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Fabien Chatté, Bertrand Ducourthial, Silviu-Iulian Niculescu
Lab. HEUDIASYC (UMR CNRS 6599)

Université de Technologie de Compiègne,
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Abstract— The main qualities of a proto-
col for multimedia flows transportation are
related to the way congestions are handled.
This paper addresses the problem of end-
to-end congestion control performed in the
Internet transport layer. We present a sim-
ple protocol called Primo, that determines
the appropriate sending rate in order to
maximize network resources usage and min-
imize packets loss. Comparison with existing
transport protocols (TCP Reno, Sack, Vegas
and TFRC) are considered, regarding vari-
ous efficiency criteria such as sending and
reception rates stability, loss rate, resources
occupancy rate and fairness.

Abstract— Les principales qualités d’un
protocole pour les flots multimédia concer-
nent la gestion des congestions. Cet ar-
ticle s’intéresse au problème du contrôle
de congestion de bout en bout effectué
dans la couche transport d’Internet. Nous
présentons un protocole simple appelé Primo,
qui détermine le taux d’émission approprié
dans le but de maximiser l’utilisation des
ressources réseaux et de minimiser la perte
des paquets. Des comparaisons avec des pro-
tocoles de transport existants (TCP Reno,
Sack, Vegas et TFRC) sont analysées en
prenant en compte différents critères tels
que la stabilité des débits d’émission et de
réception, le taux de perte, l’occupation des
ressources et l’équité.

I. INTRODUCTION

A. Congestions

Congestion analysis in the Internet
started by the end of the 80s. Roughly
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speaking, a congestion is caused by the in-
capacity of the routers to temporarily store
some packets before re-sending them. In
the reliable transport protocol TCP (more
than 90% of the Internet flows), these
packets have to be resent, fact that con-
sumes not only network resources, but also
decreases the throughput of network ap-
plications. Furthermore, congestions may
appear in any IP network, and concern both
network users and administrators. Indeed,
when the network is congested, the quality
of reception is reduced mainly due to the
throughput reduction, transport delay aug-
mentation, packets loss etc.

In the TCP/IP standard architecture, the
transport layer is in charge of conges-
tions. When a flow encounters a conges-
tion, the sending rate of the source should
be adapted to avoid congestion aggrava-
tion. The adjustment of the sending rate is
one of the main characteristics of transport
protocols. Multimedia flows imply specific
adjustment algorithms to guarantee good
receptions (eg. avoiding reception freez-
ing).

B. Related work

In this paper, we focus on the end-to-
end congestion control performed in the
Internet transport layer. A lot of work has
been done in this field, such as, among
others, TCP Vegas [1], RAP [16], TFRC [9]
(see, for instance, [4] for a state of the art).

A congestion control mechanism is ei-
ther preventive or corrective. A corrective
policy (e.g., TCP) reduces the sending rate
after a congestion has been detected. A
preventive policy attempts to reduce the
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sending rate before a congestion appears.
These two behaviors can not be used con-
currently. Indeed, when the preventive pro-
tocol detects a risk of congestion, it reduces
its sending rate, whereas the corrective
one continues to increase its sending rate,
until a packet loss is observed. Hence,
the corrective protocol will obtain all the
available bandwidth, at the expense of the
preventive one. The so-called TCP-friendly
protocols are able to fairly share the band-
width with TCP while offering a congestion
control mechanism more suitable for real-
time flows.

C. Objectives

Our study deals with the impact of
some combined advances on congestion
control, in the aim of maximizing network
resources usage during multimedia flows
transportation, while minimizing packets
loss. To maximize available bandwidth uti-
lization, the sending rate should rapidly
reach its optimal rate. When this steady
state behavior is reached, the sending rate
should be smoothly adjusted. Indeed, strong
variations of the sending rate affect the
network stability and the reception rate,
which represents a major drawback for
multimedia flow. When network conditions
are changing, the sending rate should be
rapidly and moderately adapted in order
to avoid network saturation. Indeed, when
the network is saturated, the packets loss
increases.

As already mentioned, congestion con-
trol schemes can either be preventive or
corrective. We deliberately investigate pre-
ventive schemes, since such an approach
seems to lead to better results. The draw-
back is the bad cohabitation with current
transport protocols in the Internet. But
some recent studies showed that preven-
tive protocols could be modified on the
fly to become more “aggressive” when a
corrective protocol is suspected to share
the same router queues [10]. Moreover,
preventive protocols could be used in small
private networks, such as networks of com-
municating mobile devices. Such ad hoc
networks are in rapid expansion.

To summarize, in order to maximize
network resources and minimize packets

loss during multimedia flows transports,
we study a transport protocol that rapidly
reaches the optimal rate, smoothly adapts
the sending rate, and reacts rapidly, moder-
ately and preventively to congestion forma-
tion. Its simple congestion control scheme
relies in part on a combination of several
independent advances observed in recent
works.

D. Contributions

In this paper, we present a preven-
tive transport protocol called Primo, that
achieves the objectives mentioned above: it
rapidly reaches the optimal rate, smoothly
adapts the sending rate, and rapidly but
moderately reacts to congestion formation.
Moreover, the protocol is very simple, that
means implementation facility. Primo does
not present the drawbacks of the reactive
schemes, the congestion window or the
congestion controls based on RTT. Among
others, Primo integrates several ideas from
[1], [9], [16], [18], and our contribution
mainly consists in emphasizing the power-
ful of an original and simple combination
of such advances.

Extensive simulations under network
simulator [13] have been done, first for
studying the main proposed protocols in
order to design Primo, and then for eval-
uating our protocol. We developed a rigor-
ous methodology, allowing the comparison
of protocols with seven efficiency criteria,
while varying many parameters [2]. In this
paper, we present a summary using five
efficiency criteria. Primo is compared with
TCP Reno [17] (one of the most used
version on Internet), TCP Sack [7] (the
most powerful version used on Internet),
TCP Vegas [1] (the only version of TCP
which implements a preventive behavior)
and TFRC (one of the best known alterna-
tive to TCP, which is TCP-friendly).

Based on the results obtained, Primo
protocol is very encouraging. We end this
paper by a discussion about future work.

II. PRIMO BASICS

In this section, we justify the main
choice we made to design Primo in order
to reach our objectives.
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A. Controller definition, and characteris-
tics

Primo uses a simple linear controller,
which simplifies its implementation; it
means PRoportional Integral MOdified.
The proportional component allows to ad-
just “moderately” the sending rate, that is,
proportionally to the network perturbation.
The integral component takes care of the
past sending rates values, in order to im-
prove stability by avoiding short and strong
variations due to transient failures.

Note that a derivative component could
help to anticipate variations. However, it is
sensitive to the instability induced by input
delay uncertainty. Inputs are obtained and
derived from the network or the destination
to manage the sending rate of the source,
and the delay uncertainties become more
important when the network approaches the
saturation. In conclusion, it seems clear that
a derivative component is not well suited
for congestion control.

B. Input variables

Input variables allow to give indirect
information on the network state. The lit-
erature reports the use of three common
variables: Explicit Congestion Notification
(ECN) [15], [14], Round Trip Time (RTT),
and reception rate.

The ECN option gives mainly a binary
information about the network congestion
state by marking some packets; this is not
sufficient for our purpose.

Next, the RTT is equal to the delay
between the arrival of an acknowledgement
and the departure of the related packet.
It becomes clear that a network conges-
tion leads to large values of the RTT
(packets spend more time in the routers
queues). TCP congestion mechanism is
mainly based on the variations of the RTT
(more precisely on the mean value of the
RTT combined with the loss rate). Un-
fortunately, the RTT does not allow to
differentiate in which way the congestion
appeared: forward way (from the source to
the destination) or backward way (from the
destination to the source).

Since the main influence of a source
is on the forward way, Primo uses the
Forward Trip Time (FTT), in order to avoid

unnecessary rate reduction. The FTT, sim-
ilar to the ROTT in [18], is equal to the
delay between the arrival of a packet at
the destination and its departure from the
source. It cannot be exactly measured since
the source and destination clocks are not
necessarily synchronized. However, such a
mismatching does not disturb the control
task since it uses the FTT variations and
not the exact values. If the source and
destination clocks have not the same pre-
cision, the FTT will increase or decrease
monotonically. The clock deviation can be
generally neglected. Nevertheless, note that
it could be computed and compensated
using an algorithm like ESRS [19].

The gap measured between the smallest
FTT observed in the past and the current
FTT represents a good estimation of the
network congestion state. Primo adjusts the
source rate proportionally to this measured
error.

However, our simulations showed that,
when using the FTT, the source can pre-
vent congestion formations, but has some
difficulties to stabilize its sending rate. As
explained above, this cannot be acceptable
for multimedia flows.

Assume now that there exists a con-
gestion on the forward way. Then some
packets will spend more time in a router
queue before reaching the destination, and
other packets are destroyed. The bandwidth
allocated for the flow corresponds to the
reception rate, that is, the rate measured
by the destination. Hence, when the gap
between the FTT reference value and the
current FTT is positive (i.e., when a con-
gestion is forming), the sending rate of the
source will be computed using the recep-
tion rate of the destination. Note that the
slow start of TFRC uses the reception rate
in order to avoid destination saturation [9].

To summarize, Primo uses the varia-
tions of the FTT to estimate the degree
of congestion, and the reception rate to
precisely adjust the sending rate in case
of congestion.

C. Output variable

For a source, the only way to avoid a
network congestion is to adjust its sending
rate. In practice, this rate can be adjusted
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by varying the size of a sending window
(as TCP does), or the duration of an Inter
Packet Gap (IPG) (as RAP [16] or TFRC
[9] do).

Our simulations showed that, when the
congestion control mechanisms are based
on a sending window, they are more vulner-
able to packet loss [2]. Moreover, they have
more difficulties than others to maintain
a constant sending rate when propagation
delays are important. Finally, they lead to
unfair bandwidth sharing in presence of
heterogeneous propagation delays.

Based on these simple remarks, it seems
reasonable to use the Inter Packet Gap for
adjusting the sending rate. We have chosen
this option for Primo.

III. “PRIMO INTERNALS” AND RELATED
ALGORITHM

In this section, we describe the main
characteristics of Primo.

A. Computing variables

The FTT is computed by the destination
node at each packet arrival, by subtracting
the departure date (contained in the header
of the packet) to the arrival date. The
(instantaneous) reception rate is updated at
each packet arrival by dividing the amount
of data received by the time elapsed from
the last reception. Both the FTT and the
instantaneous reception rate are written in
the header of the packet acknowledgment
sent back to the source.

At each acknowledgment arrival, the
source checks if the reference value of
FTT has to be updated to ensure that it is
always equal to the smallest measured FTT.
Moreover, the source computes the differ-
ence ∆FTT between the instantaneous FTT
and its corresponding reference value, and
stores the result in ARRAY∆FTT, an array
able to contain all the ∆FTT from a fixed
(for a given connection) delay D (in mil-
liseconds). This array is used for defining
the integral component. The source also
computes the reference RTT (RTTref) in
order to set the retransmission time out TO
(TO= 2 × RTTref).

B. Starting phase

In order to estimate the initial available
bandwidth, the source begins by sending
a burst of four packets with a null inter
packet gap. The available bandwidth is
computed by the destination node by divid-
ing the size of three packets by the delay
between the first arrival and the fourth one.

The first acknowledgement is sent af-
ter the reception of the first four pack-
ets. It contains the FTT of the first re-
ceived packet and the estimated available
bandwidth. At the reception of the first
acknowledgment, the source will set the
reference value FTT with the received FTT,
the sending rate with the available band-
width estimated by the destination, and the
retransmission time out TO with the first
RTT. All the variables are now initialized
and the sending rate adjustment begins.

Note that if one of the four first packets
or the first acknowledgment are lost, the
whole initialization phase is restarted since
the estimation of the available bandwidth
requires a rifle of four packets.

C. Estimating the network congestion state

Before sending each packet, the source
computes the new sending rate (see the
Algorithm 1 below). It first estimates the
network congestion state by using the FTT
variation stored in ARRAY∆FTT D mil-
liseconds ago (where, D is a fixed constant,
see above). This value, denoted by ∆FTTD,
is compared to three thresholds:
(1) The first one, denoted THstr, corre-

sponds to a large going beyond of the
reference value FTT. When ∆FTTD

is larger than THstr, the sending rate
should strongly decrease to avoid net-
work saturation (strong congestion
case).

(2) The second, denoted THmod, corre-
sponds to a congestion beginning.
When ∆FTTD is between THmod and
THstr, the sending rate should decrease
to prevent congestion formation (mod-
erate congestion case).

(3) The third one, denoted THrel, repre-
sents a very small going beyond of
the reference value FTT. If ∆FTTD

is smaller than THrel, the sending rate
should increase. Indeed, the sending
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rate should always be greater than
the available bandwidth to ensure that
the queue of the bottleneck is never
empty. This is necessary to detect any
bandwidth release (release case).

The sending rate is unchanged if ∆FTTD

is between THrel and THmod. This is the
range of acceptable sending rate, regarding
the network congestion state.

It is important to note that TCP Vegas [1]
uses also some fixed thresholds to adjust its
congestion window size. Moreover, it also
maintains the expected sending rate slightly
too great, in order to discover any band-
width release. Note however that Primo
does not rely on a congestion window, as
Vegas does.

D. Adjusting the sending rate

The value of the reception rate is mul-
tiplied by a factor that controls the rate
increase or decrease, depending on the net-
work congestion state: Fstr (strong con-
gestion), Fmod (congestion beginning) and
Frel (bandwidth release), with 0 < Fstr <
Fmod < 1 < Frel. To obtain the correction,
this value is then subtracted from the value
of the sending rate one RTT ago (old rate).
This correction of the old rate is weighted
by a reactive parameter W1. Note that the
sending rate variation is more important
for large values of W1. Finally, a weighted
average value is computed between the
current sending rate value (rate) and the
new computed value (new rate), using a
second weight W2. This leads to a more
or less smoothness of the sending rate (see
Algorithm 1).

Note that such weighted averages are
very common; they are, for instance, used
to guarantee the smoothness of the RTT in
TCP [17].

As in TCP, in the case of network satura-
tion, the rate is halved and the TO period is
doubled if no acknowledgment is received
during a period of TO seconds (heavy con-
gestion state).

E. Parameters

Algorithm 1 summarizes the computa-
tion at date t of the new sending rate, based
on the current sending rate value, and the

last reception rate sent by the destination
node (see [21] for the ns-2 code).

Algorithm 1: Primo(t, old rate, rate, rcv rate)
new rate = rate
∆FTTD = ARRAY∆FTT[t-D]
if ∆FTT ≥ THstr then

. strong congestion case
new rate = old rate − W1 × (old rate − (Fstr × rcv rate))

else if ∆FTTD ≥ THmod
. moderate congestion case
new rate = old rate − W1 × (old rate − (Fmod × rcv rate))

else if ∆FTTD < THrel
. release bandwidth case
new rate = old rate − W1 × (old rate − (Frel × rcv rate))

end if
new rate = W2 × rate + (1 − W2) × new rate

The definition of the new sending rate as
a function of the current sending rate value,
and of the last reception rate is strongly
related to the definition of proportional, and
integral laws in control design (see, for
instance, the discrete design, analysis tools,
and feedback properties in [8]).

In the sequel, we considered the fol-
lowing set of parameters: τ = 1 (the
corresponding discrete delay value), D =
RTTref × τ , THstr = 2 × THmod = 0.34 ×
FTTref, THmod = 0.17 × FTTref, THrel =
0.15 × FTTref, Fstr = 0.95, Fmod = 0.99,
Frel = 1.05, W1 = 0.5 (gain), and W2 =
0.9. In order to determine these values,
a study has been done under matlab (see
for instance some previous work on the
equivalence between continuous and dis-
crete modeling of packets switched net-
works [3]).

As discussed in conclusion, the next
step is to design an adaptive version of
this algorithm, where the parameters are
adjusted on the fly depending on network
conditions. However, it is first necessary to
validate the algorithm. Section IV shows
that, while the parameters of Primo are
fixed, it achieves good performances in
various situations, encompassing very large
network parameters ranges.

IV. SIMULATIONS METHODOLOGY

In this section, we present the simulation
conditions.

A. Topology

Two topologies are commonly used in
order to evaluate the congestion control
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schemes. The topology in Figure 1-top is
composed of two sources (S1 and S2), two
routers (R1 and R2) and two destinations
(D1 and D2). Such a topology is used to
study the network’s parameters influence
(see eg. [5], [12]). For the results pre-
sented in this paper (Section V), the routers
queues use a Drop Tail policy and admits at
most 30 packets. All links are symmetric:
delays and bandwidths are identical in the
two way. The two sources use the same
protocol.

The topology in Figure 1-bottom allows
to study the protocol’s behavior in a net-
work with multiple congestions (see eg. [6],
[5]). Three families of flows are in com-
petition here: flows a and b pass through
two routers and could experience one con-
gestion; flows c and d could experience
two congestions, and, finally, flow e three
congestions, respectively. In Section VI, we
study the capacity of different protocols to
stabilize and smooth the sending rates of
the five sources.

S1

S2

R1 R2

D1

D2

3 Mbps

10 ms

10 Mbps
1 ms

10
 M
bp
s

1 
ms

10 Mbps
1 ms

10
 M
bp
s

1 
ms

R1 R2 R3 R4 DeSe

Sc Sd Dc Dd

Sa Da Sb Db

Fig. 1. Topologies for simulations.

B. Parameters’ variations

In order to limit the combinatorial num-
ber of simulations needed to test all the
combinations of parameters, we focus on
the case when a network parameter is
varying while the others are fixed to their
default value (corresponding to a reason-
able case). Such a study is not restrictive,
and our intention is more to see the way
the parameters may affect the behavior of
the network. In this paper (Section V), we
report the influence of four parameters (see
[2] for more analysis):

• Bandwidth. The ratio between the in-
put and output of the first router
varies from 5% to 80%: the shared
link bandwidth varies between 1 Mbps
to 16 Mbps while the others remain
equal to 10 Mbps.

• Queue size. The queue size of the
routers varies from 5 to 50 packets.

• Homogeneous propagation delays.
The propagation delay of the shared
link varies between 5 ms to 200 ms.

• Heterogeneous propagation delays.
The propagation delay of the second
connection access link varies between
1 ms to 50 ms, leading to some RTT
value without congestion varying from
24 to 122 ms for the second source,
and fixed to 24 ms for the first source.

C. Efficiency criteria

The protocol performances are compared
in Section V on the basis of the following
five criteria, expressed in percentages. They
concern both users’ and operators’ point of
view. A protocol with good performances
obtains high percentages.

• Sending rate stability. The variations
of the sending rate should be as
smooth as possible to avoid network
instabilities. This criterion is evaluated
using the standard variation of the
rate; it is then normalized by division
by the mean rate.

• Reception rate stability. The variations
of the reception rate should be as
smooth as possible to ensure the qual-
ity of multimedia receptions. Same
evaluation as above.

• “Goodput” rate. This represents the
rate of data correctly transmitted (i.e.,
without any lost and then without re-
transmission). This criterion is equal
to one minus the packets loss rate,
multiplied by 1000. It still allows to
assimilate high values to better cases.

• Occupancy rate. It represents the uti-
lization of the network capacities. In-
deed, all the previous criteria could be
high, while the network is not fully
used, leading to a bad throughput for
the flow.

• Fairness. This criterion shows the ca-
pacity of a protocol to share equitably
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a link between several connections.
Regarding the topology of Figure 1-
top, all the connections should have
the same fraction of bandwidth, even
if they have different propagation de-
lay. This criterion is evaluated by com-
parison of the lower mean fraction
of allocated bandwidth to 50% (ideal
case).

D. Presentation of the results

Our comparison methodology allows to
study a protocol regarding complementary
criteria, depending on several parameters.
However, it produces many values, and
a protocol could be efficient regarding a
given criterion and less regarding another
one. Then, for simplifying results reading
and comparisons, the values of the five
criteria of a given protocol are aggregated
on some pentagon diagram (Figures 2 to
5). Based on the criteria above, it follows
that the protocol admits good properties if
the pentagon diagram of a protocol is large.
This helps the comparison along several
criteria. Note that the diagrams display
only average values. So, when necessary,
the comment emphasizes on some specific
values.

V. RESULTS RELATED TO NETWORK’S
PARAMETERS INFLUENCE

In this section, we analyze the results
for the four sets of simulations described
in Section IV-Parameters variations, and
devoted to the network’s parameters influ-
ence study. These simulations have been
performed on the topology of Fig. 1-top.

A. Bandwidth influence

Simulation’s results are presented in Fig-
ure 2. In these simulations, the five effi-
ciency criteria have been measured while
the bandwidth was varying on the shared
link (R1, R2).

All the five protocols obtain relatively
close results for the fairness, occupancy
rate and goodput criteria. However, TCP
Reno and Sack have lower constancy rates
than the other protocols. This is due to
the lack of sending burst avoidance mech-
anism: congestion window is sent in a

sending rate

constancy

reception rate

constancy

fairness occupancy rate

goodput

TFRC

Reno

Sack

Vegas

Primo

Fig. 2. Performances of TCP Reno, Sack, Vegas,
TFRC and Primo with a bandwidth variation.

single burst, and the source then waits
for acknowledgments, leading to alternative
sending and idle phases.

The sending and reception rates con-
stancy of TFRC is lower than TCP Vegas
and Primo. This is due to the fact that
TFRC is not preventive. We observed that
the queue on router R1 is generally 75%
full with TFRC. To the contrary, TCP Ve-
gas and Primo react more rapidly when
a congestion appear: the sending rate de-
creases before the queue becomes full (the
queue is about 10% full with Primo, and
15% with Vegas).

Note that Primo obtains some slightly
better results than Vegas, especially for
rates constancy. Indeed, when the band-
width ratio is low (between 10% and 30%),
TCP Vegas has some difficulties to estimate
the available bandwidth. These difficulties
lead to some variations in the sending rate,
and the constancy rates criteria decrease.

B. Queue size influence

Simulations results are presented on the
pentagonal diagram of Figure 3.

sending rate

constancy

reception rate

constancy

fairness occupancy rate

goodput

Primo

Reno

Sack

Vegas

TFRC

Fig. 3. Comparison of TCP Reno, Sack, Vegas,
TFRC and Primo with a queue size variation.

As in previous simulations, TCP Reno
and Sack have very close results, and some
poor rates stability. For the simulations
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of this test, the fairness criterion of TCP
Vegas is at most equal to 75%. Note that
when the queue is small (5 packets for two
flows), TCP Reno and Sack have better
results for the fairness (around 90%) than
Primo (around 75%) and Vegas which ob-
tains only 2%. But when the queue size
is larger than 10 packets (a more general
case), Primo offers excellent results for
the fairness (near 100%) and for the rates
stability (around 93%). TCP Vegas needs to
maintain a sending rate slightly larger than
the bandwidth, leading to some packets in
the queue. If the queue size cannot allow to
store enough packets per flow, TCP Vegas
performances are poor. Finally, Primo and
TFRC obtain both good results for this test.

Note that similar results have been ob-
tained with a RED queue on router R1

when it can contain at least 10 packets.

C. Propagation delay with homogeneous
RTT influence

Figure 4 shows results for the set of sim-
ulations with variation of the propagation
delay.

As previously, TCP Reno and Sack can-
not stabilize the sending and reception
rates. But we observed also that TCP Vegas
has some difficulties in this set of simula-
tions. When the RTT is larger than 100 ms,
the sending rate stability of TCP Reno,
Sack and Vegas falls under 20%. With a
RTT equals to 200 ms, the sending rate
stability reaches only 2% for TCP Sack,
and 5% for TCP Vegas. It seems that the
sending burst avoidance of TCP Vegas is
less efficient when the RTT is large.

Both TFRC and Primo do not rely on
a congestion window. Hence, they are less
sensitive to long propagation delays, and
they obtain good sending and reception
rate constancy (these efficiency criteria are
around 86% for TFRC and 93% for Primo).

D. Propagation delay with heterogeneous
RTT influence

In this set of simulations, the propagation
delay of the link (S2, R1) in the Figure 1-
top is varying, leading to heterogeneous
RTT between the flows of sources S1 and
S2. Results are given in Figure 5.

sending rate

constancy

reception rate

constancy

fairness occupancy rate

goodput

Primo

Reno

Sack

TFRC

Vegas

Fig. 4. Comparison of Primo, TCP Reno, Sack and
Vegas with homogeneous RTT variation.

sending rate

constancy

reception rate

constancy

fairness occupancy rate

goodput

TFRC

Reno

Sack

Vegas

Primo

Fig. 5. Comparison of Primo, TCP Reno, Sack and
Vegas with heterogeneous RTT variation.

The main difference with the previous
set of simulations concerns the fairness.
As already known [11], TCP Sack and
Reno have fairness problems in presence
of heterogeneous RTT. When the differ-
ence between the two RTT is larger than
60 ms, TCP Reno fairness is lower than
27%, while TCP Sack fairness is varying
between 42% and 0% (meaning that the
second connection cannot send any data).
Note also that their sending and reception
rate stability is also low (lower than 30%
for Reno and lower than 55% for Sack).

As previously, TCP Reno and Sack ob-
tain poor results concerning rate constancy.
For these efficiency criteria, TCP Vegas has
slightly better results than Primo, which is
slightly better than TFRC.

TCP Vegas has slightly better results
than the other protocols for the goodput
criterion, but its fairness criterion is about
77%. Fairness is about 89% for TFRC and
98% for Primo. These protocols, that do
not rely on a congestion window, obtain
good results in presence of heterogeneous
propagation delays.

E. Complementary remarks

One can note that the occupancy and
goodput rates are generally high for the
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four protocols, and the four set of sim-
ulations. However, TCP Vegas and Primo
have generally better results for these two
criteria. Indeed, the preventive protocols
avoid the routers queues saturation, and
thus the packets loss.

Concerning the occupancy rate, TCP
Reno and TCP Sack decrease brutally their
sending rate when they detect a congestion.
By reducing more slowly their sending rate,
Primo and Vegas better use the network
resources, leading to a better occupancy.

When the number of sources increases
in Figure 1-top, we observed that the per-
formances of Primo are not significantly af-
fected. However, the fairness of TCP Vegas
is at most 75%. The other protocols, which
have a corrective behavior, are affected by
the increase of the number of sources (no-
table decreasing of sending and reception
rates constancy).

VI. RESULTS RELATED TO SENDING
RATES STABILITY IN A

MULTI-CONGESTION NETWORK

In this section, we present and analyze
the results obtained on the second topology
(Fig. 1-bottom), and devoted to the multi-
congestion influence study. Note that, while
each router-to-router link is shared by three
flows, one could refer to several kind of
fairness in order to evaluate the bandwidth
sharing by the different transport protocols.
Here, we only focus on the sending rate sta-
bility. For multimedia flow transportation
as well as stability of the whole network,
it is important that the sources are able to
stabilize and smooth their sending rate.

Several scenarios have been simulated;
we report two of them in Figures 6 and
7. In Fig. 6, all the flows a, b, c, d and
e start at the same time. In Fig. 7, first
the flow a and b (that encounter a single
congestion) start, then the flows c and d
(that encounter two congestions) start, and
finally the flow e (that encounter three
congestions) starts. While it is sometimes
impossible to distinguish all the flows in
the figures, these results allow to give the
following conclusions.

First, TCP Reno never stabilize nor
smooth the sending rates of the sources.
Note that TCP Sack has the same behavior.

The sending rates can fall down to 0 and
then abruptly increase. As already known,
these protocols are not well suited for mul-
timedia flows.

Second, TFRC is able to smooth the
sending rates, due to its inter-packet delay
mechanism. However, they are not per-
fectly stabilized. Indeed, one can observe
smooth variations. Note that, since the
sending rate varies smoothly, TFRC can be
used for multimedia flows transportation.

Third, TCP Vegas and Primo both sta-
bilize and smooth the sending rate of the
sources. In some cases, TCP Vegas obtains
slightly better results than Primo. Note that,
in most of our scenarios, Primo is always
very close to a bandwidth sharing of about
one third of the bandwidth per flow.

VII. CONCLUSIONS AND FUTURE WORK

In this section, we summarize and dis-
cuss our contribution, before outline future
work.

A. Contribution analysis

Transport protocols define their conges-
tion control on empirical rules, and most
of them use packet loss as information of
the network state. This method induces a
corrective behavior and so the creation of
congestions instead of avoiding them.

Based on an analysis of the literature [4],
we studied a preventive congestion control
scheme that combine both the forward trip
time (FTT) and the reception rate (Sec-
tion II). The variations of the FTT are used
to estimate the degree of congestion, and
the reception rate is used to precisely adjust
the sending rate in the case of congestion.
We used an appropriate proportional inte-
gral modified control mechanism in the aim
of reaching some pre-defined objectives:
rapidly reach the optimal rate, smoothly
adapt the sending rate, rapidly, moderately
and preventively react to congestion forma-
tion. As other transport protocols, the sim-
ple congestion control scheme we obtained
(Section III) relies on fixed thresholds and
parameters, that we calibrated using a fluid
modeling under matlab (see [3]).

We implemented Primo under network
simulator [13] and developed a complete
evaluation methodology that encompass all
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the main parameters [2]. Many measures
have been done while several network’s
parameters were varying (note that com-
bined influence of several parameters has
not been extensively simulated since this
requires a combinatorial number of sim-
ulations, and our aim was mainly to see
the way in which stand-alone parameters
could impact the performances). In this
paper, we reported a summary of results
(Section IV) concerning the influence of
the available bandwidth, the queue size
and the propagation delays on the sending
rate stability, the reception rate stability,
the fairness, the occupancy rate of the
shared link and the good transmission rate.
We also reported results concerning the
stability of the sending rate in a multi-
congestions environment. More complete
results can be found in [2].

Results presented in Sections V and
VI indicate that the fairness objective is
completely respected. More, the rapidity is
an inherent characteristic of the protocol,
and the initialization phase has a duration
of about one RTT (very less than other
transport protocols). The stability of the
sending and reception rates is very good,
and improve Vegas results. The full use of
the network capacities, and the preventive
behavior are equally respected.

Obviously, Primo has better results than
TCP Reno and Sack. But, it also obtains
better results than TFRC, a TCP-friendly
alternative to TCP. This can be explained
by the fact that Primo is preventive while
TFRC is corrective. As a drawback, Primo
is not TCP-friendly; we discuss this issue
in Section VII-B. We also observed that,
while Primo obtains very good results in
multi-congestions environments, it seems
that TCP Vegas gives slightly more con-
stant sending rate than Primo. However, in
other tests, Primo has always better results
than Vegas, especially in presence of long
or heterogeneous propagation delays. This
is mainly due to the fact that Primo does
not rely on a congestion window but on an
inter packets delay mechanism. As a con-
clusion, Primo results are very encouraging
since they are better than those of TFRC
and TCP Vegas.

B. Future work

Our main contribution has been to show
that a simple preventive congestion control
scheme, based on a proportional integral
modified controller and feed by pertinent
inputs from the destination, can be very
efficient for congestion control. However,
Primo is not adaptive, meaning that it uses
fixed parameters, and is not TCP-friendly,
meaning that it could not be used simulta-
neously with TCP (as in the Internet). We
now discuss these issues.

Our study puts some light on control-
feedback techniques (proportional-integral
controllers) in connection with the avail-
able information in the network. In our
opinion, this represents a first step in defin-
ing a dynamical (preventive) congestion
control mechanism with respect to the
(congestion) status of the network. More
explicitly, we think that the definition of
some adaptive version of Primo would
represent a better solution to the conges-
tion problem under consideration. As sug-
gested by Tsypkin in [20], by adaptation,
we understand the process of modifying
the parameters (and eventually the struc-
ture) of the system, and the control ac-
tions, such that the current information is
used to obtain a definite (usually optimal
or sub-optimal) state of the system when
the operating conditions are uncertain (or
not completely known), and time-varying.
Without entering in details, we think that
one of the possibilities to be considered is
to adapt the new rate on-line in the sense
that the sending rate would rely on a net-
work congestion state parameter explicitly
defined as a function of ∆FTTD. The opti-
mality criterion should be defined function
of the efficiency criterion defined in the
Section IV. Note that the analysis presented
in this paper was more than necessary in
order to see the potential improvement that
we may obtain via such a construction.

To our opinion, progress in congestion
control would mainly concern preventive
protocols. But this implies that they could
not be used in the Internet, or more gen-
erally when some flows are in competition
with corrective protocols in shared router’s
queues. A first approach is to modify online
the preventive congestion control scheme



12

(as explained above) in such a way that it
becomes more aggressive when the pres-
ence of a corrective protocol is suspected
[10]. This may be combined with some
quality of services policies to avoid as
far as possible the presence of incompat-
ible flows in the same queue. Another
approach is to use the preventive control
schemes in dedicated networks, where the
kind of transport protocols used can be
managed. This is the case of some sponta-
neous ad hoc networks based on embedded
communicating devices: laptops, mobile
phones, personal assistants, communicating
vehicles1... In such potentially highly dy-
namic networks, TCP-like protocols experi-
ence strong difficulties. Embedded systems
could exclusively use preventive schemes
for the applications inside the local ad hoc
network. This may represent an important
domain for preventive protocols.
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Technologie de Compiègne, France, who
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