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PERFORMANCE ANALYSIS OF SPECTRAL COMMUNITY DETECTION
IN REALISTIC GRAPH MODELS

Hafiz TIOMOKO ALI, Romain COUILLET

CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

ABSTRACT

This article proposes a spectral analysis of dense random graphs
generated by (a modified version of) the degree-corrected stochastic
block model, for a setting where the inter block probabilities differ
byO(n−

1
2 ) with n the number of nodes. We study a normalized ver-

sion of the graph modularity matrix which is shown to be asymptoti-
cally well approximated by an analytically tractable (spiked) random
matrix. The analysis of the latter allows for the precise evaluation of
(i) the transition phase where clustering becomes asymptotically fea-
sible and (ii) the alignment between the dominant eigenvectors and
the block-wise canonical basis, thus enabling the estimation of mis-
classification rates (prior to post-processing) in simple scenarios.

Index Terms— networks, community detection, spectral analy-
sis, graphs, random matrices.

1. INTRODUCTION

In many real world networks representable through graphs, the nodes
can be grouped into communities based on their common features
or interests. Discovering these groups and mapping the nodes to
each group is one of the challenging tasks in network mining. To
this end, various methods have been proposed, based on statistical
inference (belief propagation, Bayesian inference, block modeling,
model selection, information theory), spectral clustering, graph par-
titioning, modularity-based approaches, dynamic methods (random
walks, synchronisation), etc. [1]. Most of these are however difficult
to analyze when it comes to realistic networks, so that few theoreti-
cal guarantees are known to date. We focus in this article on spectral
clustering methods which are both computationally inexpensive and
theoretically tractable, while maintaining competitive performance
versus the allegedly optimal belief propagation schemes if the net-
work is dense, i.e., when the typical node degree is of order O(n).
When the latter is instead O(1), the graph is considered sparse and
spectral algorithms tend to be suboptimal, failing completely in some
cases [2, 3] (other methods have been proposed to handle these cases,
e.g., [4]). We shall assume here a dense network scenario.

The network model under present study is based on the stochas-
tic block model (SBM), which extends the classical Erdös-Renyi
graph model [5] to community structured graphs. As the SBM does
not allow for degree heterogeneity inside blocks, thereby missing
an important feature of realistic networks, we consider here the
degree-corrected stochastic block model (DC-SBM), first proposed
in [6]. Denoting G a K-class graph of n vertices with communities
C1, . . . , CK and letting qi, 1 ≤ i ≤ n, be the intrinsic probability
for node i to connect to any other network node, the DC-SBM as-
sumes an adjacency matrix A ∈ {0, 1}n×n, with Aij independent

This work is supported by the ANR Project RMT4GRAPH (ANR-14-
CE28-0006).
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Fig. 1. Second leading eigenvector of A (top) and first leading eigen-
vector of L (bottom) with qi following a bimodal distribution , two
classes with equal proportions, n = 1000.

Bernoulli random variables with parameter Pij = qiqjCab, for
i ∈ Ca and j ∈ Cb, where Cab is a class-wise correction factor. In
particular, if, for some q0 ∈ (0, 1), qi = q0 for each i, one falls back
into the classical homogeneous SBM. In the present dense network
regime, Pij = O(1); if the coefficients Cab differ by O(1), cluster-
ing is asymptotically trivial as a vanishing misclassification rate is
easily guaranteed as n → ∞. We thus consider here the non-trivial
regime where Cab = O(1) but differ only by O(n−

1
2 ).

Spectral clustering on the adjacency matrix of a DC-SBM how-
ever fails to cluster the nodes as the leading eigenvectors tend to
follow a mixture of the degree distribution and class-wise canonical
vectors, instead of purely aligning to the latter, therefore leading to
ambiguities in classification and a trend to over-clustering (see top
of Figure 1 and [7]). We thus work here on a normalized version
L of the adjacency (precisely the modularity) matrix defined, for
D(x) = diag(x) and 1n = [1, . . . , 1]T, by

L =
1√
n
D (q̂)−1

[
A− q̂q̂T

1
n
q̂T1n

]
D (q̂)−1

where q̂ = [q̂1, . . . , q̂n]T, with q̂i = 1
n

[A1n]i.
1 We shall see (as

already observed in [7]) that the dominant eigenvectors of L are
strongly aligned to the class-wise canonical eigenvectors, thus re-
cover the lost clustering ability of A (see bottom of Figure 1).

Being more challenging to analyze than A itself (due to its en-
tries no longer being independent), our approach will first be to
show that L is asymptotically well approximated by an analytically
tractable random matrix, that falls in the family of the spiked random

1The notation L for this matrix is due to its Laplacian-looking form.



matrices [8], i.e., is formed by a deterministic low rank perturbation
of a standard random matrix model. As shown in [8], the spectrum
of these matrices is essentially composed of (one or several) clusters
of eigenvalues and of finitely many isolated ones, and there exists a
phase transition phenomenon by which, the larger the amplitude of
the low rank matrix eigenvalues, the more eigenvalues tend to isolate
from the aforementioned clusters and the more information is con-
tained within their associated eigenvectors. In the present spectral
clustering setting, using advanced tools from random matrix theory,
we shall provide a precise analysis of these leading eigenvectors,
henceforth shedding new light on the relation between the DC-SBM
parameters and the classification performance of spectral clustering.
All proofs are deferred to an extended version of this article.

Notations: Vectors are denoted with lowercase boldface letters
and matrices by uppercase boldface letters. {va}na=1 is the col-
umn vector v with (scalar or vector) entries va and {Vab}na,b=1

is the matrix V with (scalar or matrix) entries Vab. The operator
D(v) = D

(
{va}na=1

)
is the diagonal matrix having (scalar or vec-

tor) v1, . . . ,vn down its diagonal. The vector 1n ∈ Rn stands for
the vector filled with ones. The Dirac measure at x is δx. The vector
ja is the canonical vector of class Ca defined by (ja)i = δi∈Ca and
J = [j1, . . . , jK ] ∈ {0, 1}n×K . The set C+ is {z ∈ C, =[z] > 0}.

2. MAIN RESULTS

We divide this section into a first analysis of the heterogeneous
model, before particularizing the results to the homogeneous case.

2.1. Heterogeneous model

Consider an undirected random graph with n nodes belonging to one
of K classes C1, . . . , CK with cardinalities |Ck| = nk. Each node
has an intrinsic probability qi to get connected to any other vertex in
the graph. Besides, we define C ∈ RK×K a matrix of weights Cab
affecting the connection probability between all nodes in Ca and all
nodes in Cb. We shall assume for simplicity of exposition (but with
no generality restriction) that the nodes are ordered by class, i.e.,
nodes 1 to n1 constitute class C1, nodes n1 + 1 to n2 form class C2,
and so on. The adjacency matrix A of the graph thus has indepen-
dent entries (up to symmetry) with Aij Bernoulli with probability
Pij = qiqjCab ∈ (0, 1) when i ∈ Ca and j ∈ Cb and we take
Aii = 0 (without loss of generality) for all 1 ≤ i ≤ n.

We shall perform spectral clustering on the matrix L defined by

L =
1√
n

D̂−1

[
A− q̂q̂T

1
n
q̂T1n

]
D̂−1 (1)

where D̂ = D (q̂) and

q̂i =
1

n

n∑
j=1

Aij =
1

n
[A1n]i .

In order to achieve non-trivial (asymptotic) misclassification
rates, we shall assume the following growth rate conditions.

Assumption 1. As n→∞,

1. Cab = 1 + Mab√
n

for a, b ∈ {1, . . . ,K}, whereMab = O(1);

we shall denote M = {Mab}Ka,b=1.

2. qi ∈ (0, 1), i ∈ {1, . . . , n}, are i.i.d. random variables with
probability measure µ having compact support in (0, 1). We
shall denote mµ =

∫
tµ(dt).

3. ni
n
→ ci > 0 and we will denote c = {ck}Kk=1.

Under Assumption 1, it is easily shown that

max
1≤i≤n

|q̂i −mµqi| → 0

almost surely, so that the q̂i are, up to a constant, uniformly consis-
tent estimators for the (a priori unknown) qi.

Let us provide some intuition on the coming results. Note first
that we may write2

1√
n

A =
1√
n

qqT

︸ ︷︷ ︸
Ad,
√
n

+
1

n

{
q(a)q

T
(b)Mab

}K
a,b=1︸ ︷︷ ︸

Ad,1

+
1√
n

X︸ ︷︷ ︸
Ar,1

where q(i) = [qn1+...+ni−1+1, . . . , qn1+...+ni ]
T ∈ Rni (n0 = 0)

and X = {Xij}ni,j=1 has independent (up to symmetry) entries of

zero mean and variances σ2
ij = qiqj(1 − qiqj) + O(n−

1
2 ). Ob-

serving that Ad,
√
n, Ad,1, and Ar,1 have spectral norms respec-

tively of orderO(
√
n),O(1), andO(1), we may expand

√
nD̂−1 =

D(n−
1
2 A1n)−1 via a Taylor expansion around the dominant term

D(Ad,
√
n1n)−1. Pre- and post-multiplying n−

1
2 A by the Taylor

expansions, we then retrieve a corresponding Taylor expansion for
L and the following estimate.

Theorem 1. Let Assumption 1 hold and let L be given by (1). Then,
as n→∞, ‖L− L̃‖ → 0 in operator norm almost surely, where

L̃ =
1

m2
µ

[
1√
n

TD−1XD−1TT + UMUT

]
with D = D(q), T = In − 1nq

T

qT1n
and U = J− 1ncT.

The matrix L̃ follows an additive spiked random matrix model
similar, but formally different, to that studied in e.g., [9]. This
model is characterized by the fact that, under Assumption 1-2., as
n → ∞, the eigenvalues of L̃ converge, to one another in one
or several “bulks”, but for a maximum of K of them (the rank of
UMUT) that can be found in-between bulks or on either side of
the bulks. The alignment between the eigenvectors associated to
those isolated eigenvalues and the eigenvectors of UMUT can be
evaluated and will largely depend on the eigenvalues of UMUT

as we shall presently observe. Interestingly, U is constituted by
the class-vectors ji, while M contains information about the inter-
and intra-class affinities. Consequently, the isolated eigenvalue-
eigenvector pairs are expected to correlate to the class basis J as
soon as the eigenvalues of M are sufficiently large. Our next objec-
tive is to explore this phenomenon through a careful analysis of the
tractable approximate L̃ of L. Before introducing our main results
though, we need the following intermediary result.

Lemma 1 (A deterministic equivalent). Define the resolvent Qz =

(n−
1
2 TD−1XD−1TT − zIn)−1. Then, for z ∈ C+, the system

e1(z) =

∫
1

−zt− e1(z) + e2(z)t
µ(dt)

e2(z) =

∫
t

−zt− e1(z) + e2(z)t
µ(dt)

2Here subscript ‘d, nk’ stands for deterministic term of order nk and
‘r, nk’ for random term of order nk .



admits a unique solution (e1(z), e2(z)) ∈ (C+)2, and z 7→ e2(z) is
the Stieljies transform of a continuous probability measure of com-
pact support S.3 Furthermore, for all z ∈ C \ S,

Qz ↔
(
−zIn −T

[
e1(z)D−1 − e2(z)In

]
T
)−1

where the notation A↔ B stands for 1
n

tr DA− 1
n

tr DB→ 0 and
dT

1 (A − B)d2 → 0 almost surely, for all deterministic Hermitian
matrix D and deterministic vectors di of bounded norms.

Identifying the isolated eigenvalues of L then boils down (by
Theorem 1) to finding the large ρ solutions to det(L̃ − ρI) = 0.
Following standard techniques (e.g., [8, 9]) along with Lemma 1,
we then have the following limiting result.

Theorem 2 (Isolated Eigenvalues). Let Assumption 1 hold and, for
z ∈ C \ S (given in Lemma 1), define the K ×K matrix

Gz = IK + e2(z)
(
D (c)− ccT

)
M

with e2(z) given in Lemma 1. Let ρ ∈ R \ S be such that
Gρ has a zero eigenvalue of multiplicity κρ. Then there exists
λi, . . . , λi+κρ−1 eigenvalues of m2

µL converging to ρ.

Theorem 2 is equivalent to saying that −1/e2(ρ) should be an
eigenvalue of (D(c) − ccT)M. Consequently, to show the exis-
tence and location of isolated eigenvalues, we need to solve in ρ /∈
S the equation −`e2(ρ) = 1 for each non zero eigenvalue ` of
(D(c) − ccT)M. Precisely, let us write S =

⋃M
m=1[Sm,−, Sm,+]

with S1,− ≤ S1,+ < S2,− ≤ . . . < SM,+ and define S0,+ = −∞
and SM+1,− = ∞. Then, recalling that the Stieltjes transform of
a real supported measure is necessarily increasing on R, there exist
isolated eigenvalues ofm2

µL in (Sm,+, Sm+1,−),m ∈ {0, . . . ,M},
for all large n almost surely, if and only if there exists eigenvalues `
of (D(c)− ccT)M such that

lim
x↓Sm,+

e2(x) < −`−1 < lim
x↑Sm+1,−

e2(x). (2)

In particular, when S = [S−, S+] is composed of a single con-
nected component (as when S is the support of the semi-circle law),
then isolated eigenvalues of m2

µL may only be found beyond S+ if
limx↓S+ −`e2(x) > 1 or below S− if limx↑S− −`e2(x) < 1, for
some non-zero eigenvalue ` of (D(c)− ccT)M.

Remark 1 (Maximum number of eigenvalues). As 1T
K(D(c) −

ccT) = 0, 1K is a left-eigenvector of (D(c) − ccT)M with eigen-
value 0, and thus (D(c) − ccT)M is of maximum rank K − 1,
meaning that a maximum of K − 1 isolated eigenvalues can be
found in between or away from the bulks constituting S.

Let us now turn to the study of the eigenvectors. Our objective
here is to correlate the eigenvectors associated with the eigenvalues
determined in Theorem 2 to the canonical base vectors j1, . . . , jK .

Theorem 3 (Eigenspace Projections). Let λi, . . . , λi+κρ−1 be a
group of isolated eigenvalues of m2

µL converging to ρ as per Theo-
rem 2 and ` = −1/e2(ρ). Further denote Πρ the projector on the
eigenspace of L associated to these eigenvalues. Then,

1

n
JTΠρJ =

1

`2e′2(ρ)
Υρ

(
D (c)− ccT

)
+ o(1)

3That is, e2(z) =
∫
(t− z)−1ν(dt) for some real supported measure ν.

almost surely, where

Υρ =

κρ∑
j=1

[Vr,ρ]j [Vl,ρ]
T
j

[Vl,ρ]Tj [Vr,ρ]j

with Vr,ρ,Vl,ρ ∈ RK×κρ respectively sets of right and left eigen-
vectors of

(
D (c)− ccT

)
M associated with the eigenvalue ` (and

[X]j the j-th column of X), and e′2(ρ) the derivative of e2(z) (de-
fined in Lemma 1) along z evaluated at ρ.

Remark 2 (Class-wise eigenvector means). Letting u be a unit mul-
tiplicity isolated eigenvector of L, write

u =

K∑
a=1

αa
ja√
na

+ σawa

with αa = n
− 1

2
a uTja and wa a (noise) vector orthogonal to ja and

supported on the class-Ca indices. The coefficients αa characterize
the alignment between u and the basis vectors ja, and are thus key
elements to understand the performance of spectral clustering based
on u. Now observe that Theorem 3 allows for an estimate of each
αa. Indeed, with Πρ = uuT in this unit multiplicity case,

|αa|2 =

∣∣∣∣uT ja√
na

∣∣∣∣2 =

[
1

n
D(c)−

1
2 JTΠρJD(c)−

1
2

]2

aa

thus allowing to retrieve αa up to a sign, while

αaαb =

[
1

n
D(c)−

1
2 JTΠρJD(c)−

1
2

]
ab

from which the sign of αa can be recovered.

Remark 3 (Total noise). For arbitrary multiplicity κρ, note that

Nρ = κρ − tr

(
1

n
D(c)−

1
2 JTΠρJD(c)−

1
2

)
= κρ

(
1− 1

`2e′2(ρ)

)
∈ (0, κρ)

measures the overall “noise” induced by the graph randomness in
the κρ eigenvectors associated with ρ (0 for perfect alignment to
J, and κρ for a complete misalignment) and is thus an important
metric to assess the spectral clustering performance. In particular,
for κρ = 1, Nρ =

∑K
k=1 σ

2
a defined in Remark 2.

As a consequence of these two remarks, we have the following
corollary of Theorem 3.

Corollary 1 (Clustering Performance for K = 2, n1 = n2 and
M = α β

β α ). WhenK = 2, n1 = n2, by exchangeability arguments,
with the definitions of Remark 2, we easily obtain that α1 = −α2,
while σ2

1 = σ2
2 , for u the (hypothetically) unique isolated eigen-

vector of L. Clustering then boils down to deciding whether ui is
positive or negative for each i. Conjecturing asymptotic Gaussian-
ity of the entries of u, we then obtain the probability Pc of correct
clustering as

Pc = 1− Φ

(
−

√
1−Nρ
Nρ

)
(3)

where Nρ = 1− (`2e′2(ρ))−1 and Φ(x) = 1
2π

∫ x
−∞ e

− t
2

2 dt.
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Fig. 2. Performance of community detection, for qi uniformly dis-
tributed in [.2, .8], M = δI2, c1 = c2 = 1

2
, and for qi = q0 = .5.

Simulations for n = 2000.

Figure 2 displays the empirical and theoretical correct clustering
rates under the conditions of Corollary 1 for M = δI2 and vary-
ing δ, with µ the uniform distribution in [.2, .8] and µ = δ.5. The
phase transition point beyond which clustering is feasible is seen to
be shifted to larger values of δ for the uniform distribution, which
is a consequence of S being larger for more spread out measures
µ, thus preventing the appearance of spiked eigenvalues. Under the
same setting, with δ = 20, Figure 3 displays the leading eigenvector
of L along with the theoretically discovered class-wise means (from
Remark 2) and standard deviations (from Corollary 1).

2.2. Homogeneous model

Let µ = δq0 , i.e., qi = q0 ∈ (0, 1) for all i, which leads back
to the homogeneous SBM. We assume to be unaware of the model
homogeneity so that we keep q̂i = n−1[A1n]i as an estimator for
q0, instead of e.g., the more appropriate q̂0 = n−21T

nA1n.
Here, the expression of e2(z) becomes explicitly

e2(z) = − z

2
(
q−2
0 − 1

) −
√
z2 − 4

(
q−2
0 − 1

)
2
(
q−2
0 − 1

)
where the branch of the square root is chosen such that e2(z) is a
Stieltjes transform (i.e., e2(z) → 0 as |z| → ∞ and is analytic

1 1,000 2,000
−0.04

0

0.04

Fig. 3. Leading eigenvector of L for qi uniformly distributed in
[.2, .8], M = δI2, c1 = c2 = 1

2
, theoretical class-wise means

(black) and (one) standard deviations (black-dashed), n = 2000.

on C \ S). The associated measure is the popular semi-circle law
with S = [S−, S+] = [−2(q−2

0 − 1)
1
2 , 2(q−2

0 − 1)
1
2 ]. Besides,

limx↓S+ e2(x) = −(q−2
0 − 1)−

1
2 and limx↑S− e2(x) = (q−2

0 −
1)−

1
2 . Thus, for ` a non-zero eigenvalue of (D(c) − ccT)M, Con-

dition (2) reduces to | ` |>
√
q−2
0 − 1 so that ` must grow large as

q0 → 0 (sparser regime). If the condition is met, the isolated eigen-
values in the spectrum of m2

µL then have limit ρ =
q20(`2−1)+1

q20`
.

For the eigenspace projections, Theorem 3 becomes

1

n
JTΠρJ→

(
q2
0(`2 + 1)− 1

`2q2
0

) κρ∑
j=1

[Vr,ρ]j [Vl,ρ]
T
j

(
D(c)− ccT

)
[Vl,ρ]Tj [Vr,ρ]j

.

In particular, the overall energy of the κρ eigenvectors “noise” is

κρ − tr

(
1

n
D(c)−

1
2 JTΠρJD(c)−

1
2

)
→ κρ

`2
(
q−2
0 − 1

)
implying that, as |`| → ∞ or q0 → 1, the eigenvectors of L tend to
align perfectly to the basis vectors of J.

These results are particularly interesting to adapt to the popular
toy model (see e.g., [10]) where K = 2 and

{Pij}ni,j=1 =

(
pin1n11T

n1
pout1n11T

n2

pout1n21T
n1

pin1n21T
n2

)
.

Letting ∆ =
√
np−1

in (pin − pout) > 0, Pij = q2
0(1 + n−

1
2Mab)

with q2
0 = pin and M =

(
0 −∆
−∆ 0

)
. There, the non zero eigen-

value of (D(c) − ccT)M is ` = 2c1c2∆. Condition (2) here reads
(c1c2∆)2 ≥ 4(p−1

in − 1). If met, the leading eigenvector u satisfies

1

n
D(c)−

1
2 JTuuTJD(c)−

1
2 → (1−N)

(
c2 −√c1c2

−√c1c2 c1

)
where N = (p−1

in − 1) (2c1c2∆)−2.

3. CONCLUDING REMARKS

Although focused here on the normalized modularity matrix, this
article has proposed a general framework for the study of the isolated
eigenvectors of dense network matrix models (approximation by a
tractable random matrix, spike analysis, and eigenvector parameter
estimation). Our results so far nonetheless only allow to assess the
performance of spectral clustering in elementary scenarios (as per
Corollary 1); a more complete analysis would demand a deeper study
of the class-wise variances σ2

a for each eigenvector (see Remark 2)
along with the joint eigenvector fluctuations.

A key observation concerns the detrimental spectrum spreading
of the normalized modularity matrix induced by degree heterogene-
ity, a phenomenon that simulations suggest is less present in the ad-
jacency matrix itself. As the latter however introduces a node degree
bias in the eigenvectors, a trade-off between resilience to node de-
gree bias and to spectrum spreading needs be found when deciding
on the choice of the matrix to operate.

Finally, our study yet involves dense networks, which are inap-
propriate models to many practical networks. Community detection
over sparse networks however comes along with more stringent tech-
nical difficulties and spectral clustering on (derivatives of) the adja-
cency matrix is known to be suboptimal. In this scenario, the anal-
ysis of more involved matrix models, such as the non-backtracking
matrix [4], is required. These considerations are left to future work.
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