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This article proposes a spectral analysis of dense random graphs generated by (a modified version of) the degree-corrected stochastic block model, for a setting where the inter block probabilities differ by O(n -1

2 ) with n the number of nodes. We study a normalized version of the graph modularity matrix which is shown to be asymptotically well approximated by an analytically tractable (spiked) random matrix. The analysis of the latter allows for the precise evaluation of (i) the transition phase where clustering becomes asymptotically feasible and (ii) the alignment between the dominant eigenvectors and the block-wise canonical basis, thus enabling the estimation of misclassification rates (prior to post-processing) in simple scenarios.

INTRODUCTION

In many real world networks representable through graphs, the nodes can be grouped into communities based on their common features or interests. Discovering these groups and mapping the nodes to each group is one of the challenging tasks in network mining. To this end, various methods have been proposed, based on statistical inference (belief propagation, Bayesian inference, block modeling, model selection, information theory), spectral clustering, graph partitioning, modularity-based approaches, dynamic methods (random walks, synchronisation), etc. [START_REF] Fortunato | Community detection in graphs[END_REF]. Most of these are however difficult to analyze when it comes to realistic networks, so that few theoretical guarantees are known to date. We focus in this article on spectral clustering methods which are both computationally inexpensive and theoretically tractable, while maintaining competitive performance versus the allegedly optimal belief propagation schemes if the network is dense, i.e., when the typical node degree is of order O(n). When the latter is instead O(1), the graph is considered sparse and spectral algorithms tend to be suboptimal, failing completely in some cases [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF][START_REF] Ohlan | Graph partitioning via adaptive spectral techniques[END_REF] (other methods have been proposed to handle these cases, e.g., [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF]). We shall assume here a dense network scenario.

The network model under present study is based on the stochastic block model (SBM), which extends the classical Erdös-Renyi graph model [START_REF] Erdos | On random graphs[END_REF] to community structured graphs. As the SBM does not allow for degree heterogeneity inside blocks, thereby missing an important feature of realistic networks, we consider here the degree-corrected stochastic block model (DC-SBM), first proposed in [START_REF] Karrer | Stochastic block models and community structure in networks[END_REF]. Denoting G a K-class graph of n vertices with communities C1, . . . , CK and letting qi, 1 ≤ i ≤ n, be the intrinsic probability for node i to connect to any other network node, the DC-SBM assumes an adjacency matrix A ∈ {0, 1} n×n , with Aij independent Bernoulli random variables with parameter Pij = qiqjC ab , for i ∈ Ca and j ∈ C b , where C ab is a class-wise correction factor. In particular, if, for some q0 ∈ (0, 1), qi = q0 for each i, one falls back into the classical homogeneous SBM. In the present dense network regime, Pij = O(1); if the coefficients C ab differ by O(1), clustering is asymptotically trivial as a vanishing misclassification rate is easily guaranteed as n → ∞. We thus consider here the non-trivial regime where C ab = O(1) but differ only by O(n -1 2 ). Spectral clustering on the adjacency matrix of a DC-SBM however fails to cluster the nodes as the leading eigenvectors tend to follow a mixture of the degree distribution and class-wise canonical vectors, instead of purely aligning to the latter, therefore leading to ambiguities in classification and a trend to over-clustering (see top of Figure 1 and [START_REF] Gulikers | A spectral method for community detction in moderately-sparse degree corrected stochastic block models[END_REF]). We thus work here on a normalized version L of the adjacency (precisely the modularity) matrix defined, for D(x) = diag(x) and 1n = [1, . . . , 1] T , by

L = 1 √ n D (q) -1 A - qq T 1 n qT 1n D (q) -1
where q = [q1, . . . , qn] T , with qi = 1 n [A1n] i . 1 We shall see (as already observed in [START_REF] Gulikers | A spectral method for community detction in moderately-sparse degree corrected stochastic block models[END_REF]) that the dominant eigenvectors of L are strongly aligned to the class-wise canonical eigenvectors, thus recover the lost clustering ability of A (see bottom of Figure 1).

Being more challenging to analyze than A itself (due to its entries no longer being independent), our approach will first be to show that L is asymptotically well approximated by an analytically tractable random matrix, that falls in the family of the spiked random matrices [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF], i.e., is formed by a deterministic low rank perturbation of a standard random matrix model. As shown in [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF], the spectrum of these matrices is essentially composed of (one or several) clusters of eigenvalues and of finitely many isolated ones, and there exists a phase transition phenomenon by which, the larger the amplitude of the low rank matrix eigenvalues, the more eigenvalues tend to isolate from the aforementioned clusters and the more information is contained within their associated eigenvectors. In the present spectral clustering setting, using advanced tools from random matrix theory, we shall provide a precise analysis of these leading eigenvectors, henceforth shedding new light on the relation between the DC-SBM parameters and the classification performance of spectral clustering. All proofs are deferred to an extended version of this article.

Notations: Vectors are denoted with lowercase boldface letters and matrices by uppercase boldface letters. {va} n a=1 is the column vector v with (scalar or vector) entries va and {V ab } n a,b=1

is the matrix V with (scalar or matrix) entries V ab . The operator D(v) = D {va} n a=1 is the diagonal matrix having (scalar or vector) v1, . . . , vn down its diagonal. The vector 1n ∈ R n stands for the vector filled with ones. The Dirac measure at x is δx. The vector ja is the canonical vector of class Ca defined by (ja)i = δi∈C a and

J = [j1, . . . , jK ] ∈ {0, 1} n×K . The set C + is {z ∈ C, [z] > 0}.

MAIN RESULTS

We divide this section into a first analysis of the heterogeneous model, before particularizing the results to the homogeneous case.

Heterogeneous model

Consider an undirected random graph with n nodes belonging to one of K classes C1, . . . , CK with cardinalities |C k | = n k . Each node has an intrinsic probability qi to get connected to any other vertex in the graph. Besides, we define C ∈ R K×K a matrix of weights C ab affecting the connection probability between all nodes in Ca and all nodes in C b . We shall assume for simplicity of exposition (but with no generality restriction) that the nodes are ordered by class, i.e., nodes 1 to n1 constitute class C1, nodes n1 + 1 to n2 form class C2, and so on. The adjacency matrix A of the graph thus has independent entries (up to symmetry) with Aij Bernoulli with probability Pij = qiqjC ab ∈ (0, 1) when i ∈ Ca and j ∈ C b and we take Aii = 0 (without loss of generality) for all 1 ≤ i ≤ n.

We shall perform spectral clustering on the matrix L defined by

L = 1 √ n D-1 A - qq T 1 n qT 1n D-1 (1) 
where

D = D (q) and qi = 1 n n j=1 Aij = 1 n [A1n] i .
In order to achieve non-trivial (asymptotic) misclassification rates, we shall assume the following growth rate conditions. we shall denote M = {M ab } K a,b=1 . 2. qi ∈ (0, 1), i ∈ {1, . . . , n}, are i.i.d. random variables with probability measure µ having compact support in (0, 1). We shall denote mµ = tµ(dt).

Assumption 1. As n → ∞, 1. C ab = 1 + M ab
3. n i n → ci > 0 and we will denote c = {c k } K k=1 .

Under Assumption 1, it is easily shown that

max 1≤i≤n |qi -mµqi| → 0
almost surely, so that the qi are, up to a constant, uniformly consistent estimators for the (a priori unknown) qi.

Let us provide some intuition on the coming results. Note first that we may write2 

1 √ n A = 1 √ n qq T A d, √ n + 1 n q (a) q T (b) M ab K a,b=1 A d,1 + 1 √ n X A r,1
where

q (i) = [qn 1 +...+n i-1 +1, . . . , qn 1 +...+n i ] T ∈ R n i (n0 = 0)
and X = {Xij} n i,j=1 has independent (up to symmetry) entries of zero mean and variances D(A d,√ n 1n) -1 . Pre-and post-multiplying n -1 2 A by the Taylor expansions, we then retrieve a corresponding Taylor expansion for L and the following estimate.

σ 2 ij = qiqj(1 -qiqj) + O(n -1 2 ). Ob- serving that A d, √ n , A d,
Theorem 1. Let Assumption 1 hold and let L be given by (1). Then, as n → ∞, L -L → 0 in operator norm almost surely, where

L = 1 m 2 µ 1 √ n TD -1 XD -1 T T + UMU T
with D = D(q), T = In -1nq T q T 1n and U = J -1nc T .

The matrix L follows an additive spiked random matrix model similar, but formally different, to that studied in e.g., [START_REF] Chapon | The ouliers among the singular values of large rectangular random matrices with additive fixed rank deformation[END_REF]. This model is characterized by the fact that, under Assumption 1-2., as n → ∞, the eigenvalues of L converge, to one another in one or several "bulks", but for a maximum of K of them (the rank of UMU T ) that can be found in-between bulks or on either side of the bulks. The alignment between the eigenvectors associated to those isolated eigenvalues and the eigenvectors of UMU T can be evaluated and will largely depend on the eigenvalues of UMU T as we shall presently observe. Interestingly, U is constituted by the class-vectors ji, while M contains information about the interand intra-class affinities. Consequently, the isolated eigenvalueeigenvector pairs are expected to correlate to the class basis J as soon as the eigenvalues of M are sufficiently large. Our next objective is to explore this phenomenon through a careful analysis of the tractable approximate L of L. Before introducing our main results though, we need the following intermediary result.

Lemma 1 (A deterministic equivalent). Define the resolvent

Qz = (n -1 2 TD -1 XD -1 T T -zIn) -1 .
Then, for z ∈ C + , the system

e1(z) = 1 -zt -e1(z) + e2(z)t µ(dt) e2(z) = t -zt -e1(z) + e2(z)t µ(dt)
admits a unique solution (e1(z), e2(z)) ∈ (C + ) 2 , and z → e2(z) is the Stieljies transform of a continuous probability measure of compact support S. 3 Furthermore, for all z ∈ C \ S,

Qz ↔ -zIn -T e1(z)D -1 -e2(z)In T -1
where the notation A ↔ B stands for 1 n tr DA-1 n tr DB → 0 and d T 1 (A -B)d2 → 0 almost surely, for all deterministic Hermitian matrix D and deterministic vectors di of bounded norms.

Identifying the isolated eigenvalues of L then boils down (by Theorem 1) to finding the large ρ solutions to det( L -ρI) = 0. Following standard techniques (e.g., [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF][START_REF] Chapon | The ouliers among the singular values of large rectangular random matrices with additive fixed rank deformation[END_REF]) along with Lemma 1, we then have the following limiting result.

Theorem 2 (Isolated Eigenvalues). Let Assumption 1 hold and, for z ∈ C \ S (given in Lemma 1), define the K × K matrix

Gz = IK + e2(z) D (c) -cc T M
with e2(z) given in Lemma 1. Let ρ ∈ R \ S be such that Gρ has a zero eigenvalue of multiplicity κρ. Then there exists λi, . . . , λi+κ ρ-1 eigenvalues of m 2 µ L converging to ρ.

Theorem 2 is equivalent to saying that -1/e2(ρ) should be an eigenvalue of (D(c) -cc T )M. Consequently, to show the existence and location of isolated eigenvalues, we need to solve in ρ / ∈ S the equation -e2(ρ) = 1 for each non zero eigenvalue of (D(c) -cc T )M. Precisely, let us write S = M m=1 [Sm,-, Sm,+] with S1,-≤ S1,+ < S2,-≤ . . . < SM,+ and define S0,+ = -∞ and SM+1,-= ∞. Then, recalling that the Stieltjes transform of a real supported measure is necessarily increasing on R, there exist isolated eigenvalues of m 2 µ L in (Sm,+, Sm+1,-), m ∈ {0, . . . , M }, for all large n almost surely, if and only if there exists eigenvalues of (D(c) -cc T )M such that

lim x↓S m,+ e2(x) < --1 < lim x↑S m+1,- e2(x). (2) 
In particular, when S = [S-, S+] is composed of a single connected component (as when S is the support of the semi-circle law), then isolated eigenvalues of m 2 µ L may only be found beyond S+ if lim x↓S + -e2(x) > 1 or below Sif lim x↑S --e2(x) < 1, for some non-zero eigenvalue of (D(c) -cc T )M.

Remark 1 (Maximum number of eigenvalues). As 1 T

K (D(c)cc T ) = 0, 1K is a left-eigenvector of (D(c) -cc T )M with eigenvalue 0, and thus (D(c) -cc T )M is of maximum rank K -1, meaning that a maximum of K -1 isolated eigenvalues can be found in between or away from the bulks constituting S.

Let us now turn to the study of the eigenvectors. Our objective here is to correlate the eigenvectors associated with the eigenvalues determined in Theorem 2 to the canonical base vectors j1, . . . , jK .

Theorem 3 (Eigenspace Projections). Let λi, . . . , λi+κ ρ-1 be a group of isolated eigenvalues of m 2 µ L converging to ρ as per Theorem 2 and = -1/e2(ρ). Further denote Πρ the projector on the eigenspace of L associated to these eigenvalues. Then,

1 n J T ΠρJ = 1 2 e 2 (ρ) Υρ D (c) -cc T + o(1)
3 That is, e 2 (z) = (t -z) -1 ν(dt) for some real supported measure ν.

almost surely, where

Υρ = κρ j=1 [Vr,ρ]j[V l,ρ ] T j [V l,ρ ] T j [Vr,ρ]j
with Vr,ρ, V l,ρ ∈ R K×κρ respectively sets of right and left eigenvectors of D (c) -cc T M associated with the eigenvalue (and [X]j the j-th column of X), and e 2 (ρ) the derivative of e2(z) (defined in Lemma 1) along z evaluated at ρ.

Remark 2 (Class-wise eigenvector means). Letting u be a unit multiplicity isolated eigenvector of L, write

u = K a=1 αa ja √ na + σawa with αa = n -1 2
a u T ja and wa a (noise) vector orthogonal to ja and supported on the class-Ca indices. The coefficients αa characterize the alignment between u and the basis vectors ja, and are thus key elements to understand the performance of spectral clustering based on u. Now observe that Theorem 3 allows for an estimate of each αa. Indeed, with Πρ = uu T in this unit multiplicity case,

|αa| 2 = u T ja √ na 2 = 1 n D(c) -1 2 J T ΠρJD(c) -1 2 2 aa
thus allowing to retrieve αa up to a sign, while

αaα b = 1 n D(c) -1 2 J T ΠρJD(c) -1 2 ab
from which the sign of αa can be recovered.

Remark 3 (Total noise). For arbitrary multiplicity κρ, note that

Nρ = κρ -tr 1 n D(c) -1 2 J T ΠρJD(c) -1 2 = κρ 1 - 1 2 e 2 (ρ) ∈ (0, κρ)
measures the overall "noise" induced by the graph randomness in the κρ eigenvectors associated with ρ (0 for perfect alignment to J, and κρ for a complete misalignment) and is thus an important metric to assess the spectral clustering performance. In particular, for κρ = 1, Nρ = K k=1 σ 2 a defined in Remark 2.

As a consequence of these two remarks, we have the following corollary of Theorem 3.

Corollary 1 (Clustering Performance for K = 2, n1 = n2 and M = α β β α ). When K = 2, n1 = n2, by exchangeability arguments, with the definitions of Remark 2, we easily obtain that α1 = -α2, while σ 2 1 = σ 2 2 , for u the (hypothetically) unique isolated eigenvector of L. Clustering then boils down to deciding whether ui is positive or negative for each i. Conjecturing asymptotic Gaussianity of the entries of u, we then obtain the probability Pc of correct clustering as

Pc = 1 -Φ - 1 -Nρ Nρ (3) 
where Nρ = 1 -( 2 e 2 (ρ)) -1 and Φ(x) = 1 2π

x -∞ e -t 2 2 dt. 

Pc

Simulation uniform q i Simulation q i = q 0 Theory uniform q i Theory q i = q 0 , Eq. ( 3) 

Homogeneous model

Let µ = δq 0 , i.e., qi = q0 ∈ (0, 1) for all i, which leads back to the homogeneous SBM. We assume to be unaware of the model homogeneity so that we keep qi = n -1 [A1n]i as an estimator for q0, instead of e.g., the more appropriate q0 = n -2 1 T n A1n. Here, the expression of e2(z) becomes explicitly

e2(z) = - z 2 q -2 0 -1 - z 2 -4 q -2 0 -1 2 q -2 0 -1
where the branch of the square root is chosen such that e2(z) is a Stieltjes transform (i.e., e2(z) → 0 as |z| → ∞ and is analytic 

= [-2(q -2 0 -1) 1 2 , 2(q -2 0 -1) 1 2 ]. Besides, lim x↓S + e2(x) = -(q -2 0 -1) -1 2 and lim x↑S -e2(x) = (q -2 0 - 1) -1 2
. Thus, for a non-zero eigenvalue of (D(c) -cc T )M, Condition (2) reduces to | |> q -2 0 -1 so that must grow large as q0 → 0 (sparser regime). If the condition is met, the isolated eigenvalues in the spectrum of m 2 µ L then have limit ρ = q 2 0 ( 2 -1)+1 q 2 0 . For the eigenspace projections, Theorem 3 becomes

1 n J T ΠρJ → q 2 0 ( 2 + 1) -1 2 q 2 0 κρ j=1 [Vr,ρ]j[V l,ρ ] T j D(c) -cc T [V l,ρ ] T j [Vr,ρ]j .
In particular, the overall energy of the κρ eigenvectors "noise" is

κρ -tr 1 n D(c) -1 2 J T ΠρJD(c) -1 2 → κρ 2 q -2 0 -1
implying that, as | | → ∞ or q0 → 1, the eigenvectors of L tend to align perfectly to the basis vectors of J.

These results are particularly interesting to adapt to the popular toy model (see e.g., [START_REF] Nadakuditi | Graph spectra and the detectability of community structure in networks[END_REF]) where K = 2 and

{Pij} n i,j=1 = pin1n 1 1 T n 1 pout1n 1 1 T n 2 pout1n 2 1 T n 1 pin1n 2 1 T n 2 . Letting ∆ = √ np -1 in (pin -pout) > 0, Pij = q 2 0 (1 + n -1 2 M ab ) with q 2 0 = pin and M = 0 -∆ -∆ 0
. There, the non zero eigenvalue of (D(c) -cc T )M is = 2c1c2∆. Condition (2) here reads (c1c2∆) 2 ≥ 4(p -1 in -1). If met, the leading eigenvector u satisfies

1 n D(c) -1 2 J T uu T JD(c) -1 2 → (1 -N ) c2 - √ c1c2 - √ c1c2 c1
where N = (p -1 in -1) (2c1c2∆) -2 .

CONCLUDING REMARKS

Although focused here on the normalized modularity matrix, this article has proposed a general framework for the study of the isolated eigenvectors of dense network matrix models (approximation by a tractable random matrix, spike analysis, and eigenvector parameter estimation). Our results so far nonetheless only allow to assess the performance of spectral clustering in elementary scenarios (as per Corollary 1); a more complete analysis would demand a deeper study of the class-wise variances σ 2 a for each eigenvector (see Remark 2) along with the joint eigenvector fluctuations.

A key observation concerns the detrimental spectrum spreading of the normalized modularity matrix induced by degree heterogeneity, a phenomenon that simulations suggest is less present in the adjacency matrix itself. As the latter however introduces a node degree bias in the eigenvectors, a trade-off between resilience to node degree bias and to spectrum spreading needs be found when deciding on the choice of the matrix to operate.

Finally, our study yet involves dense networks, which are inappropriate models to many practical networks. Community detection over sparse networks however comes along with more stringent technical difficulties and spectral clustering on (derivatives of) the adjacency matrix is known to be suboptimal. In this scenario, the analysis of more involved matrix models, such as the non-backtracking matrix [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], is required. These considerations are left to future work.
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 1 Fig. 1. Second leading eigenvector of A (top) and first leading eigenvector of L (bottom) with qi following a bimodal distribution , two classes with equal proportions, n = 1000.
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  for a, b ∈ {1, . . . , K}, where M ab = O(1);
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 2 Fig. 2. Performance of community detection, for qi uniformly distributed in [.2, .8], M = δI2, c1 = c2 = 1 2 , and for qi = q0 = .5. Simulations for n = 2000.
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 2 Figure 2 displays the empirical and theoretical correct clustering rates under the conditions of Corollary 1 for M = δI2 and varying δ, with µ the uniform distribution in [.2, .8] and µ = δ.5. The phase transition point beyond which clustering is feasible is seen to be shifted to larger values of δ for the uniform distribution, which is a consequence of S being larger for more spread out measures µ, thus preventing the appearance of spiked eigenvalues. Under the same setting, with δ = 20, Figure 3 displays the leading eigenvector of L along with the theoretically discovered class-wise means (from Remark 2) and standard deviations (from Corollary 1).
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 3 Fig. 3. Leading eigenvector of L for qi uniformly distributed in [.2, .8], M = δI2, c1 = c2 = 1 2 , theoretical class-wise means (black) and (one) standard deviations (black-dashed), n = 2000.

The notation L for this matrix is due to its Laplacian-looking form.

Here subscript 'd, n k ' stands for deterministic term of order n k and 'r, n k ' for random term of order n k .
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