωεn with limn→∞ εn = 0 and such that λk(Ωεn) >
λk−1(Ωεn). From (56), using also that λk−1(·) is nonincreasing for the inclusion, we have

λk(Ωεn) +
2µ

1− ε
|Ωεn | ≤ λk(Ω) +

2µ

1− ε
|Ω|,

for all Ω ⊃ Ωεn . As in the points 4) and 5) above (where we used only the supersolution
property of the optimizer), we deduce that un := uΩεn

is Lipschitz continuous and it can be
checked that the Lipschitz constant does not depend on ε. At this step, convergence arguments
must be used to prove that Ωε converges in some weak sense, but strong enough so that its
limit is solution of the limit problem

min{λk(Ω) + 2µ|Ω|; Ω ⊃ Ω∗}. (57)

But it is easily seen that a solution of this problem necessarily coincides with Ω∗. Finally, it
can be checked that the limit of the uniformly Lipschitz sequence un converges to one of the
k-th eigenvalue of Ω∗. Whence the statement of Theorem 3.3.

(B) Suppose there exists ε0 ∈ (0, 1) such that Ωε0 is a solution of (56) and λk(Ωε0) = λk−1(Ωε0).
But Ωε0 is then also solution of (57) and therefore coincides with Ω∗. Using that λk(·) is
nonincreasing for the inclusion, we deduce from (56) and Ωε0 = Ω∗ that

λk−1(Ω∗) + 2µε−1
0 |Ω∗| ≤ λk−1(Ω) + 2µε−1

0 |Ω|,

for all Ω∗ ⊂ Ω. Thus Ω∗ is also a super-solution for λk−1(·) + 2µε−1
0 | · |. Therefore, one can

start again the discussion:

(B1) λk−1(Ω∗) > λk−2(Ω∗),
(B2) λk−1(Ω∗) = λk−2(Ω∗),

and we repeat the same analysis with adequate auxiliary problems, in the same spirit, and at
most a finite number of times. Theorem 3.3 follows.

Remark 3.5. It is not known whether all k-th eigenfunctions are Lipschitz continuous. As proved in
the same paper [14], it is the case when minimizing functions of the eigenvalues which involve all of them
like

min


p∑
j=1

λj(Ω) + µ|Ω|; Ω ⊂ Rd, Ω quasi− open

 . (58)

In order to understand this fact (see Corollary 3.8 below), let us mention that the strategy for Theorem
3.3 can be generalized to deal with problems like

min
{
F (λk1(Ω)), . . . , F (λkp(Ω)) + µ |Ω|; Ω ⊂ Rd, Ω quasi− open

}
, (59)

where 0 < k1 < k2 < . . . < kp and F : Rp → [0,∞) is locally bi-Lipschitz function, increasing in each
variable. Indeed, for such functionals, the following result holds.

Theorem 3.6. (see[14]) Let Ω∗ be a bounded optimal shape of (59) (or even only a bounded super-
solution). Then there exists a sequence of orthonormal eigenfunctions uk1 , . . . , ukp corresponding to each
of the eigenvalues λk1 , . . . , λkp which are Lipschitz continuous. Moreover

• if λkj (Ω∗) > λkj−1(Ω∗) for some j, then the full eigenspace corresponding to λkj (Ω∗) consists of
Lipschitz continuous functions;

• if λkj (Ω∗) = λkj−1
(Ω∗) for some j, then there exists at least kj−kj−1+1 orthonormal eigenfunctions

corresponding to λkj (Ω∗) which are Lipschitz continuous.

Remark 3.7. Note the difference between λkj−1 and λkj−1 in the above theorem.

As a consequence of this theorem, the following holds for any optimal solution of Problem (58).

Corollary 3.8. Let Ω∗ be a solution of (58). Then, all eigenfunctions corresponding to the eigenvalues
λj(Ω

∗), j = 1, . . . , p are Lipschitz continuous on Rd and Ω∗ is equal a.e. to an open set.
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Proof. By the previous theorem, all eigenfunctions corresponding to the eigenvalues λj(Ω∗) are Lipschitz
continuous. Now let Ω∗∗ := ∪pj=1[uj 6= 0] where u1, . . . , up is an orthonormal set of normalized eigen-
functions corresponding respectively to the λj(Ω∗), j = 1, . . . , p. This set Ω∗∗ is open and Ω∗∗ ⊂ Ω∗.
Moreover, uj ∈ H1

0 ([uj 6= 0])) ⊂ H1
0 (Ω∗∗) and satisfies

´
Ω∗ ∇uj∇ϕ = λj(Ω

∗)
´

Ω∗ ujϕ for all ϕ ∈ H1
0 (Ω∗)

and therefore for all ϕ ∈ H1
0 (Ω∗∗). Thus, all the λj(Ω∗) are also eigenvalues on Ω∗∗, with at least the

same multiplicity. Due to the monotonicity for the inclusion, we actually have λj(Ω∗∗) = λj(Ω
∗) for all

j = 1, . . . , p. Now, using also the optimality of Ω∗, we may write

p∑
j=1

λj(Ω
∗) + µ|Ω∗| ≤

p∑
j=1

λj(Ω
∗∗) + µ|Ω∗∗| =

p∑
j=1

λj(Ω
∗) + µ|Ω∗∗|.

Since |Ω∗∗| ≤ |Ω∗|, this implies that equality holds and this proves that Ω∗ is open up to a set of zero
Lebesgue measure.

Remark 3.9. As proved in [14], this corollary may be extended in two directions:

• first
∑
j λj(·) may be replaced by F

(
λ1(·), . . . , λp(·)

)
where F : Rp → [0,∞) is locally bi-Lipschitz

and increasing with respect to each variable;

• then, to the pure constrained problem, namely

min{F (λ1(Ω), . . . , λp(Ω)); Ω quasi− open , |Ω| = 1}. (60)

Let us explain why these extensions hold.

• Extension to F (with the penalized term µ| · |) is done as in Corollary 3.8 by using Theorem 3.6
above.

• Extension to the constrained problem is done by proving that an optimal solution of (60) is a
super-solution of the penalized version for some µ > 0 (in the spirit of Proposition 3.1 and Remark
3.2). Indeed, if Ω∗ is an optimal set of (60), and Ω a quasi-open set with finite measure such that
Ω∗ ⊂ Ω, then letting t := [|Ω|/|Ω∗|]1/d > 1, we have

F
(
. . . , λj(Ω

∗), . . .
)
≤ F

(
. . . , λj(Ω/t), . . .

)
= F

(
. . . , t2λj(Ω), . . .

)
≤ F

(
. . . , λj(Ω), . . .

)
+ ‖F‖Lip(t2 − 1)

∑
j λj(Ω)

≤ F
(
. . . , λj(Ω), . . .

)
+ ‖F‖Lip(td − 1)

∑
j λj(Ω

∗)
≤ F

(
. . . , λj(Ω), . . .

)
+ µ[|Ω| − |Ω∗|],

with µ = ‖F‖Lip|Ω∗|−1
∑
j λj(Ω

∗).

Open problem 3.10. Concerning the minimization of λk(Ω), k ≥ 2 as in Problems (48) or (49):

• Does there exist an optimal solution which is open?

• What about Lipschitz continuity of all k-th eigenvalues?

Partial answers are given in the following paragraph when k = 2.

3.3 More about k = 2

3.3.1 An example with singular solutions

We go back to problems (48)-(49) with k = 2. First, let us give an example showing that, as for k = 1, if
the box D is not connected, then a quite different qualitative behavior may occur. We saw (see Corollary
2.17), that the optimal first eigenfunction is nevertheless (locally) Lipschitz continuous and consequently,
there is an optimal set which is open, but optimal sets are not all open. For k = 2, the situation is even
worse since the second eigenfunctions which are optimal for (48) may not be regular. This is seen on the
following example.
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Example 3.11. Let D := D1 ∪ D2 ⊂ R2 where D1, D2 are disjoint open disks of radius respectively
R1 > 0 and R2 = R1(1+2ε), ε > 0. Let a := πR2

1[1+(1+ε)2]. Let Ω∗ be an optimal quasi-open solution
of (48) with k = 2, namely

λ2(Ω∗) = min{λ2(Ω); Ω ⊂ D, Ω quasi− open, |Ω| = a}, Ω∗ ⊂ D, |Ω∗| = a. (61)

By monotonicity, λ2(Ω∗) ≥ λ2(D) = λ1(D1). Actually, equality holds since, by minimality, λ2(Ω∗) ≤
λ2(D1∪D3) where D3 is the disk of radius R1(1+ε) with the same center as D2 (note that |D1∪D3| = a).
And λ2(D1 ∪D3) = λ1(D1). Thus, D1 ∪D3 is also optimal.

Now we may perturb D3 (for instance near its boundary) into an open set D′ ⊂ D2 so that:

a) |D′| = |D3|, which means |D1 ∪D′| = a,

b) λ1(D3) ≤ λ1(D′) < λ1(D1) and therefore λ2(D1 ∪ D′) ≤ λ1(D1) = λ2(Ω∗) (≤ λ2(D1 ∪ D′) by
optimality);

c) the boundary of D′ is irregular.

Then, since λ2(D1 ∪ D′) = λ1(D1)(= λ2(Ω∗) ), |D1 ∪ D′| = a, D1 ∪ D′ is also a solution of the above
problem, but it is not regular (one could even choose D′ so that it be only quasi-open and not a.e. equal
to an open set).
Now, we can perturb D′ into D′′ so that |D′′| = |D3|, and λ1(D′′) = λ1(D1) (for instance by taking off
larger and larger circles from D′). In this case, D1 ∪D′′ is still optimal, but one of its second eigenfunc-
tions (namely, the first eigenfunction of D′′) is not regular.

Note that, in this situation, it may happen that a solution of (48) is not a solution of (49), no matter
the value of µ > 0. For instance, there does not exist any µ > 0 such that D1 ∪D3 is a solution of (49)
although it is solution of (48) as we just saw. Indeed, let D4 be the unit disk with the same center as
D2. Then

λ2(D1 ∪D4) + µ|D1 ∪D4| = λ1(D1) + µ[|D1|+ |D4|] < λ1(D1) + µ[|D1|+ |D3|] = λ2(D1 ∪D3) + µ|D1 ∪D3|.

The same remark is valid for D1 ∪D′ or D1 ∪D′′.
On the other hand, as indicated in Remark 3.2, if D is starshaped, then a solution of (48) is also a

super-solution of (49) for some adequate µ > 0. It is very likely that the regularity analysis made to
prove Theorem 3.6 would extend from D = Rd to “good” boxes D, locally inside D.

3.3.2 There are open optimal sets

As a partial answer to the open problems indicated at the end of Section 3.2, let us mention the following
result proved in [57, 15] and which uses the regularity result of Theorem 2.15.

Theorem 3.12. Let D ⊂ Rd be open, connected and with finite measure. Let Ω∗ be a solution of

min{λ2(Ω) + µ|Ω|, Ω ⊂ D, Ω quasi− open}. (62)

Then, Ω∗ is a.e. equal to an open set.

Proof. Let us indicate the main steps of the proof. We denote by u1, u2 a first and a second eigenfunction
on Ω∗ with

´
Ω∗ u1u2 = 0, u1 ≥ 0. We denote Ω1 = [u1 > 0],Ω+ = [u2 > 0],Ω− = [u2 < 0].

Let us first prove that we may choose u2 so that both Ω+,Ω− are not empty (this uses that D is
connected and may not hold otherwise as seen with Example 3.11). Assume that u2 ≥ 0 on D (that
is Ω− = ∅). Then, λ2(Ω∗) = λ1(Ω+) and the relation

´
Ω∗ u1u2 = 0 implies u1 ≡ 0 on Ω+. We have

λ1(Ω1) = λ1(Ω∗). Let us prove that
λ1(Ω∗) = λ2(Ω∗). (63)

It will follow that we may replace u2 by u2−u1 so that the ’new’ Ω+ and Ω− are not empty as expected.
Assume by contradiction that λ1(Ω∗) < λ2(Ω∗), that is λ1(Ω1) < λ1(Ω+). Since D is connected and

open, we may find x0 ∈ ∂Ω+ and r > 0 such that, if Ωr := Ω+ ∪B(x0, r), then,

Ωr ⊂ D, |Ωr| > |Ω+|, λ1(Ωr) ∈
(
λ1(Ωr1), λ1(Ω+)

)
,
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where Ωr1 is chosen so that Ωr1 ⊂ Ω1 \ Ωr and |Ωr1 ∪ Ωr| = |Ω1 ∪ Ω+|. Note that we use the continuity at
0 of r ∈ [0, r0) 7→ (λ1(Ωr), λ1(Ωr1)). We then have

λ2(Ωr1 ∪ Ωr) + µ|Ωr1 ∪ Ωr| = λ1(Ωr) + µ|Ωr1 ∪ Ωr| < λ2(Ω∗) + µ|Ω∗|,

which is a contradiction with the minimality of Ω∗. Whence (63).
Thus we have Ω+,Ω− not empty and

λ2(Ω∗) = λ1(Ω+) = λ1(Ω−) = λ2(Ω+ ∪ Ω−), |Ω+ ∪ Ω−| = |Ω∗|,

the last identity coming from the minimality: λ2(Ω∗) + µ|Ω∗| ≤ λ2(Ω+ ∪ Ω−) + µ|Ω+ ∪ Ω−|.
Now we remark that Ω+ (resp. Ω−), are subsolutions of (62). Indeed, for ω ⊂ Ω+, we may write

λ2(Ω∗) + µ|Ω∗| ≤ λ2(ω ∪ Ω−) + µ|ω ∪ Ω−|.

This is the same as
λ1(Ω+) + µ[|Ω+|+ |Ω−|] ≤ λ1(ω) + µ[|ω|+ |Ω−|],

or
λ1(Ω+) + µ[Ω+| ≤ λ1(ω) + µ|ω|,

whence the subsolution property. The same holds for Ω−. It follows from a (nontrivial) result in [57, 15]
that there exist two open sets D+, D− ⊂ D such that

Ω+ ⊂ D, Ω− ⊂ D, D+ ∩ Ω− = ∅, D− ∩ Ω+ = ∅.

Actually, this result relies on the fact that subsolutions of (62) are also subsolutions for the torsion energy
as explained in [27, Chapter 2,(1.7) and Paragraph 1.4.1]. Let us show that Ω+ is solution of the following
problem

min{λ1(Ω); Ω ⊂ D+, Ω quasi− open, |Ω| = |Ω+|}. (64)

Assume by contradiction that there exists Ω ⊂ D+ such that λ1(Ω) < λ1(Ω+)[= λ1(Ω−) = λ2(Ω∗)], |Ω| =
|Ω+|. Then we argue as above by introducing Ω−r := Ω− ∪B(x0, r) for some x0 ∈ ∂Ω−, r > 0 such that

Ω−r ⊂ D, |Ω−r | > |Ω−|, λ1(Ω−r ) ∈
(
λ1(Ωr), λ1(Ω−)

)
,

where Ωr is chosen so that Ωr ⊂ Ω \ Ω−r and |Ω−r ∪ Ωr| = |Ω ∪ Ω−|. We then have

λ2(Ω−r ∪ Ωr) + µ|Ω−r ∪ Ωr| = λ1(Ω−r ) + µ|Ω−r ∪ Ωr| < λ2(Ω∗) + µ|Ω∗|,

which is a contradiction with the minimality of Ω∗. Thus Ω+ is solution of (64).
Since D+ is open, we may apply Theorem 2.15 which says that u2 is locally Lipschitz continuous on

D+. It follows that Ω+ = [u2 > 0] is open. Similarly, Ω− is open so that Ω+ ∪Ω− is an open optimal set
with the same measure as Ω∗.

The same question can be asked for the constrained problem:

Open problem 3.13. Are the minimal shapes of

min{λ2(Ω); Ω ⊂ D, Ω quasi− open, |Ω| = a }

open subsets of D ?

4 Singularities due to the box or the convexity constraint
In this section, we study the regularity up to the boundary of the box D for the problem

min {λ1(Ω), Ω ⊂ D,Ω quasi− open, |Ω| = a} , (65)

where D is a smooth open set of R2. If Ω∗ solves (65), we expect the contact between ∂Ω∗ and ∂D to be
a bit smooth (see below), but as we will see, the smoothness is in general limited.
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In order to insist on the fact that this appearance of a (mild) singularity is not only due to the box,
we also show that a similar behavior applies to the solutions of the following problem:

min {λ2(Ω),Ω open and convex, |Ω| = a} . (66)

This problem is peculiar because of the convexity constraint: indeed, if we drop this constraint, it is
well-known that the solution of this problem is any disjoint union of two balls of volume a/2 (see Figure
1), which is clearly not convex, therefore Problem (66) is interesting on its own. It has been studied in
[36] where it is proven, in particular, that the optimal shape is not a stadium (convex hull of two tangent
balls). They also obtain a rough description of the optimal shape, under the a priori assumption that
the shape is C1,1, and has a simple geometry. But as shown in this Section, the a priori C1,1-regularity
assumption is too optimistic (see also Remark 4.3 for a related comment).

⌦⇤
1

⌦⇤
2 Stadium of volume V0

�1(⌦
⇤
1) = min

|⌦|=V0

�1(⌦) �2(⌦
⇤
2) = min

|⌦|=V0

�2(⌦) �2(Stadium) > min
|⌦|=V0

⌦ convex

�2(⌦)

1

Figure 1: Minimization of the first two eigenvalues under volume constraint

The previous sections were concerned with the regularity of the pieces of the free boundary ∂Ω∗

where it is expected to give sense to the optimality condition |∇u|2 = Λ where Λ ∈ (0,∞) is a Lagrange
multiplier and u is the eigenfunction associated to the eigenvalue under study. Here we focus here on
the global regularity of the boundary ∂Ω∗. We divide this section in 3 paragraphs. First we describe
the situation and the possible regularity that we can expect from the optimality condition, seen as an
partially overdetermined problem. Then we focus on a particular case of (65) where D is a strip. Finally
we give some partial answers for (66). As the conclusions are only partial, we describe open problems
that would be interesting to fully investigate.

4.1 Regularity for partially overdetermined problem
For both of these problems, (65) or (66), if Ω∗ is an optimal shape, the boundary ∂Ω∗ can be decomposed
into two subsets, namely the free boundary Γ1 ⊂ ∂Ω∗ where one can write an optimal condition for
optimality, and the set Γ2 ⊂ ∂Ω∗ \ Γ1 of saturation of the constraint. More precisely,

• for problem (65), Γ1 = ∂Ω∗ ∩ D; we have seen that this boundary is locally smooth, and that
|∇u|2 = Λ on Γ1, where u is the normalized first eigenfunction of Ω∗ and Λ ∈ (0,∞) is a Lagrange
multiplier for the volume constraint. The set Γ2 is equal to ∂Ω∗ ∩ ∂D. If this set is empty (or
reduced to one point), then by Serrin’s result on overdetermined boundary problems (see [53]), the
set Ω∗ must be a ball (which is the unconstrained minimizer, so the box is irrelevant). When this
set is not empty (which is the case when D does not contain any ball of volume a), it means that
the constraint Ω ⊂ D is active.

• for problem (66), one can define

Γ1 := {x ∈ ∂Ω∗ / ∃r > 0 such that Br(x) ∩ Ω∗ is strictly convex} (67)

(where we understand an open set ω to be ‘strictly convex’ if ∀(x, y) ∈ ω with x 6= y,∀t ∈ (0, 1), tx+
(1− t)y ∈ ω). The set Γ1 is a relatively open subset of ∂Ω∗. It will improperly be called the strictly
convex parts of the boundary. This set can be understood as the part of ∂Ω∗ where the curvature
is positive, though one has to be careful to give sense to that, as the curvature is defined in a weak

26



sense, and is a priori only a measure, see Section 4.3 for more details. We can define Γ2 as the
union of all closed nontrivial segments which are included in ∂Ω∗. This set represents the part of
∂Ω∗ where the convexity constraint is saturated (vanishing curvature). It is a priori difficult to
understand the structure of the sets Γ1 and Γ2: in particular, with the previous definitions, it is not
true in general that Γ1∪Γ2 = ∂Ω∗. We notice that it is possible to construct a C1,1 convex domain
such that Γ1 = ∅ and Γ2 is strictly contained (and dense) in ∂Ω∗. Such singular convex set can
be obtained by taking the epigraph of f : [0, 1] → R such that f ′′ = 1K (where f ′′ is understood
in the sense of distributions) and K is a compact set with positive measure and empty interior.
Nevertheless, if one assume that Γ2 is made of a finite number of segments, then ∂Ω∗ = Γ1 ∪ Γ2.

Let us focus here on the regularity of a point which is at the intersection of Γ1 and Γ2. In both cases,
the situation is the following:

• on the side Γ1, one has the overdetermined equation |∇u(x)|2 = Λ, where either u is the first
eigenfunction, or the second eigenfunction of Ω∗ (depending on whether Ω∗ solves (65) or (66)).
This fact is not so easy to prove in the case (66), as a smooth deformation of a strictly convex set
does not necessarily remain convex, see Section 4.3.

• on the side Γ2, we have an information about the geometry, up to the intersection point: either
this part is flat (for solutions of (66)) or it is smooth (for solutions of (65), assuming the box D is
smooth).

Notice first that it is likely to expect the contact to be C1: indeed, assume that the boundary is
piecewise smooth around x0 and that there is a (convex and non-flat) corner at x0. Then it is classical
that ∇u(x) goes to 0 when x → x0 in Ω, but this would contradict the fact that |∇u(x)|2 = Λ on Γ1.
This proof is not completely valid as we do not know, even applying the results of the previous sections,
that ∂Ω∗ is piecewise smooth. However, it implies that we expect the optimal shape to be at least C1.
For problem (66), we will give a proper proof of this fact in Section 4.3; for problem (65), it seems this
is not proved anywhere yet.

In the following result, knowing that the contact is C1, we prove higher regularity, and analyze the
possible singularity near such a point.

Proposition 4.1 ([46]). Let Ω be an open bounded set of R2, x0 ∈ ∂Ω, γ1 ⊂ ∂Ω and γ2 ⊂ ∂Ω two
relatively open connected sets, such that

• γ1 ∩ γ2 = {x0}

• γ1 ∪ γ2 is C1, and γ2 is C∞.

We assume there exists u ∈ C2(Ω) ∩ C1(Ω ∪ γ1) ∩ L∞(Ω) satisfying −∆u = f(u) in Ω
u = 0 on ∂Ω
|∇u|2 = Λ > 0 on γ1,

(68)

where f : R→ R is a C∞ function, and f(u) ≥ 0 in a neighborhood of x0. Then,

• either γ1 ∪ γ2 is C∞,

• or there exists k ∈ N∗ such that γ1 ∪ γ2 is Ck,
1
2 and ∀ε > 0, γ1 ∪ γ2 is not Ck,

1
2 +ε.

Sketch of proof: thanks to the fact that we are in a two-dimensional framework, we use the conformal
map of the set Ω∗ (or only a neighborhood of x0 in Ω∗) in order to understand its regularity, namely
there is a biholomorphic map φ : H→ Ω∗ where H = {z ∈ C, Im(z) < 0}, which is such that φ(0) = x0,
φ−1(γ1) ⊂ R−, φ−1(γ2) ⊂ R+. Then, the regularity of ∂Ω and γ2 can be seen as an information on
the regularity of the trace of Arg(φ′), respectively on ∂H or R+ (as it is a parametrization of the angle
of the tangent vector to ∂Ω∗, see for example [51]), and the regularity of |∇u| on γ1 can be seen as
an information on the regularity of the trace of log(|φ′|) on R− (which is seen transporting (68) on H
and studying the regularity of u ◦ φ). As these two functions, log(|φ′|) and Arg(φ′), are harmonic and
conjugated to each other, these informations can be seen as a mixed boundary value problem, and the
analysis of singularities for such problems leads to the fact that either Arg(φ′) is smooth on H, or its
behavior near 0 is of the form rk+1/2 cos(kϕ/2) for some k ∈ N∗, where (r, ϕ) are radial coordinates in
H, see [31]. This leads to the result, as the regularity of Arg(φ′) on H near 0 implies the regularity of ∂Ω
in a neighborhood of x0.
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4.2 Minimization of λ1 in a strip
We focus here on the particular case where D = R× (−M,M) is a strip in R2. Making good use of the
symmetries of this box, we are able to give a complete description of the regularity of optimal shapes for
(65), though it is expected that a similar behavior happens for more general boxes, see the end of this
Section for open problems.

Proposition 4.2. Let a > 0 and D = R× (−M,M) for some M > 0. Let Ω∗ ⊂ R2 be a solution of (65).
We assume that the contact between ∂Ω∗ and ∂D is tangential. Then

• either Ω∗ is a disk,

• or
[
∂Ω∗ ∈ C1, 12 , and ∀ε > 0, ∂Ω∗ /∈ C1, 12 +ε

]
.

Remark 4.3. This result is a bit surprising if we have in mind the behavior of solutions to the constrained
isoperimetric problem

min {P (Ω), Ω ⊂ D, |Ω| = a} .

Indeed, in that case the contact between Ω∗ optimal and the boundary of the box is expected to be C1,1.
In dimension 2 for example, this fact is easy to understand as the optimal shape is made of pieces of arc
of circles, touching the boundary tangentially (it is easy to see, for example writing optimality conditions
near the contact point, that having a non-flat angle of contact is not optimal). For a more general result,
see [55].

Sketch of proof: (see also [45, 46])
1) It is well known that the solution of (65) is the ball of volume a, if this one is admissible (included
in D). If such a ball does not exist, we already saw that any optimal shape Ω∗ should touch the
boundary of the box on a nontrivial set. Since the cylindrical box D = R× (−M,M) has two orthogonal
symmetry axes, one can prove using two Steiner symmetrization that Ω∗ also has two axes of symmetry
and is vertically and horizontally convex (see for example [29] for more details), and therefore the free
boundary Γ1 = ∂Ω∗ ∩D necessarily has exactly two connected components, and the remaining boundary
Γ2 = ∂Ω∗ ∩ ∂D is the union of two segments.

2) Thus, as we assume that the contact is tangential, we know that the full boundary is C1, and
applying Proposition 4.1 around one “corner” (a point of Γ1 ∩ Γ2), we get that ∂Ω∗ is C1, 12 or at least
C2, 12 (by symmetry the regularity at each corner is the same).

3) From there, we assume the contact is C2 and seek for a contradiction: to that end we adapt an
argument from [36]. The idea is that from the regularity of Ω∗, we get that u is C2 on Ω∗, and from this
information, we will obtain a contradiction by studying the nodal sets of ∂xu, showing that one of them
(denoted ω) is such that ∂xu is a first eigenfunction for the Dirichlet-Laplacian on ω, which is indeed a
contradiction with the strict monotonicity of the eigenvalues, as λ1(Ω∗) < λ2(Ω∗) = λ1(ω) while ω ⊂ Ω∗.
As we know that −∆∂xu = λ2(Ω∗)∂xu on Ω∗, one only needs to check that such ω can be chosen such
that ∂xu = 0 on ∂ω.

So, to find ω, we show that from the C2 regularity of u, derivating tangentially |∇u|2 on Γ1 = ∂Ω∗∩D
gives ∂xyu(x0) = 0 where x0 is (say) the upper left “corner” of the optimal shape. We also know
∂xu(x0) = 0 (as u = 0 on the upper segment), so from the strong maximum principle, x0 belongs to the
closure of both the sets [∂xu > 0] and [∂xu < 0]. Let us denote ω one connected component of [∂xu < 0]
that has points in a neighborhood of x0. Then from the symmetries of Ω∗, u is even, so ω is on the
left of the vertical axe of symmetry of Ω∗. As we easily check that ∂xu ≥ 0 on the left part of the free
boundary and that ∂xu = 0 on ∂D ∩ ∂Ω∗, we easily conclude that ∂xu = 0 on ∂ω, which completes the
contradiction and the proof.

We conclude this section with the following open problem:

Open problem 4.4. Concerning Problem (65) where D is a smooth open set in R2, can we prove that
any optimal shape Ω∗ is globally C1, 12 ?

Of course, a similar question in higher dimension can be asked, but the regularity is already limited
by the possible singularities of the free boundary, so it makes more sense to obtain a more satisfying
regularity theory of the free boundary first, as it is done in R2 so far, see Section 2.4.2.
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4.3 Minimization of λ2 with convexity constraint
We address here the question of the regularity of an optimal shape Ω∗ for problem (66).

Theorem 4.5. Let a > 0 and let Ω∗ ⊂ R2 be a solution of the minimization problem (66), that is to say
an optimal convex set of given area for the second Dirichlet-Laplacian eigenvalue.
We assume:

Ω∗ contains at most a finite number of segments in its boundary. (69)

Then
Ω∗ is C1, 12 , and ∀ ε > 0, Ω∗ is not C1, 12 +ε. (70)

Remark 4.6. About assumption (69): as we noticed before (see (67)) the boundary of a convex shape
contains two specific subsets, Γ1 the strictly convex part, and Γ2 the flat parts, but in general, even if
the set Ω∗ is a bit regular, these pieces of the boundary can have a highly non-trivial structure. We know
though that Γ2 is not empty, and even contains at least two segments (see the proof below). We notice
that it is announced in [36, 35] that Γ2 is made exactly of two segments (and then that these segments
are parallel), but it seems the proof is not complete. This explains the geometric assumption, which does
not appear in [36, 35], but is implicitly used in these papers. About the strictly convex part, even if Ω∗

is assumed to be a bit smooth (say C1, as we have a proof of this fact, see below), as far as we know
it is not even clear that Γ1, defined as in (67), is nonempty. With assumption (69), everything becomes
more simple, and one can focus on the singularities at junction points between a flat part and a strictly
convex part.

Remark 4.7. As noticed below, the first step in the proof of this result is to prove that Ω∗ is C1. This
fact is actually very general, namely the result in [11] states that any optimal shape for

min {F (λ1(Ω), . . . , λk(Ω)) + µ|Ω|, Ω ⊂ D, Ω open and convex}

(where F : Rk → R is Lipschitz continuous, µ ∈ (0,∞) and D is open) is C1. Compared to the results in
Section 3, this one is much easier since the convexity guarantees some a priori regularity for any optimal
shape Ω∗. The difficulty though, is to deal with the convexity constraint to go farther and reach C1, see
also Section 5.

Sketch of proof: 1) As we noticed in the beginning of Section 4.1, we want to apply Proposition 4.1, and
to that end, one needs first to prove an a priori C1-regularity of Ω∗. This can be done with an argument
taken from [11] (see Remark 4.7), that we briefly reproduce here (in R2 for simplicity, but this argument
is valid in any dimension): we notice in particular that this argument does not use (69). Because of the a
priori convexity, proving C1 regularity is equivalent to proving that ∂Ω∗ has no corner. By contradiction,
if Ω∗ had such corner, cutting this corner at a size ε into a set Ω∗ε would lead to λ2(Ω∗ε) = λ2(Ω∗) + o(ε2)
(this relies on the fact that, in a weak sense ∇u goes to 0 at a convex corner, see [11] for more details)
while |Ω∗| − |Ω∗ε| ≥ cε2 for some c (depending on the angle of the corner). But by a classical scaling
argument (see Section 3.1), Ω∗ minimizes (among convex domains) λ2(Ω) + α|Ω| for a suitable α > 0,
while Ω∗ε has a lower energy than Ω∗, because of the previous estimates, which is a contradiction.

2) The next step to prepare the application of Proposition 4.1, is to write the optimality condition. To
that end, one can prove that the second eigenvalue of Ω∗ is simple so that it is shape differentiable. Then,
on the strictly convex part, one can write |∇u|2 = Λ, by focusing on smooth deformations supported on
Γ1, and taking the convex hull, see [36] for more details.

We are also interested in the existence of a segment in the boundary: this fact is easy as u has a nodal
line that hits the boundary of Ω∗ at exactly two points (from a result of Melas-Alessandrini, see [50, 2]),
where ∇u must vanish, which is incompatible with the optimality condition just proven before.

3) We then apply Proposition 4.1 and conclude that either the shape is C1,1/2 and not C1,1/2+ε, or
at least C2,1/2.

4)Then assuming that Ω∗ is C2,1/2, a similar argument (but slightly more involved) as in the previous
section, leads to a contradiction. Though this argument is written in [36, Theorem 10] with the idea that
the optimal shape contains only two parallel segments in its boundary while it is still an open problem
(see Remark 4.6), we notice that their proof is still valid up to minor modifications, and reproduce roughly
the argument here. One knows there exists one segment on the boundary, touching the nodal line of u:
we denote it Σ and we choose it at the x-axis. Then we focus on ∂xu, as it solves −∆∂xu = λ2(Ω∗)∂xu,
and vanishes on Σ and we seek for connected component of {∂xu 6= 0} so that ∂xu vanishes on their
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boundary. To that end, we write an optimality condition on Σ = [a, b]: this is not classical, as clearly
for most deformations supported in Σ, the convexity is not preserved. But with a convex hull method,
as explained in [36, Theorem 7], one can write |∇u|2(x, 0) = Λ + w′′(x), where w ≥ 0 has triple roots
at a and b, and (x, 0) parametrizes Σ. This implies that ∂xyu vanishes at least three times inside Σ.
But as |∇u|2 = Λ on the strictly convex part, we also know that ∂xyu vanishes at a and b, thanks to the
C2-regularity of u on Ω∗. From there we know that in a neighborhood of Σ, there are at least 6 connected
components of {∂xu 6= 0} (be careful that globally, some of these “local” connected components may be
part of the same “global” connected components of {∂xu 6= 0}). Studying where the nodal lines can end
(which is restricted to Σ∪ {N} ∪Σ�, with N the point of intersection of the nodal line of u which is not
in Σ (we recall that the nodal line of u touches the boundary exactly at two points) and Σ� the parallel
segment of Σ in ∂Ω∗, which may be restricted to one point), we deduce that ∂xu has at least two nodal
domains (whose union is denoted ω) so that it vanishes on their boundary. But then, λ2(ω) = λ2(Ω∗),
which contradicts the strict monotonicity of λ2.

As we mentioned before, the set Ω∗ is poorly understood, from scratch, and informations on its
geometry helps to get informations on its regularity. Therefore, we propose the following open questions,
which are supported by numerical evidence:

Open problem 4.8. Prove that Ω∗, solution of (66), satisfies:

• ∂Ω∗ contains a finite number of segments.

• Ω∗ has two orthogonal axes of symmetry.

5 Polygons as optimal shapes
In the previous section, we saw that mild singularities can happen in shape optimization involving eigen-
values. In this section, we will see that we can obtain much stronger singularities. We will provide
examples where, in dimension 2, optimal shapes are actually polygons.

The results we are going to describe here can be found in the papers [47, 48, 49], see also [13, 33]. The
general framework is to study optimization problems under convexity constraint, in the spirit of (66):

min
{
J(Ω), Ω is an open convex domain in Rd

}
.

The first remark is that it is much easier to obtain existence for such problems, compare to similar
optimization problems without convexity constraint. Indeed, the convexity provides much stronger com-
pactness properties, and allows to investigate unusual optimization, like maximizing the perimeter, or
maximizing eigenvalues. The remaining difficult is usually to avoid that minimizing sequences have a
diameter going to ∞, or that they collapse (converges to something flat). To avoid these behaviors and
enforce existence, we will focus on the following constraints, though our strategy can be applied to more
general situations:

min {J(Ω), Ω is an open convex domain such that B(0, a) ⊂ Ω ⊂ B(0, b)} , (71)

where 0 < a < b <∞.

5.1 General result about the minimization of a weakly concave functional
A first general result, stated in dimension 2, asserts that for a wide class of shape functionals, the
optimal sets, under convexity constraint, happens to be polygons. In order to describe this result, we
recall the following classical parametrization of 2-dimensional convex domains with polar coordinates
(r, θ) ∈ [0,∞)× T, where T = R/2πZ:

Ωu :=

{
(r, θ) ∈ [0,∞)× R ; r <

1

u(θ)

}
, (72)

where u is a positive and 2π-periodic function and is called the gauge function of Ωu. A simple compu-
tation shows that the curvature of Ωu is

κ∂Ωu =
u′′ + u(

1 +
(
u′
u

)2)3/2
. (73)
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This implies that Ωu is convex if and only if u′′ + u ≥ 0, which has to be understood in the sense of
H−1(T) if u is not C2. More precisely, if u ∈ H1(T) then u′′ + u ≥ 0 if and only if

∀ v ∈ H1(T) with v ≥ 0,

ˆ
T

(uv − u′v′) dθ ≥ 0.

Throughout this section, any function defined on T is considered as the restriction to T of a 2π-periodic
function on R, with the same regularity. Moreover, it is clear that Ωu and u share the same regularity.

With this parametrization, considering j(u) = J(Ωu), Problem (71) is equivalent to

min {j(u), u′′ + u ≥ 0, u ∈ Uad} , where Uad = {u ∈W 1,∞(T), 1/u ∈ [a, b]}. (74)

Then we have the following result proven in [48, Theorem 3].

Theorem 5.1. Let u0 > 0 be a solution for (74) and Tin :=

{
θ ∈ T, a <

1

u0(θ)
< b

}
. Assume j :

W 1,∞(T) → R is C2 and that there exist s ∈ [0, 1), α > 0, β ∈ R such that, for any v ∈ W 1,∞(T), we
have

j′′(u0)(v, v) ≤ −α‖v′‖2L2(T) + β‖v‖2Hs(T). (75)

Then
u′′0 + u0 is a finite sum of Dirac masses in Tin.

In this statement, the assumption made on j can be seen as a weak concavity property. It implies that,
if v has a small support around some point x0 (like v(x) = v0(x0+σx) with σ large), then j′′(u0)(v, v) < 0.
With this remark, the conclusion of the statement appears natural, as it says that minimizers are locally
a sum of Dirac masses, while Dirac masses can be seen as extremal points among nonnegative measures,
and it is a general fact that minimizers of concave functional are expected to be extremal.

Geometrically, this result is a tool to extract sufficient conditions on the functional J so that solutions
of (71) are polygons: indeed, formulae (73) implies that Ωu is polygonal if and only if u′′ + u is a sum of
Dirac masses.

As it is not related to eigenvalues, we do not describe the proof of this result. Let us notice though
that it is highly inspired by the paper [44] which deals with the Newton’s problem of minimal resistance,
one of the oldest shape optimization problems with a convexity constraint.

We conclude noticing that a similar result can be obtained if one add to (74) a constraint of the form
m(u) = 0 where m : W 1,∞(T)→ Rd is C2 and such that m′(u0) is onto and ‖m′′(u0)(v, v)‖ ≤ β′‖v‖2Hs(T),
for some β′ ∈ R and s ∈ [0, 1), see [48, Theorem 4]. We will use this fact for volume constrained problem.

5.2 Examples
In order to introduce the list of examples we are interested in, let us recall the reverse isoperimetric
inequality, which in the framework of convex geometry is due to Ball (see [5]), and can be stated as the
fact that the optimization problem

max

{
min

T∈GLd(R)

{
P (T (Ω))

|T (Ω)| d−1
d

}
,Ω open bounded convex and centrally symmetric set of Rd

}
(76)

is solved by the unit cube. This can be understood as the maximization of the isoperimetric ratio among
centrally symmetric convex bodies, where shapes are understood up to linear inversible transformations.
In [47], some shape optimization problem of a similar behavior were introduced, namely:

min {µ|Ω| − P (Ω), Ω is an open convex domain such that B(0, a) ⊂ Ω ⊂ B(0, b)} , (77)

whose solutions are trivial for µ ∈ {0,+∞}, and for which it is expected to obtain interesting optimal
shapes for µ ∈ (0,∞). Theorem 5.1 applies for such problem, and if Ω∗ solves (77), then it is polygonal
inside B(0, b) \ B(0, a). To go further, a full description, for any parameters (a, b, µ) has been achieved
in [7], where they show in particular that for µ ∈ ( 1

2b ,
2
a ), the optimal shape is actually a full polygon

(which means that the contact between Ω∗ and the boundary of the annulus is a finite set of points).
In this section, we will study similar problems, involving the first eigenvalue of the Dirichlet-Laplacian,

which can be listed in two sets of examples:
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• the shape functional involves again a maximization of the perimeter: in that case, the regular-
ity/singularity of the optimal shape is driven by the perimeter which is the leading term, see
Examples 5.2 and 5.3,

• the shape functional does not contain a perimeter term, but involves a maximization of the first
eigenvalue. In that case, we only have partial results, though there are a few indications that the
behavior should be the same as in the previous items, see Example 5.4.

Example 5.2 (Negative perimeter penalization). One can study

min{F (|Ω|, λ1(Ω))− P (Ω) ; Ω convex, B(0, a) ⊂ Ω ⊂ B(0, b)} (78)

where F : (0,+∞) × (0,+∞) → R is C2. Then any optimal shape Ω∗ is such that each connected
component of the free boundary ∂Ω∗ \ (∂B(0, a) ∪ ∂B(0, b)) is polygonal.

This relies on Theorem 5.1, and the following properties of the second order derivatives of the perime-
ter, the volume, and the eigenvalue: denoting p(u) = P (Ωu), a(u) = |Ωu|, `(u) = λ1(Ωu), we have

|a′′(u)(v, v)| ≤ β1‖v‖2L2(T), (79)

p′′(u)(v, v) ≥ α|v′|2L2(T) − β2‖v‖2L2(T), (80)

|`′′(u)(v, v)| ≤ β1‖v‖2H1/2(T). (81)

The first two estimates are easily obtained by direct computations, while the third one is much more
involved as one has to prove it for rather irregular domains, namely only convex domains. In a smooth
setting though, it is easy to get such estimates, using the classical formula for the second order shape
derivative of λ1, see (92). In [48], we deal with general convex domains in dimension 2, and obtain a
weaker version of (81) (sufficient for our purpose) where 1/2 is replaced by 1/2 + ε where ε > 0. A new
approach is introduced in [49] which leads to ε = 0 (it is written there for energy functionals, but the
same method can be adapted to the eigenvalue case), and the approach in [49] works in any dimension.

Example 5.3 (Volume constraint and negative perimeter penalization). We can also consider a similar
problem with a volume constraint:

min{J(Ω) := F (λ1(Ω))− P (Ω) ; Ω convex in R2, |Ω| = a} (82)

where a ∈ (0,+∞). Again, any optimal shape of (82) is a polygon, using a volume constraint version of
Theorem 5.1 (see the remarks following its statement).

Note that, studying minimizing sequences converging to a segment, one may prove that for a large
class of functionals F , there exists an optimal shape (for example making good use of the estimate
λ1(Ω) ≥ π2

4Diam(Ω)2 if F (x) ≥ cx1/2 at x→∞ for some c large enough, one can prove that there exists a
solution to (82)). Thus considering, for µ ∈ (0,∞) the problem

min{J(Ω) := µλ1(Ω)− P (Ω) ; Ω convex in R2, |Ω| = a}

where there is a competition between minimizing the eigenvalue and maximizing the perimeter, our
previous statement asserts that the regularity of the solution is driven by the perimeter term, which
means that solutions are polygons.

Example 5.4 (Reverse Faber-Krahn inequality). In [12], motived by the question of adapting the classical
Mahler inequality, replacing the area by the first Dirichlet eigenvalue, the authors were naturally led to
question the reverse Faber-Krahn inequality in the same spirit as in (76), namely: is the cube solution of

max

{
min

T∈GLd(R)

{
λ1(T (Ω))|T (Ω)| 2d

}
,Ω open bounded convex and centrally symmetric set of Rd

}
?

(83)
This question, even if d = 2, is certainly very difficult. As in (77), it motivates the following optimization
problems:

max {µ|Ω|+ λ1(Ω), Ω open convex domain with B(0, a) ⊂ Ω ⊂ B(0, b)} , (84)

or
max {λ1(Ω), Ω open convex domain with Ω ⊂ B(0, b) and |Ω| = a} , (85)
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where again µ ∈ R+.
Contrary to the previous examples, the leading term for the geometry of optimal shapes is no longer

the perimeter, but the first Dirichlet eigenvalue. Thus, in order to apply Theorem 5.1, we would need a
convexity property of the functional λ1 in the spirit of (80). More precisely, we wonder whether

`′′(u)(v, v) ≥ α|v|2H1/2(T) − β2‖v‖2L2(T), (86)

where `(u) = λ1(Ωu), Ωu is the set whose gauge function is u and is only assumed to be convex and
|·|H1/2(T is theH1/2-semi-norm. Such result would imply that any optimal shape for the previous problems
(84), (85) is locally polygonal inside B(0, b) \ B(0, a) or B(0, b) respectively. Unfortunately, even if (81)
was obtained in full generality for convex sets, we are only able to obtain (86), when assuming that the
deformation v is supported on a set where u is smooth enough. Therefore, one obtains as a weaker result
that if Ω∗ is an optimal shape and γ ⊂ ∂Ω∗, then γ cannot, at the same time, be smooth and have a
strictly positive curvature. We generalize this result in higher dimension in the next paragraph.

Another interesting result from [12] is that, in the class of convex axisymmetric octagons having
vertices at the points (±l, 0) and (0,±l), the square is a solution of

max{λ1(Ω)|Ω|}.

These results suggest the following open problems:

Open problem 5.5.

• Prove that solutions to (84) and (85) are polygonal inside the box constraints.

• Prove that the square is solution of (83).

5.3 Remarks on the higher dimensional case
In the multi-dimensional case, convexity constraint in shape optimization is much less understood, though
there are some results in this direction, see [13, 33] and the work of T. Lachand-Robert, see for example
[43, 44, 22]. We describe in this section some results from [49], which can be applied to Examples from
Section 5.2.

We can use again the parametrization of convex bodies with their gauge function and obtain a result of
the type of Theorem 5.1, but whose conclusion will not allow to prove that optimal shapes are polyhedra.

If d ≥ 2, and u : Sd−1 → (0,∞) is given, Sd−1 = {x ∈ Rd, |x| = 1}, we can consider

Ωu :=

{
(r, θ) ∈ [0,∞)× Sd−1, r <

1

u(θ)

}
. (87)

The function u is again called the gauge function of Ωu. The set Ωu is convex if and only if the 1-
homogeneous extension of u, denoted by the same letter and given by u(x) = |x|u(x/|x|), is convex in Rd

(in this section, we will refer to this property by saying that u : Sd−1 → R is convex), see [52, Section 1.7]
for example. In this way, we describe every bounded convex open set containing the origin. Throughout
this section, the regularity of any function defined on Sd−1 is seen as the regularity on Rd \ {0} of its
1-homogeneous extension, and it is classical that it is equivalent to the regularity of the set Ωu itself.

With this parametrization, considering j(u) = J(Ωu), problem (71) is equivalent to

min
{
j(u), u : Sd−1 → (0,∞) convex , a ≤ 1/u ≤ b

}
. (88)

Then in the same spirit as Theorem 5.1, we can prove the following where we denote |v|2H1(Sd−1) =´
Sd−1 |∇τv|2dθ, ∇τ = tangential gradient on Sd−1.

Theorem 5.6. Let u0 > 0 be a solution for (88) Assume j : W 1,∞(Sd−1)→ R is C2 and that there exist
s ∈ [0, 1), α > 0, β, γ ∈ R such that, for any v ∈W 1,∞(Sd−1), we have

j′′(u0)(v, v) ≤ −α|v|2H1(Sd−1) + β‖v‖2Hs(Sd−1). (89)

Then the set

Tu0 = {v ∈W 1,∞(Sd−1)/∃ε > 0,∀|t| < ε, u0 + tv is convex and such that a ≤ u0 + tv ≤ b}, (90)

is a linear vector space of finite dimension.
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This theorem is a generalization of Theorem 5.1; nevertheless, in dimension 3 or higher, it is not true
that [dim (Tu0

) < +∞] implies that Ωu0
is a polyhedra.

Example 5.7 (Negative perimeter penalization). This result applies to

min{F (|Ω|, λ1(Ω))− P (Ω) ; Ω convex, B(0, a) ⊂ Ω ⊂ B(0, b)}

as explained in [49] (adapting the computation done for the Dirichlet energy to the case of the first
eigenvalue). Using the fact that the set defined in (90) is of finite dimension, we easily deduce that if ω
is a C2 relatively open subset of ∂Ω∗ ∩ {x, a < |x| < b}, then the Gauss curvature of Ω∗ vanishes on ω
(otherwise C∞0 (ω) ⊂ Tu0 which is a contradiction with the finite dimension property).

As when d = 2, we cannot obtain as good results for Reverse Faber-Krahn type problems. However,
in the spirit of [13, Theorem 4.5], we can prove the following;

Proposition 5.8. Let Ω∗ be respectively a solution of (84) or (85) in Rd. If (∂Ω∗ ∩ B(0, b)) \ B(0, a)
(respectively ∂Ω∗∩B(0, b)) contains a relatively open set ω of class C2, then its Gauss curvature vanishes
on ω.

Though this result is new, the computations, and the observation that the second shape derivative of
λ1 always has a sign, which is the main ingredient in the proof below, can be found in [54].

Sketch of proof: We focus first on the case where Ω∗ solves (84). Let us assume that the Gauss
curvature of ω is positive at one point x0, and is therefore (by C2 assumption) greater than some α > 0
in a neighborhood ω̂ ⊂ ω of x0. Then if ϕ ∈ C∞c (ω̂), the set Ωt = (Id+ tϕν)(Ω∗) (where ν is the normal
vector to ∂Ω∗, well defined on the support of ϕ) is admissible in the sense that it is still convex and
satisfies the box constraint. Therefore the optimality conditions are

d

dt
λ1(Ωt)|t=0 = −µ d

dt
Vol(Ωt)|t=0,

d2

dt2
[λ1 + µVol] (Ωt)|t=0 ≤ 0. (91)

On the other hand, from classical formula for first and second order derivative (see for example [38]),
denoting by u the first eigenfunction of Ω∗, we have

d

dt
Vol(Ωt)|t=0 =

ˆ
ω

ϕ,
d

dt
λ1(Ωt)|t=0 = −

ˆ
ω

(∂νu)2ϕ,

d2

dt2
[λ1 + µVol] (Ωt)|t=0 =

ˆ
ω

[
2Vϕ∂νVϕ +H

(
(∂νu)2 + µ

)
ϕ2
]
, (92)

where Vϕ solves  −∆Vϕ = λ1(Ω∗)Vϕ − u
ˆ
ω

(∂νu)2ϕ in Ω∗,

Vϕ = −ϕ∂νu on ∂Ω∗ and
´

Ω∗ uVϕ = 0.

By the first relation of (91) and the above formula, we have µ = (∂νu)2 on ω̂. Since H ≥ 0, it follows{
d2

dt2 [λ1 + µVol] (Ωt)|t=0 ≥ 2
´
ω
Vϕ∂νVϕ = 2

´
Ω∗
(
|∇Vϕ|2 − λ1(Ω∗)V 2

ϕ

)
,

≥ α|ϕ|2
H1/2(ω)

− β‖ϕ‖2L2(ω),
(93)

for some α, β > 0, where the last inequality is obtained as follows: first, we use (recall that Vϕ =
√
µϕ

on ω̂)

µ‖ϕ‖2H1/2(∂ω̂) = ‖Vϕ‖2H1/2(∂Ω∗) ≤ C‖Vϕ‖
2
H1(Ω∗) = C

[ˆ
Ω∗
|∇Vϕ|2 + V 2

ϕ

]
. (94)

Then the L2-norm of Vϕ may be estimated from above by introducing the solution ψ of

ψ ∈ H1
0 (Ω∗), −∆ψ − λ1(Ω∗)ψ = Vϕ in Ω∗,

ˆ
Ω∗
ψ u = 0.

This solution exists since
´

Ω∗ uV = 0. Moreover,

[λ2(Ω∗)− λ1(Ω∗)]
ˆ

Ω∗
ψ2 ≤

ˆ
Ω∗
|∇ψ|2 − λ1(Ω∗)ψ2 =

ˆ
Ω∗
Vϕψ,
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so that ‖ψ‖L2(ω) ≤ C‖Vϕ‖L2(ω) for some C > 0 (we use λ2(Ω∗) − λ1(Ω∗) > 0 since Ω∗ is convex).
Multiplying the equation in ψ by Vϕ gives

ˆ
Ω∗
V 2
ϕ = −

ˆ
∂Ω∗

Vϕ∂νψ = −√µ
ˆ
ω

ϕ∂νψ ≤
√
µ ‖ϕ‖L2(ω̂)‖∂νψ‖L2(ω̂). (95)

Now, the equation in ψ implies that

‖∆ψ‖L2(Ω∗) ≤ λ1(Ω∗)‖ψ‖L2(Ω∗) + ‖Vϕ‖L2(Ω∗) ≤ C‖Vϕ‖L2(Ω∗).

And near ω, the H2-norm of ψ is controlled by the L2-norms of ∆ψ and ψ so that ‖∂νψ‖L2(ω̂) ≤
C‖Vϕ‖L2(Ω∗). Finally, going back to (95) leads to ‖Vϕ‖L2(Ω∗) ≤ C‖ϕ‖L2(ω̂).

This, together with (94), proves the estimate (93). Since it is valid for any ϕ ∈ C∞c (ω̂), this contradicts
the second part of (91) and ends the proof in the case of (84).

For the case where Ω∗ solves (85), a similar proof is valid, µ is the Lagrange multiplier for the volume
constraint, and one only have to restrict to deformations ϕ such that

´
ω
ϕ = 0 (to preserve the volume

constraint at the first order), but the same computations still leads to a contradiction.
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