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We give a new stability estimate for the problem of determining the time-dependent zero order coefficient in a parabolic equation from a partial parabolic Dirichlet-to-Neumann map. The novelty of our result is that, contrary to the previous works, we do not need any measurement on the final time. We also show how this result can be used to establish a stability estimate for the problem of determining the nonlinear term in a semilinear parabolic equation from the corresponding "linearized" Dirichlet-to-Neumann map. The key ingredient in our analysis is a parabolic version of an elliptic Carleman inequality due to Bukhgeim and Uhlmann [6]. This parabolic Carleman inequality enters in an essential way in the construction of CGO solutions that vanish at a part of the lateral boundary.

Introduction

Let Ω be a C 2 -bounded domain of R n , n ≥ 2, with boundary Γ and, for T > 0, set Q = Ω × (0, T ), Ω + = Ω × {0}, Σ = Γ × (0, T ).

In all of this text, the symbol ∆ denotes the Laplace operator with respect to the space variable x.

Consider the initial boundary value problem, abbreviated to IBVP in the sequel,

   (∂ t -∆ + q(x, t))u = 0 in Q, u |Ω+ = 0, u |Σ = g. (1.1)
We are mainly interested in the stability issue of the problem of determining the time-dependent coefficient q by measuring the corresponding solution u of the IBVP (1.1) on a part of Σ when g is varying in a suitable set of data, which means that we want to establish a stability estimate of recovering q from a partial Dirichlet-to-Neumann map, denoted by DtN map in the sequel.

The IBVP (1.1) is for instance a typical model of the propagation of the heat through a time-evolving homogeneous body. The goal is to determine the coefficient q, who contains some properties of the body, by applying a heat source on some part of the boundary of the body and measuring the temperature on another part of the boundary of the body. Another classical inverse parabolic problem consists in determining the diffusion coefficient of an inhomogeneous medium through an IBVP for the equation ∂ t v-div(a(t, x)∇v) = 0. This last problem can be converted to the previous one by means of the Liouville transform u = √ av. In many applications we are often lead to determine physical quantities via parabolic IBVP's including nonlinear terms from boundary measurements. For instance such kind of problems appears in reservoir simulation, chemical kinetics and aerodynamics.

Henceforth, the space H -3 2 ,-3 4 (V -) is equipped with its natural quotient norm. We note that Λ q -Λ q has a better regularity than Λ q and Λ q individually. Precisely, Proposition 2.4 in Section 2 shows that actually Λ q -Λ q ∈ B(H -1 2 ,-1 4 (Σ), H 1 2 , 1 4 (Σ)). The same remark is also valid for Λ q -Λ q .

The first author establish in [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF] a logarithmic stability estimate for the problem of determining the zero order term from the parabolic DtN map Λ q together with the final data g → u q,g (•, T ). As a first result in the present work we improve this stability estimate.

In this text, the unit ball of a Banach space X will be denoted in the sequel by B X .

For 1 2(n+3) < s < 1 2(n+1) , set

Ψ s (ρ) = ρ + | ln ρ| -1-2s(n+1) 8 , ρ > 0, (1.2) 
extended by continuity at ρ = 0 by setting Ψ s (0) = 0.

Theorem 1.1. Fix m > 0 and 1 2(n+3) < s < 1 2(n+1) . There exists a constant C > 0, that can depend only on m, Q and s, so that, for any q, q ∈ mB L ∞ (Q) ,

q 1 -q 2 H -1 (Q) CΨ s ( Λ q1 -Λ q2 ) .
(1.3)

Here Λ q1 -Λ q2 stands for the norm of

Λ q1 -Λ q2 in B(H -1 2 ,-1 4 (Σ); H 1 2 , 1 4 (Σ)).
In the case of the infinite cylindrical domain Q = Ω × (0, ∞), Isakov [START_REF] Isakov | Uniqueness and Stability in Inverse Parabolic Problems[END_REF] got a stability estimate of determining q = q(x) from the full parabolic DtN map by combining the decay in time of solutions of parabolic equations and the stability estimate in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] concerning the problem of determining the zero order coefficient in a elliptic BVP from a full DtN map. For finite cylindrical domain Q = Ω × (0, T ), to our knowledge, even for time-independent coefficients, there is no result in the literature dealing with the stability issue of recovering of q from the full DtN map Λ q .

In fact Theorem 1.1 is obtained as by-product of the analysis we developed to derive a logarithmic stability estimate for the problem of determining q from the partial parabolic DtN map Λ q . This result is stated in the following theorem, where

Φ s (ρ) = ρ + | ln | ln ρ|| -s , ρ > 0, s > 0, (1.4) 
extended by continuity at ρ = 0 by setting Φ s (0) = 0.

Theorem 1.2. Let m > 0, there exist two constants C > 0 and s ∈ (0, 1/2), that can depend only on m, Q and V ± , so that, for any q, q ∈ mB L ∞ (Q) ,

q 1 -q 2 H -1 (Q) CΦ s Λ q -Λ q .
(1.5)

Here Λ q -Λ q denotes the norm of

Λ q -Λ q in B(H -1 2 ,-1 4 (Σ); H 1 2 , 1 4 (V -)).
It is worth mentioning that the uniqueness holds for the problem of determining q from the partial DtN operator that maps the boundary condition g supported on Γ 0 × (0, T ) into ∂ ν u q,g restricted to Γ 1 × (0, T ), where Γ i , i = 0, 1, are arbitrary nonempty open subsets of Γ. This result is stated as Theorem 3.27 in [14, page 197]. We note that the stability estimate corresponding to this uniqueness result remains an open problem.

In order to avoid the data at the final time, we adopt a strategy based on a parabolic Carleman inequality to construct the so-called CGO solutions vanishing at a part of the lateral boundary similar to that already used by the second author in [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] for determining time-dependent coefficients in a wave equation.

There is a wide literature devoted to inverse parabolic problems and specifically the determination of time-dependent coefficients. We just present briefly some typical results. Canon and Esteva [START_REF] Cannon | An inverse problem for the heat equation[END_REF] proved a logarithmic stability estimate for the determination of the support of a source term in a one dimension parabolic equation from a boundary measurement. This result was extended to three dimension heat equation in [START_REF] Cannon | A note on an inverse problem related to the 3-D heat equation[END_REF]. The case of a non local measurement was considered by Canon and Lin in [START_REF] Cannon | Determination of a parameter p(t) in some quasi-linear parabolic differential equations[END_REF][START_REF] Cannon | An Inverse Problem of Finding a Parameter in a Semi-linear Heat Equation[END_REF]. In [START_REF] Choulli | An abstract inverse problem[END_REF], the first author proved existence, uniqueness and Lipschitz stability for the determination of a time-dependent coefficient appearing in an abstract integro-differential equation, extending earlier results in [START_REF] Choulli | An abstract inverse problem and application[END_REF]. The first author and Yamamoto established in [START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF] a stability estimate for the inverse problem of determining a source term appearing in a heat equation from Neumann boundary measurements. In [START_REF] Choulli | Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation[END_REF], the first author and Yamamoto considered an inverse semi-linear parabolic problem of recovering the coefficient used to reach a desired temperature along a curve. In [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF], Isakov extended the construction of complex geometric optics solutions, introduced in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], to various PDE's including hyperbolic and parabolic equations to prove the density of products of solutions. One can get from the results in [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF] the unique determination of q from the measurements on the lateral boundary together with data at the final time. When the space domain is cylindrical, adopting the strategy introduced in [START_REF] Bukhgeim | Global uniqueness of a class of multidimensional inverse problem[END_REF], the second author and Gaïtan proved in [START_REF] Gaitan | A stability result for a time-dependent potential in a cylindrical domain[END_REF] that the time-dependent zero order coefficient can be recovered uniquely from a single boundary measurement. Based on properties of fundamental solutions of parabolic equations, we proved in [START_REF] Choulli | Stability of the determination of a time-dependent coefficient in parabolic equations[END_REF] Lipschitz stability of determining the time-dependent part of the zero order coefficient in a parabolic IBVP from a single boundary measurement.

We also mention the recent works related to the determination of a time-dependent coefficients in IBVP's for hyperbolic, fractional diffusion and dynamical Schrödinger equations [START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time dependent coefficient[END_REF][START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF][START_REF] Choulli | Stable Determination of Time-Dependent Scalar Potential From Boundary Measurements in a Periodic Quantum Waveguide, New Prospects in Direct, Inverse and Control Problems for Evolution Equations[END_REF][START_REF] Fujishiro | Determination of time dependent factors of coefficients in fractional diffusion equations[END_REF][START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF].

We point out that, concerning the elliptic case, a stability estimate corresponding to the uniqueness result by Bukhgeim and Uhlmann [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF] was established by Heck and Wang [27]. This result was improved by the authors and Soccorsi in [START_REF] Choulli | Double logarithmic stability estimate in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map[END_REF]. Caro, Dos Santos Ferreira and Ruiz [START_REF] Caro | Stability estimates for the Radon transform with restricted data and applications[END_REF] obtained recently a logarithmic stability estimate corresponding to the uniqueness result by Kenig, Sjöstrand and G. Uhlmann [START_REF] Kenig | The Calderon problem with partial data[END_REF]. Both the determination of the scalar potential and the conductivity in a periodic cylindrical domain from a partial DtN map was tackled in [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF]. We just quote these few references. But, of course, there is a tremendous literature on this subject in connection with the famous Calderòn's problem.

Considering time-dependent unknown coefficients in parabolic equations is very useful when treating the determination of the nonlinear term appearing in a semilinear parabolic equation. We discuss this topic in Section 6. Uniqueness results for such kind of inverse semilinear parabolic problems was already established by Isakov [START_REF] Isakov | On uniqueness in inverse problems for semilinear parabolic equations[END_REF][START_REF] Isakov | Uniqueness of recovery of some systems of semilinear partial differential equations[END_REF][START_REF] Isakov | Uniqueness and Stability in Inverse Parabolic Problems[END_REF]. Stability estimates and uniqueness in the case of a single boundary lateral measurement has been proved in [START_REF] Choulli | Stable determination of a semilinear term in a parabolic equation[END_REF][START_REF] Klibanov | Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate[END_REF] for a restricted class of unknown nonlinearities.

The rest of this text is organized as follows. Section 2 is devoted to existence and uniqueness of solutions of the IBVP (1.1) in a weak sense. Following a well established terminology, we call these weak solutions the transposition solutions. We prove in Section 3 a Carleman inequality which is, as we said before, the key point in constructing CGO solutions that vanish on a part of the lateral boundary. These CGO solutions are constructed in Section 4. Theorems 1.1 and 1.2 are proved in Section 5. We finally apply in section 6 the result in Theorem 1.1 to the problem of determining the non linear term is a semilinear parabolic equation from the corresponding "linearized" DtN map.

Transposition solutions

This section is mainly dedicated to the IBVP (1.1). We construct the necessary framework leading to the rigorous definition of the parabolic DtN map.

For sake of simplicity, we limit our study in this section to real-valued functions. But all the results are extended without any difficulty to complex-valued functions.

Henceforth

H ± = {u ∈ L 2 (Q); (±∂ t -∆)u ∈ L 2 (Q)} is equiped with its natural norm u H± = u 2 L 2 (Q) + (±∂ t -∆)u 2 L 2 (Q) 1/2 .
Proceeding similarly to [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF]Theorem 4] or [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF]Lemma 2.1], we show that C ∞ (Q) is dense in H ± .

In the rest of this text, Ω -= Ω × {T }.

Denote by N the set of (g 0 , g 1 , w + , w -) ∈ H

3 2 , 3 4 (Σ) ⊕ H 1 2 , 1 4 (Σ) ⊕ H 1 (Ω) ⊕ H 1 (Ω)
satisfying the compatibility conditions g 0 (•, 0) = w + and g 0 (•, T ) = w -on Γ.

(2.1)

From the results in [38, Section 2.5, page 17], for any (g 0 , g 1 , w + , w -) ∈ N , there exists

w = E(g 0 , g 1 , w + , w -) ∈ H 2,1 (Q)
such that, in the trace sense,

w |Σ = g 0 , ∂ ν w |Σ = g 1 , w |Ω± = w ± (2.2) and w H 2,1 (Q) C g 0 H 3 2 , 3 
4 (Σ) + g 1 H 1 2 , 1 4 (Σ) + w -H 1 (Ω) + w + H 1 (Ω) , (2.3) 
for some constant C > 0 depending only on Q.

We recall that H

1 4 0 (0, T ; L 2 (Γ)) coincides with H 1 4 (0, T ; L 2 (Γ)
). This fact is more or less known, but for sake of completeness we provide its proof in Lemma A.1 of Appendix A. Whence H

1 2 , 1 4 ,0 (Σ) is identified to H 1 2 , 1 4 (Σ)
. Therefore, we identify in the sequel the dual space of H 

(Σ) to H -1 2 ,-1 4 (Σ).
Proposition 2.1. The maps τ j , j = 0, 1, and r ± defined for v ∈ C ∞ (Q) by

τ 0 v = v |Σ , τ 1 v = ∂ ν v |Σ , r ± v = v |Ω± (2.4)
are extended to bounded operators

τ 0 : H ± → H -1 2 ,-1 4 (Σ), τ 1 : H ± → H -3 2 ,-3 4 (Σ), r -, r + : H ± → H -1 (Ω). (2.5) 
Proof. Assume that w = E(0, g 1 , 0, 0) for some (0, g 1 , 0, 0) ∈ N . Then Green's formula, where v ∈ C ∞ (Q), yields

τ 0 v, τ 1 w = Q (∂ t -∆)vwdxdt - Q v(-∂ t -∆)wdxdt
which, combined with (2.2) and (2.3), entails

| τ 0 v, g 1 | C v H+ w H 2,1 (Q) C v H+ g 1 H 1 2 , 1 4 (Σ) 
.

Whence τ 0 can be extended by density to a bounded operator from

H + to H -1 2 ,- 1 
4 (Σ). We have similarly, by taking w = E(g 0 , 0, 0, 0) for some (g 0 , 0, 0, 0) ∈ N ,

-τ 1 v, g 0 = Q (∂ t -∆)vwdxdt - Q v(-∂ t -∆)wdxdt.
This formula, (2.2) and (2.3) imply

| τ 1 v, g 0 | C v H+ w H 2,1 (Q) C v H+ g 0 H 3 2 , 3 4 ,0 (Σ)
.

Consequently, τ 1 can be extended by density to a bounded operator from

H + to H -3 2 ,-3 4 (Σ).
The remaining part of the proof can be proved in a similar manner. We leave to the interested reader to write down the details.

Introduce

H ± = {τ 0 u; u ∈ H + and r ± u = 0}, S ± = {u ∈ L 2 (Q); (±∂ t -∆)u = 0 and r ± u = 0}. Proposition 2.2. We have τ 0 S ± = H ± = H -1 2 ,-1 4 (Σ) and, for any u ∈ S + , u H+ = u L 2 (Q) C τ 0 u H -1 2 ,- 1 
4 (Σ) , (2.6) 
for some constant C > 0 depending only on Q.

Proof. We already know that

τ 0 S ± ⊂ H ± ⊂ H -1 2 ,- 1 
4 (Σ). Then we have only to prove the reverse inclusions. To do that, fix g ∈ H -1 2 ,-1 4 (Σ) and, for

F ∈ L 2 (Q), consider the IBVP (-∂ t -∆)w = F in Q, w |Ω-∪Σ = 0.
According to [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 1.43], this IBVP admits a unique solution w = w F ∈ H2,1 (Q) so that

τ 1 w F H 1 2 , 1 4 (Σ) C w F H 2,1 (Q) C F L 2 (Q) . (2.7) 
Thus, the linear form on L 2 (Q) given by

F ∈ L 2 (Q) → -g, τ 1 w F is continuous. Therefore, according to Riesz's representation theorem, there exists u ∈ L 2 (Q) such that (u, F ) = -g, τ 1 w F .
Here and henceforth (•, •) is the usual scalar product on L 2 (Q).

Taking F = (-∂ t -∆)w for some w ∈ C ∞ 0 (Q), we get (∂ t -∆)u = 0 on Q. On the other hand, the choice of F = (-∂ t -∆)w, where w = E(0, 0, w + , 0) ∈ H 2,1 (Q) with (0, 0, w + , 0) ∈ N , yields r + u = 0 and then u ∈ S + . Finally, F = (-∂ t -∆)w, for some w = E(0, g 1 , 0, 0) ∈ H 2,1 (Q) with (0, g 1 , 0, 0) ∈ N , gives τ 0 u = g.
In other words, we proved that g ∈ τ 0 S + and consequently

τ 0 S + = H ± = H -1 For ε = ±, consider the IBVP    (ε∂ t -∆ + q(x, t))u = 0 in Q, u |Ωε = 0, u |Σ = g. (2.8) Proposition 2.3. For g ∈ H -1 2 ,-1 4 (Σ) and q ∈ mB L ∞ (Q) , the IBVP (2.8) admits a unique transposition solution u ε q,g ∈ H ε satisfying u ε q,g Hε C g H -1 2 ,- 1 
4 (Σ) , (2.9) 
where the constant C depends only on Q and m. Additionally the parabolic DtN map

Λ q : g → τ 1 u + q,g defines a bounded operator from H -1 2 ,-1 4 (Σ) into H -3 2 ,-3 4 (Σ).
Proof. We give the proof for ε = +. The case ε = -can be treated similarly. By Proposition 2.2, there exists a unique G ∈ S + such that τ 0 G = g and

G L 2 (Q) C g H -1 2 ,-1 4 (Σ)
.

Consider the IBVP

(∂ t -∆ + q)w = -qG in Q, w |Ω+∪Σ = 0. As -qG ∈ L 2 (Q), we get from [14, Theorem 1.43] that this IBVP has a unique solution w ∈ H 2,1 (Q) satisfying w H 2,1 (Q) C qG L 2 (Q) C q L ∞ (Q) g H -1 2 ,- 1 4 (Σ) 
.

(2.10)

Hence, u + q,g = w + G ∈ H + is the unique transposition solution of (2.8) and (2.9) follows from (2.10). Now, according to Proposition 2.1, we have

τ 1 u + q,g ∈ H -3 2 ,- 3 
4 (Σ) with

τ 1 u + q,g 2 
H -3 2 ,- 3 
4 (Σ) C u + q,g 2 
H+ = C u + q,g 2 
L 2 (Q) + qu + q,g 2 L 2 (Q) C 1 + q 2 L ∞ (Q) u + q,g 2 L 2 (Q) ,
which, in combination with (2.9), entails

Λ q : H -1 2 ,-1 4 (Σ) → H -3 2 ,-3 4 (Σ) : g → τ 1 u + q,g
defines a bounded operator.

The identity in the following proposition will be very useful in our analysis.

Proposition 2.4. Fix m > 0 and let q, q ∈ mB L ∞ (Q) . Then Λ q -Λ q is a bounded operator from H -1 2 ,-1 4 (Σ) into H 1 2 , 1 4 (Σ) and (Λ q -Λ q )g, h = Q (q -q)u + q,g u - q,h dxdt, g, h ∈ H -1 2 ,-1 4 (Σ). (2.11)
Proof. It is straightforward to check that u = u + q,g -u + q,g is the solution of the IBVP

(∂ t -∆ + q)u = (q -q)u + q,g in Q, u |Ω+∪Σ = 0. Therefore, u ∈ H 2,1 (Q) and by the trace theorem [38, Theorem 2.1, page 9] (Λ q -Λ q )g = ∂ ν u ∈ H 1 2 , 1 4 (Σ). Additionally (2.9) implies (Λ q -Λ q )g H 1 2 , 1 4 (Σ) = ∂ ν u H 1 2 , 1 4 (Σ) C u H 2,1 (Q) C (q -q)u + q,g L 2 (Q) C g H -1 2 ,- 1 
4 (Σ)
,

where C is a generic constant depending only on Q and m. Let h = τ 0 H, where H ∈ C ∞ (Q) ∩ S -. We find by making integrations by parts

- Σ ∂ ν uh dσdt = Q (∂ t -∆ + q)uu - q,h dxdt - Q u(-∂ t -∆ + q)u - q,h dxdt (2.12) = Q (q -q)u + q,g u - q,h dxdt. As S -= C ∞ (Q) ∩ S -is dense in S -, τ 0 S -is dense in H -1 2 ,- 1 
4 (Σ) according to Proposition 2.2. Whence (2.11) is deduced from (2.12) by density.

A Carleman inequalities

We establish in this section a parabolic version of an elliptic Carleman inequality due to Bukgheim and Uhlmann [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF]. This inequality is used in an essential way in constructing CGO solutions vanishing at a part of the lateral boundary.

In this section ε = ± and, for ω ∈ S n-1 and ρ ≥ 0,

ϕ ε,ω,ρ (x, t) = e -ε2(ρω•x+ρ 2 t) , (x, t) ∈ Q, and ψ ε,ω,ρ = √ ϕ ε,ω,ρ .
Observe that ψ ε,ω,ρ satisfies (ε∂ t -∆)ψ ε,ω,ρ = 0, (x, t) ∈ Q.

Theorem 3.1. There exists a constant C > 0 depending only on Q with the property that, for any m > 0, we find ρ 0 > 0, depending only on Q and m so that, for any q

∈ mB L ∞ (Q) , ρ ≥ ρ 0 and u ∈ C 2 (Q) satisfying u = 0 on Σ ∪ Ω ε , Ω-ε ϕ ε,ω,ρ |u| 2 dx + ρ Σε,ω ϕ ε,ω,ρ |∂ ν u| 2 |ω • ν| dσdt + ρ 2 Q ϕ ε,ω,ρ |u| 2 dxdt (3.1) ≤ C Q ϕ ε,ω,ρ |(ε∂ t -∆ + q)u| 2 dxdt + ρ Σ-ε,ω ϕ ε,ω,ρ |∂ ν u| 2 |ω • ν| dσdt .
Proof. It is enough to give the proof in the case of real-valued functions. We consider the case ε = +. The case ε = -can be treated similarly.

Let u ∈ C 2 (Q) satisfying u = 0 on Σ ∪ Ω + and set v = ψ +,ω,ρ u. Straightforward computations give ψ +,ω,ρ (∂ t -∆)u = P ω,ρ v, (3.2) 
where

P ω,ρ = ∂ t -∆ -2ρω • ∇.
In this proof, the symbol ∇ denotes the gradient with respect to the variable x. We split P ω,ρ into two terms

P ω,ρ = -∆ + Q ω,ρ with Q ω,ρ = ∂ t -2ρω • ∇. Hence P +,ρ,ω v 2 L 2 (Q) Q ω,ρ v 2 -2 (∆v, Q ω,ρ v) . But -2 (∆v, Q ω,ρ v) L 2 (Q) = -2 Q ∆v∂ t vdxdt + 2ρ Q ∆vω • ∇vdxdt.
Applying Green's formula, we get

-2 Q ∆v∂ t vdxdt = Q ∂ t |∇v| 2 dxdt = Ω- |∇v| 2 dx.
On the other hand, we have from the proof of [6, Lemma 2.1]

2 Q ∆vω • ∇vdxdt = Σ |∂ ν v| 2 ω • νdσdt.
Combining these formulas, we obtain

P ω,ρ v 2 L 2 (Q) Ω- |∇ x v| 2 + ρ Σ |∂ ν v| 2 ω • νdσdt + Q ω,ρ v 2 L 2 (Q) . (3.3) 
We need the following Poincaré type inequality to pursue the proof. This inequality is proved later in this text. Lemma 3.1. There exists a constant C, that can depend only on Ω so that, for any ρ > 2 and v ∈ H

1 (Q) satisfying v = 0 on Σ ∪ Ω ε , ρ v L 2 (Q) C Q ω,ρ v L 2 (Q) . (3.4) 
Inequality (3.4) in (3.3) yields Ω- |v| 2 dx + ρ Σ+ |∂ ν v| 2 ω • νdσdt + ρ 2 v 2 L 2 (Q) C 0 P ω,ρ v 2 L 2 (Q) + ρ Σ- |∂ ν v| 2 |ω • ν|dσdt .
Here the constant C 0 depends only on Q. This gives (3.1) when q = 0. For an arbitrary q ∈ mB L ∞ (Q) , we have

|∂ t u -∆u| 2 = |∂ t u -∆u + qu -qu| 2 ≤ 2 |(∂ t -∆ + q)u| 2 + 2m 2 |u| 2 .
Fix ρ 0 > 2 max( √ C 0 m, 1). Then (3.1) follows with C = 2C 0 .

Proof of Lemma 3.1. We consider the case ε = +. The case ε = -is proved similarly.

Let v ∈ H 1 (Q) satisfying v = 0 on Σ ∪ Ω + .
A classical reflexion argument in t with respect to T shows that v is the restriction to Q of a function belonging to H 1 0 (Ω × (0, 2T )). Therefore, by density, it is enough to give the proof when v ∈ C ∞ 0 (Ω × (0, 2T )) that we consider in the sequel as a subset of

C ∞ 0 (Ω × (0, +∞)). Let v ∈ C ∞ 0 (Ω × (0, +∞)). If η = (η x , η t ) ∈ R n × R is defined by η x = -2ρω 1 + 4ρ 2 , η t = 1 1 + 4ρ 2 , then v(x, t) = 0 -∞ ∂ s v((x, t) + sη)ds, (x, t) ∈ Q. Fix R > 0 such that Ω ⊂ {|x| R; x ∈ R n }. For s < -4R, x ∈ Ω and ρ > 2, we get |x + sη x | -s 2 -|x| > R.
Thus, for s < -4R and x ∈ Ω, x + sη x / ∈ Ω yielding v((x, t) + sη) = 0. Therefore

|v(x, t)| 2 0 -4R ∂ s v((x, t) + sη)ds 2 , (x, t) ∈ Q.
Applying Cauchy-Schwarz's inequality, we obtain

Q |v(x, t)| 2 dxdt ≤ 4R Q 0 -4R |∂ s v((x, t) + sη)| 2 dsdxdt = 4R 1 + 4ρ 2 Q 0 -4R |Q ω,ρ v((x, t) + sη)| 2 dsdxdt.
We make the substitution τ = t + sη t , y = x + sη x and we apply Fubini's theorem. We find

Q |v(x, t)| 2 dxdt 4R 1 + 4ρ 2 0 -4R T +sηt -∞ R n |Q ω,ρ v(y, τ )| 2 dydτ ds 16R 2 1 + 4ρ 2 Q |Q ω,ρ v(x, t)| 2 dxdt.
Here we used both the fact that η t > 0 and supp(v) ⊂ (0, +∞) × Ω.

CGO solutions vanishing on a part of the lateral boundary

With the help of the Carleman inequality in the previous section, we construct in this section CGO solutions vanishing at a part of the lateral boundary.

As in the preceding section, for ω ∈ S n-1 , ε = ± and ρ ≥ 0, 4 (T -t) .

ϕ ε,ω,ρ (x, t) = e -ε2(ρω•x+ρ 2 t) , (x, t) ∈ Q, and ψ ε,ω,ρ = √ ϕ ε,ω,ρ . Set, where δ > 0 and ω ∈ S n-1 , Γ +,ω,δ = {x ∈ Γ; ν(x) • ω > δ} and Σ +,ω,δ = Γ +,ω,δ × (0, T ). Fix ω ∈ S n-1 , ξ ∈ R n with ξ • ω = 0, τ ∈ R and ρ ≥ ρ 0 , ρ 0 is as in Theorem 3.1. Let ζ = (ξ, τ ) and θ + (x, t) = 1 -e -ρ 3 4 t e -i(x,t)•ζ θ -(x, t) = 1 -e -ρ 3 
Theorem 4.1. Let m > 0. There exists a constant C > 0 depending only on Q, m and δ so that, for any q ∈ mB L ∞ (Ω) , the equation (±∂ t -∆ + q)u = 0 in Q has a solution u ±,q ∈ H ± , satisfying u ±,q = 0 on Σ +,∓ω,δ , of the form

u ±,q = ψ ∓,ω,ρ (θ ± + w ±,q ) , (4.1) 
where w ±,q ∈ H ± is such that

w +,q L 2 (Q) C(ρ -1 4 + ρ -1 ζ 2 ), w -,q L 2 (Q) Cρ -1 4 . (4.2)
Here and henceforth

ζ = 1 + |ζ| 2 .
In the rest of this section, for sake of simplicity, we use ϕ ε and ψ ε instead of ϕ ε,ω,ρ and ψ ε,ω,ρ . Before proving Theorem 4.1, we establish some preliminary results. We firstly rewrite the Carleman inequality in Theorem 3.1 as an energy inequality in weighted L 2 -spaces. To this end, denote by • Q,ϕε ,

• Ω-ε,ϕε and • Σ±ε,ϕεγ , where γ = |ν • ω|, the respective L 2 -norms of L 2 (Q, ϕ ε dxdt), L 2 (Ω -ε , ϕ ε dx) and L 2 (Σ ±ε,ω , ϕ ε γdσdt). Under these notations, inequality (3.1) takes the form

u Ω-ε,ϕε + ρ 1 2 ∂ ν u Σε,ϕεγ + ρ u Q,ϕε C (ε∂ t -∆ + q)u Q,ϕε + ∂ ν u Σ-ε,ϕεγ , (4.3) 
for any ρ ≥ ρ 0 and u

∈ D ε = {v ∈ C 2 (Q); v |Σ∪Ωε = 0}.
Again, for sake of simplicity, we use in the sequel the following notations

L 2 Q,ϕε = L 2 (Q, ϕ ε dxdt) L 2 Ω-ε,ϕε = L 2 (Ω -ε , ϕ ε dx), L 2 Σ±ε,ϕεγ = L 2 (Σ ±ε,ω , ϕ ε γdσdt).
We identify the dual space of

L 2 Q,ϕε (resp. L 2 Σ-ε,ϕεγ ) by L 2 Q,ϕ -1 ε (resp. L 2 Σ-ε,ϕ -1 ε γ -1 ). The respective norms of L 2 Q,ϕ -1 ε and L 2 Σ-ε,ϕ -1 ε γ -1 are denoted respectively by • Q,ϕ -1 ε and • Σ-ε,ϕ -1 ε γ -1 . Consider the following subspace of L 2 Q,ϕε ⊕ L 2 Σ-ε,ϕεγ M ε = {((ε∂ t -∆ + q)v, ∂ ν v |Σ-ε,ω ); v ∈ D ε }. Lemma 4.1. Fix m > 0 and q ∈ mB L ∞ (Q) .
Assume that ρ ρ 0 , with ρ 0 the constant of Theorem 3.1, and let

(G, h) ∈ L 2 Q,ϕ -1 ε ⊕ L 2 Σε,ϕ -1 ε γ -1 . Then there exists z ∈ L 2 Q,ϕε satisfying (-ε∂ t -∆ + q)z = G in Q, z |Σε,ω = h, z |Ω-ε = 0, z Q,ϕε C ρ -1 G Q,ϕ -1 ε + ρ -1 2 h Σ-ε,ϕ -1 ε γ -1 , for some constant C > 0 depending only on Q and m. Proof. Define on M ε the map S by S [((ε∂ t -∆ + q)f, ∂ ν f |Σ-ε,ω )] = f, G L 2 (Q) -∂ ν f, h L 2 (Σε,ω) , f ∈ D ε .
In light of (4.3) we get, for f ∈ D ε ,

|S [((ε∂ t -∆ + q)f,∂ ν f |Σε,ω )]| ≤ f Q,ϕε G Q,ϕ -1 ε + ∂ ν f Σε,ϕεγ h Σε,ϕ -1 ε γ -1 ≤ ρ -1 G Q,ϕ -1 ε + ρ -1 2 h Σε,ϕ -1 ε γ -1 (ρ f Q,ϕε + ∂ ν f Σε,ϕεγ ) ≤ C ρ -1 G Q,ϕ -1 ε + ρ -1 2 h Σε,ϕ -1 ε γ -1 (ε∂ t -∆ + q)u Q,ϕε + ∂ ν u Σ-ε,ϕεγ ≤ C ρ -1 G Q,ϕ -1 ε + ρ -1 2 h Σε,ϕ -1 ε γ -1 ((ε∂ t -∆ + q)f, ∂ ν f |Σ-ε,ω ) L 2 Q,ϕε ⊕L 2 Σ -ε ,ϕεγ ,
where C is the constant in (4.3). By Hahn Banach's extension theorem, S is extended to a continuous linear form on L 2 Q,ϕε ⊕ L 2 Σ-ε,ϕεγ . This extension is denoted again by S . Additionally

S ≤ C ρ -1 G Q,ϕ -1 ε + ρ -1 2 h Σε,ϕ -1 ε γ -1 , (4.4) 
where S denotes the norm of S in L 2 Q,ϕε ⊕ L 2 Σ-ε,ϕεγ . Therefore, by Riesz's representation theorem, there exists (z, g)

∈ L 2 Q,ϕε ⊕ L 2 Σ-ε,ϕεγ so that, for any f ∈ D ε , S [((ε∂ t -∆ + q)f, ∂ ν f |Σ-ε,ω )] = ((ε∂ t -∆ + q)f, z) L 2 (Q) + ∂ ν f, g L 2 (Σ-ε,ω) .
In other words we proved that, for any f ∈ D ε ,

((ε∂ t -∆ + q)f, z) L 2 (Q) + ∂ ν f, g L 2 (Σ-ε,ω) = (f, G) L 2 (Q) -∂ ν f, h L 2 (Σε,ω) . (4.5) Taking f ∈ C ∞ 0 (Q), we get (-ε∂ t -∆ + q)z = G in Q. Whence z ∈ H -ε .
In light of the trace theorem of Proposition 2.1, the other properties of z can be proved in a straightforward manner.

Proof of Theorem 4.1. We give only the existence of u +,q . That of u -,q can be established following the same method and therefore we omit the proof in this case. In the sequel ρ ≥ ρ 0 . Recall that we seek u +,q in the form u +,q = ψ -(θ + + w +,q ) which means that w +,q must be the solution of the IBVP

   (∂ t -∆ + q)(ψ -w) = -(∂ t -∆ + q)(ψ -θ + ) in Q, w |Ω+ = 0, w |Σ +,-ω,δ = -θ + . (4.6)
The following identity is used in the sequel

-(∂ t -∆ + q)(ψ -θ + ) = -ψ -e -i(x,t)•ζ (-iτ + |ξ| 2 + q 1 ) 1 -e -ρ 3 4 t -ρ 3 4 e -ρ 3 4 t . Pick ϕ ∈ C ∞ 0 (R n ) so that supp(ϕ) ∩ Γ ⊂ {x ∈ Γ; ω • ν(x) < -2δ/3} and ϕ = 1 on {x ∈ Γ; ω • ν(x) < -δ} = Γ +,-ω,δ . Let h = -ϕθ + on Σ -,ω = Σ +,-ω , G = -ψ -e -i(x,t)•ζ (-iτ + |ξ| 2 + q 1 ) 1 -e -ρ 3 4 t -ρ 3 4 e -ρ 3 4 t .
From Lemma 4.1 (with ε = -), there exists z ∈ H + satisfying

   (∂ t -∆ + q)z = G in Q, z |Ω+ = 0, z |Σ-,ω = h. As ψ + = ψ -1
-, we see that w +,q = ψ + z satisfies (4.6). We complete the proof by showing that inequality (4.2) holds for w +,q . To do that, we firstly note that

G Q,ϕ+ C(|τ | + |ξ| 2 + ρ 3 4 ) C( ζ 2 + ρ 3 4 ),
for some constant C > 0 depending only on m and Q. Whence

w +,q L 2 (Q) = z Q,ϕ+ C ρ -1 G Q,ϕ -1 - + ρ -1 2 h Σ-,ϕ -1 -γ -1 C ρ -1 G Q,ϕ+ + ρ -1 2 h Σ-,ϕ+γ -1 C ρ -1 ( ζ 2 + ρ 3 4 ) + ρ -1 2 ϕγ -1 2 L 2 (Σ-,ω) C(ρ -1 4 + ρ -1 ζ 2 ),
as it is expected.

Proof of Theorems 1.1 and 1.2

Fix q, q ∈ mB L ∞ (Q) and set p = (q -q)χ Q , where χ Q denotes the characteristic function of

Q. For δ ∈ (0, 1), let χ ±,ω,δ ∈ C ∞ 0 (R n ) satisfying supp(χ ±,ω,δ ) ∩ Γ ⊂ Γ -,∓ω,2δ and χ ±,ω,δ = 1 on Γ -,∓ω,δ .
As usual, the operator χ -,ω,δ (Λ q -Λ q )χ +,ω,δ acts as follows

χ -,ω,δ (Λ q -Λ q )χ +,ω,δ (g) = χ -,ω,δ (Λ q -Λ q )(χ +,ω,δ g), g ∈ H -1 2 ,-1 4 (Σ).
Recall that the Fourier transform p of p is given by

p(ζ) = (2π) -(n+1)/2 R n+1
p(x, t)e -iζ•(x,t) dxdt.

We start with the preliminary lemma

Lemma 5.1. Let δ ∈ (0, 1), ω ∈ S n-1 , ζ = (ξ, τ ) ∈ R n × R with ξ • ω = 0 and ρ 0 be as in Theorem 3.1. Then | p(ζ)| C ρ -1 4 + ρ -1 R 2 + χ -,ω,δ (Λ q -Λ q )χ +,ω,δ e cρ 2 , |ζ| R, ρ ≥ ρ 0 . (5.1)
for some constants c > 0 and C > 0 depending only on m, δ and Q.

Here χ -,ω,δ (Λ q -Λ q )χ +,ω,δ denotes the norm χ -,ω,δ (Λ q -Λ q )χ +,ω,δ in B(H

-1 2 ,-1 4 (Σ), H 1 2 , 1 4 (Σ)).
Proof. Let g = τ 0 u +,q (resp. h = u -, q ), with u +,q (resp. u -, q ) as in Theorem 4.1. Then formula (2.11) yields

R n+1 p(x, t)e -iζ•(x,t) dxdt Q Z(t, x)dxdt + | χ -,ω,δ (Λ q -Λ q )χ +,ω,δ g, h | (5.2)
with Z = e -iζ•(x,t) w -, q + w +,q + w +,q w -, q + e -ρ 3 4 (T -t) (e -iζ•(x,t) + w +,q ) + e -ρ 3 t (1 + w -, q ) + e -ρ 3 4 T .

In light of (4.2) and noting that

T 0 e -2ρ 3 
4 t dt = T 0 e -2ρ 3 4 (T -t) dt +∞ 0 e -2ρ 3 
4 t dt = ρ -3 4 2 ,
we get by applying Cauchy-Schwarz's inequality

Q Z(t, x)dxdt Cρ -1 4 . (5.3) Since u +,q ∈ H + , g H -1 4 ,-1 2 (Σ) C u +,q H+ C u +,q L 2 (Q) e cρ 2 (5.4) 
with c = T + sup x∈Ω |x| and the same estimate holds for w -, q . Finally a combination of (5.2), (5.3) and (5.4) entails (5.1).

Proof of Theorem 1.1. In this proof c and C are generic constants that can depend only on m, Q and s. By Lemma 5.1,

| p(ζ)| C ρ -1 4 + ρ -1 R 2 + Λ q -Λ q e cρ 2 , |ζ| R, ρ ≥ ρ 0 . (5.5)
On the other hand

p 2 H -1 (R n+1 ) = R n+1 (1 + |ζ| 2 ) -1 | p(ζ)| 2 dζ = |ζ]≤R (1 + |ζ| 2 ) -1 | p(ζ)| 2 dζ + |ζ|≥R (1 + |ζ| 2 ) -1 | p(ζ)| 2 dζ ≤ |{|ζ| ≤ R}| max |ζ|≤R | p(ζ)| 2 + R -2 p 2 L 2 ≤ |{|ζ| ≤ R}| max |ζ|≤R | p(ζ)| 2 + R -2 p 2 L 2 ≤ |{|ζ| ≤ R}| max |ζ|≤R | p(ζ)| 2 + R -2 m 2 |Q|.
Whence, as a consequence of (5.5),

p 2 H -1 (R n+1 ) C R -2 + ρ -1 2 R n+1 + ρ -2 R n+5 + R n+1 γ 2 e cρ 2 , R > 0, ρ ≥ ρ 0 , (5.6) 
where we used the temporary notation γ = Λ q -Λ q . In this inequality, we take R = ρ s in order to obtain, where α = 1/2 -s(n + 1)(> 0),

p 2 H -1 (R n+1 ) ≤ C ρ -α + γ 2 e cρ 2 , ρ ≥ ρ 1 .
Here ρ 1 ≥ ρ 0 is constant depending only on m and Q. A straightforward minimization argument with respect to ρ yields p H -1 (R n+1 ) ≤ C| ln γ| -α/4 , (5.7) if γ ≤ γ * , where γ * is constant that can depend only on m, Q and s.

When γ ≥ γ * we obtain, by using that p

H -1 (R n+1 ) ≤ C p L 2 (R n+1 ) ≤ C|Q| 1/2 m, p H -1 (R n+1 ) ≤ C ≤ C γ γ * . (5.8)
We complete the proof by noting that (1.3) is obtained by combining (5.7) and (5.8).

Before we proceed to the proof Theorem 1.2, we recall a result quantifying the unique continuation of a real-analytic function from a measurable set. 

|∂ α H(κ)| K |α|! λ |α| , κ ∈ 2B, α ∈ N n , for some (K, λ) ∈ R * + × (0, 1].
Then for any measurable set E ⊂ B with positive Lebesgue measure, there exist two constants M > 0 and θ ∈ (0, 1), depending only on λ and |E|, so that

H L ∞ (B) M K 1-θ 1 |E| E |H(κ)|dκ θ .
Proof of Theorem 1.2. Let δ > 0 be chosen in such a way that, for any

ω ∈ O δ = {η ∈ S n-1 ; |η -ω 0 | δ}, Γ -,-ω,3δ ⊂ U -and Γ -,ω,3δ ⊂ U + .
In the rest of this proof, C and c denote generic constants that can depend only on Ω, Q, m and U ± . Define

E 1 := ω∈O δ {(ξ, τ ) ∈ R n × R; ξ • ω = 0}, E := {ζ = (ξ, τ ) ∈ E 1 ; |ζ| < 1}.
In light of estimate (5.1), for all ζ = (ξ, τ

) ∈ {η ∈ E 1 ; |η| R}, there exists ω ∈ O δ satisfying ξ • ω = 0 such that | p(ζ)| C ρ -1 4 + ρ -1 R 2 + χ -,ω,δ (Λ q -Λ q )χ +,ω,δ e cρ 2 , ρ ≥ ρ 0 . But, for any ω ∈ O δ , supp(χ ±,ω,δ ) ⊂ U ± . Whence χ -,ω,δ (Λ q -Λ q )χ +,ω,δ C Λ q -Λ q . Therefore | p(ζ)| C ρ -1 4 + ρ -1 R 2 + Λ q -Λ q e cρ 2 , ζ ∈ {η ∈ E 1 ; |η| R}, ρ ≥ ρ 0 . (5.9) 
Let H(ζ) = p(Rζ). We repeat the same argument as in the proof of [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF]Theorem 1] in order to get

|∂ α H(ζ)| C e 2R |α|! λ |α| , ζ ∈ 2B, α ∈ N n+1 , where λ = [1 + max(T, Diam(Ω))] -1 ∈ (0, 1). An application of Theorem 5.1 with K = e 2R yields | p(Rζ)| = |H(ζ)| H L ∞ (B) Ce 2R(1-θ) H θ L ∞ (E)
, |ζ| < 1, for some 0 < θ < 1 depending on Q and U ± . But, from (5.9) we deduce

| p(Rζ)| 2 = |H(ζ)| 2 C ρ -1 2 + ρ -2 R 4 + Λ q -Λ q 2 e cρ 2 , ζ ∈ E, ρ ≥ ρ 0 .
Consequently, fixing σ = 4(1 -θ), we find

| p(ζ)| 2 Ce σR ρ -1 2 + ρ -2 R 4 + Λ q -Λ q 2 e cρ 2 θ , |ζ| < R, ρ ≥ ρ 0 . (5.10) 
We proceed as in the proof of Theorem 1.1 in order to obtain

p 2 θ H -1 (R n+1 ) C R -2 + R n+1 e σR ρ -1 2 + ρ -2 R 4 + Λ q -Λ q 2 e cρ 2 θ 1 θ , R > 0, ρ ≥ ρ 0 . As µ ∈ (0, ∞) → µ 1 θ is convex, we derive p 2 θ H -1 (R n+1 ) ≤ C R -2 θ + R n+1 e σR 1 θ ρ -1 2 + ρ -2 R 4 + Λ q -Λ q 2 e cρ 2 , R > 0, ρ ≥ ρ 0 .
Hence, there exists β > 0 depending only on n and θ so that

p 2 θ H -1 (R n+1 ) ≤ C R -2 θ + e βR ρ -1 2 + e βR Λ q -Λ q 2 e cρ 2 , R > 0, ρ ≥ ρ 0 .
Thus, there exists R 0 > 0 so that choosing ρ satisfying e βR ρ -1 2 = R -2 θ we find

p 2 θ H -1 (R n+1 ) ≤ C R -2 θ + Λ q -Λ q 2 e e R , R ≥ R 0 .
The proof is completed similarly to that of Theorem 1.1 by using a minimization argument.

Determining the nonlinear term in a semi-linear IBVP from the DN map

The objective in the actual section is the derivation of a stability estimate of the problem of determining the nonlinear term in a semi-linear parabolic IBVP from the corresponding "linearized" DtN map. We will give the precise definition of the "linearized" DtN map later in the text. The results of this section are obtained as a consequence of Theorem 1.1.

The linearization procedure we use require existence, uniqueness and a priori estimate of solutions of IBVP's under consideration. We preferred to work in the Hölder space setting for which we have a precise literature devoted to these aspects of solutions. However we are convinced that the same analysis can be achieved in the Sobolev space setting. But in that case this analysis seems to be more delicate.

In this section Ω is of class C 2+α for some

0 < α < 1. The parabolic boundary of Q is denoted by Σ p . That is Σ p = Σ ∪ Ω + .
Consider the semilinear IBVP for the heat equation

(∂ t -∆)u + a(x, t, u) = 0 in Q, u = g on Σ p . (6.1) 
We introduce some notations. We denote by A 0 the set of functions from C 1 (Q × R) satisfying one of the following condition (i) There exist two non negative constants c 0 and c 1 so that

ua(x, t, u) ≥ -c 0 u 2 -c 1 , (x, t, u) ∈ Q × R. (6.2) 
(ii) There exist a non negative constant c 2 and a non decreasing positive function of τ ≥ 0 satisfying

∞ 0 dτ Φ(τ ) = ∞ so that ua(x, t, u) ≥ -|u|Φ(|u|) -c 2 , (x, t, u) ∈ Q × R. (6.3) 
Set X = C 2+α,1+α/2 (Q) and let X 0 = {g = G |Σp ; for some G ∈ X}. If • X denotes the natural norm on X we equip X 0 with the quotient norm

g X0 = inf{ G X ; G |Σp = g}.
By [Theorem 6.1, page 452, LSU], for any a ∈ A 0 and g ∈ X 0 , the IBVP (6.1) has a unique solution u a,g ∈ X.

Additionally, according to [Theorem 2.9, page 23, LSU], there exists a constant C that can depend only on Q, A 0 and max 

N a : g ∈ X 0 -→ ∂ ν u a,g ∈ Y = C 1+α,(1+α)/2 (Σ).
Note that, contrary to the preceding case, actually the DtN map N a is no longer linear. The linearization procedure consists then in computing the Fréchet derivative of N a .

Let A be the subset of A 0 of those functions a satisfying

∂ u a ∈ C 2 (Q × R). For a ∈ A and h ∈ X 0 , consider the IBVP (∂ t -∆)v + ∂ u a(x, t, u a,g (x, t))v = 0 in Q, v = h on Σ p .
In light of [Theorem 5.4, page 322, LSU] the IBVP has a unique solution v = v a,g,h ∈ X satisfying v a,g,h X ≤ c h X0 for some constant c depending only on Q, a and g. In particular h ∈ X 0 → v a,g,h ∈ X defines a bounded operator.

Proposition 6.1. For each a ∈ A , N a is continuously Fréchet differentiable and

N a (g)(h) = ∂ ν v a,g,h ∈ Y, g, h ∈ X 0 .
Proof. Let a ∈ A . As u ∈ X → ∂ ν u ∈ Y is a bounded linear operator, it is enough to prove that M a : g ∈ X 0 → u a,g ∈ X is continuously differentiable and M a (g)(h) = v a,g,h , g, h ∈ X 0 . To do that, we define w ∈ X by w = u a,g+h -u g -v a,g,h and set

p(x, t) = ∂ u a(x, t, u a,g (x, t)), q(x, t) = 1 0 (1 -τ )∂ 2 u a(x, t, u a,g + τ (u a,g+h -u a,g ))dτ.
According to Taylor's formula a(x, t, u a,g+h (x, t)) -a(x, t, u a,g (x, t)) = p(x, t)(u a,g+h (x, t) -u a,g (x, t))

+ q(x, t)(u a,g+h (x, t) -u a,g (x, t)) 2 .

Consequently a(x, t, u a,g+h (x, t)) -a(x, t, u a,g (x, t)) -p(x, t)v a,g,h (x, t) = p(x, t)w(x, t) + q(x, t)(u a,g+h (x, t) -u a,g (x, t)) 2 .

Moreover, it is straightforward to check that w is the solution of the IBVP

(∂ t -∆ + p)w = -q(u a,g+h -u a,g ) 2 in Q, w = 0 on Σ p .
Set Z = C α,α/2 (Q). From inequality (6.4) and the comment following it,

max Q |u a,g+h | ≤ c, for any h ∈ B X0 .
Here and in the rest of this proof, c is a generic constant can depend only on Q, a and g. Whence On the other hand z = u a,g+h -u a,g is the solution of the IBVP

(∂ t -∆ + r(x, t))z = 0 in Q, z = h on Σ p , with r(x, t) = 1 0
∂ u a(x, t, u a,g + τ (u a,g+h -u a,g ))dτ.

Proceeding as above, we get z X ≤ c h X0 . This estimate, combined with (6.5), yields

w X ≤ c h 2 X0 . That is we proved that M a is differentiable at g and M a (g)(h) = v a,g,h , h ∈ X 0 .
It remains to establish the continuity of g ∈ X 0 → M a (g) ∈ B(X 0 , X). To this end, let g, k, h ∈ X 0 and set ϕ = v a,g+k,h -v a,g,h . We see that ϕ is the unique solution of the IBVP

[∂ t -∆ + ∂ u a(x, t, u a,g+k (x, t))] ϕ = α(x, t)(u a,g -u a,g+k )v a,g,h in Q, ϕ = 0 on Σ p , where α(x, t) = 1 0
∂ 2 u a(x, t, u a,g (x, t) + τ (u a,g+k (x, t) -u a,g (x, t)))dτ. Assume that k, h ∈ B X0 . By proceeding one more time as above we get

ϕ X ≤ c u a,g+k -u a,g Z v a,g,h Z ≤ c u a,g+k -u a,g Z . Whence M a (g + k) -M a (g) B(X0,X) ≤ c M a (g + k) -M a ( 
g) X , which leads immediately to the continuity of M a since M a is continuous.

In order to handle the inverse problem corresponding to the semi-linear IBVP (6.1) we need to extend the operator Λ q by varying also the initial condition. To do that we start by considering the IBVP   

(∂ t -∆ + q(t, x))u = 0 in Q, u |Ω+ = u 0 , u |Σ = g. (6.6) 
Let X + = r + H + ⊂ H -1 (Ω) that we equip with its natural quotient norm

u 0 X+ = inf{ u H+ ; r + u = u 0 }. Let (u 0 , g) ∈ X + ⊕ H -1 2 ,- 1 
4 (Σ) and pick v ∈ H + so that r + v = u 0 . Formally, if u is a solution of the IBVP (6.7) then w = u -v is the solution of the IBVP

   (∂ t -∆ + q(t, x))w = f in Q, w |Ω+ (0, •) = 0, w |Σ = h = g -τ 0 v ∈ H -1 2 ,-1 4 (Σ). (6.7) Here f = -∂ t v + ∆v -q(t, x)v ∈ L 2 (Q). Fix q ∈ mB L ∞ (Q)
. When g = 0 (resp. f = 0) the IBVP problem (6.7) has a unique solution w 1 q,f ∈ H 2,1 (Q) [14, Theorem 1.43, page 27] (resp. w 2 q,h ∈ H + by Proposition 2.3) and

w 1 q,f H 2,1 (Q) ≤ C 0 f L 2 (Q) ≤ C 1 v H+ , w 2 q,h H+ ≤ C 2 g -τ 0 v H -1 2 ,- 1 
4 (Σ) ≤ C 3 g H -1 2 ,- 1 
4 (Σ) + v H+ ,
for some constants C i depending only on Q and m. Whence, u q,u0,g = v + w 1 q,f + w 2 q,h ∈ H + is the unique solution of the IBVP (6.7) and there exists a constant C > 0 that can depend only on Q and m so that u q,u0,g H+ ≤ C g

H -1 2 ,- 1 
4 (Σ) + v H+ .
Since v ∈ H + is chosen arbitrary so that r + v = u 0 , we derive u q,u0,g H+ ≤ C g

H -1 2 ,- 1 4 (Σ) 
+ u 0 X+ .

Therefore, according to the trace theorem in Proposition 2.1, the extended parabolic DtN map

Λ e q : X + ⊕ H -1 2 ,-1 4 (Σ) → H -3 2 ,- 3 
4 (Σ) (u 0 , g) → τ 1 u q,u0,g defines a bounded operator.

We need a variant of Theorem 1.2. To this end, we recall that from [37, Lemma 12.3, page 73] we have the following interpolation inequality, where c 0 is a constant depending only on Q,

u L 2 (Q) ≤ c 0 u 1/2 H 1 (Q) u 1/2 H -1 (Q) , u ∈ H 1 (Q).
(6.9)

On the other hand u

C(Q) ≤ c 1 u n+1 n+3 C 1 (Q) u 2 n+3 L 2 (Q) , u ∈ C 1 (Q), (6.10) 
where c 1 is a constant depending only on Q. This interpolation inequality is more or less known but, for sake of completeness, we provide its proof in Lemma B.1 of Appendix B.

We get by combining these two interpolation inequalities the following one

u C(Q) ≤ c u n+2 n+3 C 1 (Q) u 1 n+3 H -1 (Q) , u ∈ C 1 (Q), (6.11) 
for some constant c depending only on Q.

If 1 2(n+3) < s < 1 2(n+1) , Θ s (ρ) = | ln ρ| -1-2s(n+1) n+3 
+ ρ, ρ > 0, (6.12) extended by continuity at ρ = 0 by setting Θ s (0) = 0.

Inspecting the proof of Theorem 1.1, using the interpolation inequality (6.11) and that Λ q -Λ q ≤ Λ e q -Λ e q , we get Theorem 6.1. Fix m > 0 and 1 2(n+3) < s < 1 2(n+1) . There exists a constant C > 0, that can depend only on m, Q and s, so that for any q, q ∈ mB C 1 (Q) , q -q C(Q) CΘ s Λ e q -Λ e q .

Here Λ e q -Λ e q stands for the norm of Λ e q -Λ e q in B(X + ⊕ H -1 2 ,-1 4 (Σ); H Fix λ > 0. From (6.4) and the remark following it, there exists a constant c λ > 0 so that To a ∈ A and g ∈ X 0 we associate p a,g (x, t) = ∂ u a(x, u a,g (x, t)), (x, t) ∈ Q.

It is straightforward to check that N a (g) = Λ e pa,g |X0 . From now on N a (g) -N a (g) is considered as a bounded operator from X 0 endowed with norm of X + ⊕ H -1 2 ,-1 4 (Σ) into H 1 2 , 1 4 (Σ). Since p a,g L ∞ (Q) ≤ δ for any a ∈ A and g ∈ X 0 so that max Σp |g| ≤ λ, we get as a consequence of Proposition 2.3

sup{ N a (g) -N a (g) ; a ∈ A , g ∈ X 0 and max

Σp |g| ≤ λ} < ∞.
Bearing in mind that C ∞ (Q) is dense in H + , we derive that X 0 is dense X + ⊕ H -1 2 ,-1 4 (Σ). Thus, N a (g) -N a (g) = Λ e pa,g -Λ e p a,g . (6.13) Pick a 0 ∈ C 1 (Ω) and set A 0 = {a ∈ A ; a(•, 0) = a 0 }.

We note that when g ≡ s, |s| ≤ λ, we have p a,g (x, 0) = ∂ u a(x, u a,g (x, 0)) = ∂ u a(x, s), x ∈ Ω.

In light of this identity and (6.13) we obtain as a consequence of Theorem 6.1 Theorem 6.2. Fix λ > 0 and 1 2(n+3) < s < 1 2(n+1) . There exists a constant C > 0, that can depend only on λ, s, Q and A 0 , so that for any a, a ∈ A 0 , a -a C(Ω×[-λ,λ]) CΘ s sup g∈X 0,λ N a (g) -N a (g) .

Here X 0,λ = {g ∈ X 0 ; max Σp |g| ≤ λ} and N a (g) -N a (g) stands for the norm of N a (g) -N a (g) in

B(X + ⊕ H -1 2 ,-1 4 (Σ); H 1 2 , 1 4 (Σ)).
We now turn our attention to the special case a = a(u) for which we are going to show that we have a stability estimate with less data than in the case a = a(x, u). On the other hand, we know that H 1/2 (0, T ; L 2 (Γ)) can be seen as the (quotient) space of the restriction to (0, T ) of functions from H 1/2 (R, L 2 (Γ)). Therefore any function from H 1/2 (0, T ; L 2 (Γ)) can be approximated, with respect to the norm of H 1/2 (0, T ; L 2 (Γ)), by a sequence of functions from D 0 ∩ D T , that is to say by a sequence from C ∞ 0 ((0, T ); L 2 (Γ)). The proof follows by noting that H Proof. Let u ∈ C 0,α (D). From [26, Lemma 6.37, page 136. In fact this lemma is stated with C k,α -regularity, k ≥ 1, but a careful inspection of the proof shows that this lemma can be extended to the case of C 0,αregularity] and its proof, there exists v ∈ C 0,α (R d ) with compact support so that v = u in D and 

v C 0,α (R d ) ≤ κ u C 0,α (D) , v L 2 (R d ) ≤ κ u L 2 (D) , ( 
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 4 
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 51 [START_REF] Apraiz | Observability inequalities and measurable sets[END_REF] Theorem 4]) Assume that H : 2B → C, where B the unit ball of R n+1 , is real-analytic and satisfies

  of [inequalities (2.31) and (2.34), page 23, LSU] shows that max Σp |g| → C = C(max Σp |g|) is non decreasing. Define the parabolic DtN map N a associated to a ∈ A 0 by

p 2 Z

 2 Z , q Z ≤ c, for any h ∈ B X0 , Therefore, again by [Theorem 5.4, page 322, LSU], it holds w X ≤ c u a,g+h -u a,g , for any h ∈ B X0 .(6.5)

  max Q |u a,g | ≤ c λ , a ∈ A 0 , max Σp |g| ≤ λ. For fixed δ > 0, consider A = {a = a(x, u) ∈ A ; ∂ u a C(Ω×[-c λ ,c λ ]) ≤ δ}.

  Define A = {a ∈ C 3 (R); a(0) = 0 and a is positive increasing}. It is straightforward to check that A ⊂ A . Let Y 0 = C 2+α,1+α/2 ,0 (Σ) = {g ∈ C 2+α,1+α/2 (Σ); g(•, 0) = 0}

1 2

 1 (0, T ; L 2 (Γ)) is continuously and densely embedded inH s (0, T ; L 2 (Γ)), 0 ≤ s ≤ 1/2. Appendix B Lemma B.1. Let D be a bounded domain of R d , d ≥ 2, of class C 0,α with 0 < α ≤ 1.There exists a constant C > 0 depending only on D and α so that, for any u ∈ C 0,α (D),u C(D) ≤ C u d d+2α C 0,α (D) u 2α d+2α L 2 (D) .

  B.1)where the constant κ depends only on D.For x ∈ D and r > 0, we get in a straightforward manner|u(x)||B(x, r)| ≤ B(x,r) |v(x) -v(y)|dy + B(x,r) |v(y)|dy ≤ v C 0,α (R d ) B(x,r) |x -y| α dy + |B(x, r)| 1/2 v L 2 (R n ) .This estimate combined with (B.1) yields|u(x)| ≤ C r α u C 0,α (D) + r -d/2 u L 2 (D) , (B.2)where the constant C depends only on D and α. The expected inequality follows by taking r in (B.2) so that r α u C 0,α (D) = r -d/2 u L 2 (D) .

,-1 4 (Σ). We complete the proof by noting that (2.6) follows from (2.7) and the analysis we carried out for S + can be adapted with slight modifications to S -.

that we identify to the subset of X 0 given by {g ∈ X 0 ; g |Ω+ = 0}. We denote again the solution of (6.1) by u a,g when a ∈ A and g ∈ Y 0 . In that case N a is considered as a map from Y 0 into Y . Fix g ∈ Y 0 and let a ∈ A. Since a(0) = 0, setting q(t, x) = 1 0 a (τ u(x, t))dτ , we easily see that u a,g is also the solution of the IBVP

according to the weak maximum principle (see for instance [39, Theorem 4.25, page 121]). In particular

We derive by mimicking the analysis before Theorem 6.3 Theorem 6.3. Fix g ∈ Y 0 non constant and

. There exists a constant C > 0, that can depend only on g, s, Q and A, so that for any a, a ∈ A,

Here

Remark 6.1. Other stability results can be obtained in a similar manner to that we used in the present section. We just mention one of them. To this end, let A 0 be defined as before with the only difference that we actually permit to functions of A 0 to depend also on the time variable t.

Let a, a ∈ A 0 and pick (x

Let ε = min(t 0 , T -t 0 ) and g ∈ X 0,λ so that g = s on Γ × [ε, T -ε] for some |s| ≤ λ. We proceed as in the proof of Theorem 6.3 in order to derive

where the constant C depends only on λ, s, Q and A 0 . In light of (6.14) this estimate yields

of functions vanishing in a neighborhood of t = 0 (resp. t = T ). By [START_REF] Lions | Non homogeneous boundary value problems and applications[END_REF]Lemma 11.1, page 55] both D 0 and D T are dense in H 1/2 (R, L 2 (Γ)).

Fix u ∈ D 0 and let ε > 0 so that u = 0 in (-2ε, 2ε) × Γ.

We get by taking into account that ψu n = ψ(u n -u)

ψu n H ,

for some constant depending only on ψ. Whence ((1 -ψ)u n ) is a sequence in D 0 ∩ D T converging to u in H 1/2 (R, L 2 (Γ)).