
HAL Id: hal-01322760
https://hal.science/hal-01322760

Submitted on 27 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic p-graphs for capturing the dynamics of
distributed systems

Bertrand Ducourthial, Ahmed Mouhamadou Wade

To cite this version:
Bertrand Ducourthial, Ahmed Mouhamadou Wade. Dynamic p-graphs for capturing the dynamics
of distributed systems. Ad Hoc Networks, 2016, 50, pp.13-22. �10.1016/j.adhoc.2016.05.004�. �hal-
01322760�

https://hal.science/hal-01322760
https://hal.archives-ouvertes.fr

Dynamic p-graphs for capturing

the dynamics of distributed systems

B. Ducourthial and A.M. Wade
Corresponding author: Bertrand.Ducourthial@utc.fr

Sorbonne universités, Université de Technologie de Compiègne
Heudiasyc UMR 7253, CS 60 319, 60 203 Compiègne cedex.

Abstract

The dynamics of a mobile dynamic distributed system depends on both the
node mobility and the capacity of the underlying communication protocol. To
qualify the dynamics of a distributed system, the family of dynamic p-graphs
is introduced in this paper, constituting a finite set of dynamic graphs, each
of them being a sequence of observed graphs, with the particularity that their
edges allow transferring p messages. The family of dynamic p-graphs allows
the characterization and the comparison of dynamic distributed systems of
very different nature. It is also used to evaluate the ability of algorithms
themselves to support a given dynamic distributed system.

Keywords: distributed algorithm, dynamic networks, routing, VANET

1. Introduction

Problem. A mobile dynamic distributed system is characterized by i) the
moving nodes and ii) their communication means (generally implemented in
a communicating device and composed of a low level protocol along with the
underlying technology). Both are important to define the dynamics of the
distributed dynamic systems from an algorithmic point of view.

Indeed when nodes move very fast, one may consider that the distributed
system is highly dynamic. However, from an algorithmic point of view, in

IPartially supported by the project Celtic Plus CoMoSeF (Cooperative Mobility Ser-
vices of the Future) and the research project Toredy funded by the Région Picardie and
the Fond Européen de Développement Régional (European Regional Development).

1

case the communication is very efficient, this is not always true because nodes
could exchange a large amount of data before each neighborhood changes.
Inversely, a distributed system with nodes moving very slowly but having
a very poor communication mean for exchanging data could be considered
as highly dynamic. Indeed, a distributed algorithm could have difficulties
to achieve its aim (e.g. to stabilize on a result or to continually ensure a
behavior) because very few data are exchanged between each neighborhood
changes. This could be summarized as follows: running a distributed algo-
rithm on a network of snails communicating using their antenna could be
more difficult than running the same algorithm in a high speed vehicular
network using IEEE 802.11p.

Related work. Dynamic networks have been studied for their structural prop-
erties [14, 3]. In [5, 12], the notion of evolving graphs is proposed. It intro-
duces a time domain in the graph theory to capture the evolving nature of
dynamic networks. Among other concepts, the journey is a path in the suc-
cessive topologies (“spatiotemporal path”). Evolving graphs are used in [17]
for designing routing algorithms. In [23], temporal reachability graphs are in-
troduced, where an edge exists if there is a journey between the extremities.
By comparison, our modeling relies on a family of dynamic graphs, each of
them allowing to send a given number of messages per edge.

Several works deal with the relationship between the dynamic network
and the feasibility of distributed algorithms. In [19], some algorithmic con-
straints are studied in order a node succeed in flooding the network or routing
a message to a known destination. In [6], distributed local computations by
means of graph relabelings and evolving graphs are used to analyze and com-
pare distributed algorithms. In [7], a synthesis is proposed through a unified
framework called Time-Varying Graph (TVG). Several classes of TVG are
identified and the impact of their properties on distributed algorithms is
studied. In [22], TVG are modeled using a quadruplet Gd = (V,E, T,Φ) by
adding the set of dates T and by considering the starting and ending dates of
each edge. By comparison, our modeling abstracts the time by considering
several dynamic p-graphs.

In [15], the relation between the presence of a stable connected spanning
subgraph during successive rounds and the feasibility and the complexity
of several distributed computing problems is studied. A faster information
dissemination algorithm is proposed in [13] using network coding. In [2],
the impact of the dynamics of the network on geocast routing is studied.

2

In [1], a new model is introduced for studying information dissemination in
mobile networks. It relies on two parameters α and β such that within α
time slots, some nodes having the information are connected to nodes that
have not for at least β time slots. By comparison, we propose to model
the dynamics of every dynamic distributed system in the aim of expressing
conditions ensuring the desired behavior of distributed algorithms.

Contribution. Considering a distributed system for wireless mobile ad hoc
networks, we propose to model the evolving topology by a family of dynamic
p-graphs F = (G1,G2,G3, . . .), where each dynamic p-graph Gp = (Gp

i)i∈N∗
for p ∈ N∗ is a sequence of graphs Gp

1, G
p
2, . . . successively observed during

the execution, such that the duration of each edge in these graphs is long
enough to send p messages1. We prove that, for any observation, the family
of dynamic p-graphs is finite and we provide an algorithm to build them.

We show how the dynamic p-graphs encompass both, the nodes movement
and the underlying communication means (technology and link protocols),
permitting to perform comparisons between systems of different technolo-
gies regarding their ability to run a given algorithm. Moreover, considering a
family of dynamic p-graphs for different values of p leads to a complete repre-
sentation of a dynamic network. We show that these families allow comparing
different dynamic distributed systems regarding to their ability to support
a given distributed algorithm, which is not possible or very complex with
existing models. Also, they permit to give conditions on algorithms; we give
an example with the topology-based routing in dynamic networks.

Finally we illustrate the interest of our modeling for studying distributed
algorithms in dynamic distributed systems by giving conditions of success
of several examples: communication with acknowledgment, cyclic diffusion
from a node and propagation of information with feedback.

Hence, our approach reveals to be very interesting for studying dynamic
distributed systems and distributed algorithms.

Road map. In Section 2, a distributed system for wireless mobile ad hoc
networks is presented. Section 3 introduces the observation and the timed
p-graphs provided by the observation. They are used for defining the families
of dynamic p-graphs in Section 4. Section 5 presents properties of our mod-
eling for comparing different dynamic distributed systems and for inferring

1N∗ = N \ {0}

3

conditions on algorithmic problems. We give an example with the limitation
of topology-based routing. In Section 6, we illustrate the interest of our ap-
proach by studying three distributed algorithms commonly used in dynamic
distributed systems. Concluding remarks end the paper.

2. Distributed System

In this section, we define the dynamic distributed system used in this
paper.

2.1. System

We consider dynamic distributed system S(N ,G) defined by a network
N and its dynamics G.

Network. The network N is composed of communicating computing nodes.
Each node owns a local memory and a sequential computing unit so that
it is able to run a local algorithm. Nodes are not synchronized. The local
memory of a node v is composed by its private memory, an input memory
and an output memory.

Nodes are equipped with a communicating device. Communication are
done through a simple action called push: when a sender node u executes
push(m), the value m stored in its output memory is copied into the input
memories of some receiver nodes v1, v2, . . . , vk. In order for a node v to
receive the data pushed by a node u, several communication conditions have
to be fulfilled. These conditions are related to the underlying communication
technology and protocol and may vary. One may cite: bounded distance,
available medium, no collision with other close communication, etc.

The receivers vi of a push action by a node u are not necessarily known
from the sender u and do not know u itself before the reception. They are
determined by the communication conditions and could be different from
those of a previous push by the same node u. When a data m pushed by
u is received by v, this indicates that there is a communication link (u, v)
between u and v. A link (u, v) may exist while the link (v, u) does not exist.
The capacity of a link is a single message.

Dynamics. This communication scheme can be implemented (among other
examples) on a mobile wireless network relying on the WiFi. A push is imple-
mented using a local broadcast. Nodes move and frame collisions add/delete
links according to the communication range.

4

The dynamics G of the system is defined by the appearance and disap-
pearance of its communication links and the number of messages it is possible
to send in each link. This depends on the physical characteristic of S but
also on the nodes’ moves (scenario): for a given system, each scenario may
give a different dynamics. Describing such a dynamics in a convenient way
for the study of distributed algorithms is the aim of this paper.

2.2. Algorithm

A configuration c of a distributed system S represents the state of the
whole system S, including :

• the state of processors (memories),

• the state of the communication links (messages in transit on the links),

• the underlying topology (set of communication links).

We denote by cpproc the configuration c reduced to the information related
to the processors. Similarly, we denote cpmesg (respectively cptopo) the config-
uration reduced to the information related to the link state (respectively to
the topology). We have c = cptopo ∪ cpmesg ∪ cpproc though in a non-dynamic
distributed system, c is only defined by cpmesg ∪ cpproc because the topology is
a parameter of S and does not change.

A distributed algorithm A is a collection of local algorithms running on
every node of S. Processors actions change the global system configuration.
An execution e is a sequence of configurations c1, c2, . . ., where c1 is the initial
configuration of the execution e. We denote by E the set of executions of the
system S. For any given execution e ∈ E , we denote by eptopo the sequence
c1ptopo, c2ptopo, It gives the evolution of the topology of the system S. In
other words the dynamics G of the system S(N ,G) is defined by eptopo and it
may change for every execution of the algorithm (different scenarios).

The specifications of a distributed algorithm A are given by means of a
predicate PA defined on the executions E . For e ∈ E , if PA(e) is true, we
say that the algorithm A satisfies its specifications on e. When it satis-
fies its specifications on all the executions of E , we say that A satisfies its
specifications on S.

The graph U(G) having for vertices the computing nodes of the system
and for edges all communication links appearing in c1ptopo, c2ptopo, . . . is called

5

underlying graph of the system S(N ,G). To the contrary of G, which models
the dynamics of S, the underlying graph U(G) describes a fix topology.

If an algorithm A satisfies its specifications on the non-dynamic system
S(N , U(G)), we say that the system S(N ,G) satisfies the minimum require-
ments of the Algorithm A. In other words, the system has the adequate di-
mension (in terms of memory, computing power, etc.) to run the algorithm;
if A does not satisfies its specifications on the dynamic system S(N ,G), it
can be concluded that this is due to the dynamics G of the system. A more
formal definition is done in Section 5 after introducing our model. Such a
concept is used to study the relationship between the algorithms and the
dynamics of the distributed systems.

3. Observing the dynamics of a distributed system

In this section, we discuss about the observation of a dynamic distributed
system. We then define the timed graphs relying on the clock of an external
observer to introduce the dynamic p-graphs in the next section.

3.1. Transfer duration function

For modeling the dynamics G of a dynamic distributed system S(N ,G),
we consider graphs. The communicating computing nodes defined in Sec-
tion 2.1 are represented by the vertices. As we consider finite systems, there
is a finite set of vertices in the graphs.

The communication links are observed when a push action succeeded in
forwarding a message from a node to another one. However others ought to
be observed. Hence we define edges as follows: an edge is a communication
link that ought to be observed if a push action would had been done and if
it did not interfere with other ones. Similarly, we will consider edges able to
send several successive messages before disappearing.

We introduce the following definition, to capture the fact that, in a dy-
namic distributed system, two close nodes may not have enough time to
communicate before moving.

Definition 1. A transfer duration function δ : N∗ → R gives the time δ(p)
required to send p successive messages between two nodes.

Obviously, δ is a linear function and depends on the underlying commu-
nication technology. The following holds.

6

Remark 1. Let δ : N∗ → R be a transfer duration function. Then δ(p) ≤
p× δ(1) and p < q ⇒ δ(p) ≤ δ(q).

To be convinced of that, suppose that p < q and δ(p) > δ(q). Then,
for sending p messages, we can send q messages including q − p empty. As
an illustration, in case a reservation is required for sending a message, it is
advantageous to send several consecutive messages when possible. Using the
transfer duration function, we introduce the timed p-edge to model the fact
that it was possible to transfer p messages between two nodes at a given date.

3.2. Timed p-graphs

For the purpose of the following definition, we introduce an external imag-
inary observer which is able to note all the events in the dynamic distributed
system2. The observer uses its own clock to date the events (nodes do not
have any global clock and remain unsynchronized). By recording the ap-
pearance and disappearance of edges at the date ti (i ∈ N, ti ∈ R+), the
observer produces an observation O constituted by a sequence of observed
graphs O = (Gt0 , Gt1 , Gt2 , . . .).

Figure 1 displays the beginning of such an observation. To fix the ideas,
we consider here a convoy of 4 vehicles. The communication range is repre-
sented for the Vehicle 2 at date t0. When the inter-vehicles distance increases
(resp. decreases), some edges disappear (resp. appear).

Definition 2. Consider a dynamic distributed system and its transfer dura-
tion function δ. A timed p-edge denoted (u, v)t,p is observed between nodes
u and v at date t ≥ δ(p) iff the edge (u, v) is present continuously during the
time interval [t−δ(p), t]. We denote by Et,p the set of timed p-edges observed
at date t.

In other words, a timed p-edge is long enough for allowing the transfer of
p consecutive messages. Note that a timed p-edge (u, v)t,p may exist while u
never really sent messages on this link. The observer only noticed that nodes

2In a real dynamic distributed system, an external imaginary observer can be imple-
mented either by a supervising mean or by a post-computation of the log of positions of
all nodes. For instance, for studying swarm of UAVs, we use an optitrackr system. For
studying fleets of vehicles, we analyze their GPS traces after the road experiments. The
accuracy of an observation can be increased by using several such observers that merge
their observations. In the following, for sake of simplicity we consider a single observer.

7

t
0

t
1
t
2

t
3

t
4

t
5
t
6

t
7

Gt0
Gt1

Gt2
Gt3

Gt4
Gt5

Gt6
Gt7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 1: Observation O = (Gt0 , Gt1 , Gt2 . . .) of a dynamic distributed system, here a
convoy of 4 vehicles. The time is provided here by an external imaginary observer (nodes
are not synchronized).

u and v remain close each others long enough to send p consecutive messages.
Note also that even if a timed p-edge (u, v)t,p exists, a communication may
fail between u and v because some other communication conditions are not
fulfilled (the duration is only one of such conditions). In particular, with
usual wireless technologies, simultaneous receptions by a given node are not
possible.

In a given system, if p is too large, no timed p-edge could be observed,
meaning that no communication link exists during the time required to send p
consecutive messages. In the same way, if δ(1) is very large (poorly efficient
data transfer protocol), then no timed 1-edge could be observed, meaning
that any communication attempt would fail in the dynamic distributed sys-
tem. Hence, giving a communication mean, one may compute the maximal
relative speed of the nodes allowing to communicate. Reciprocally, giving
the nodes relative speed, one may compute the maximal transfer duration
function, and then infer the kind of possible communication mean.

For instance, suppose that a vehicle passes away other vehicles in the
convoy. Then, it is not sure it will be able to communicate with others
because this depends on its speed and on the underlying communication
protocol. This is solved from the observation knowing the transfer duration
function δ. Starting from the timed p-edges, we introduce the timed p-graphs.

Definition 3. Let p ∈ N∗ and t ∈ R+. The timed p-graph at date t denoted

8

by Gt,p is defined by the pair (V,Et,p), where V is the set of vertices and Et,p

the set of timed p-edges observed at date t ≥ δ(p).

4. Modeling the dynamics of a distributed system

Using the previously defined timed p-graphs, we propose a modeling for
the dynamics of distributed system. For this purpose, we introduce the
dynamic p-graphs. Their definition does not rely on the time, which is more
convenient for specifying algorithmic properties.

4.1. Dynamic p-graphs

To define a dynamic p-graph, we introduce a binary relation on the timed
p-graphs. Let define Rp as follows:

Gα,p Rp Gβ,p def⇐⇒
(
∀t ∈ [min{α, β},max{α, β}] Eα,p = Et,p

)
In other words, two timed p-graphs are in relation by Rp if all other timed

p-graphs between them (including themselves) have the same edges. This re-
lation is reflexive: Gα,p Rp Gα,p. It is symmetric because Gα,p R Gβ,p ⇒
Gβ,p Rp Gα,p. It is transitive because

(
Gα,p Rp Gβ,p

)
∧
(
Gβ,p Rp Gγ,p

)
⇒

Gα,p Rp Gγ,p. For this last property, consider t = β belonging both in
[min{α, β},max{α, β}] and [min{β, γ},max{β, γ}]. Hence Rp is an equiva-
lence relation on the timed p-graphs and we will consider classes of equiva-
lence.

Since Rp relies on the increasing time of the external observer, we obtain
by construction an ordered sequence of classes of equivalence, that we denote
Gp

1, G
p
2, G

p
3. . . For an integer i > 0, the ith class of equivalence Gp

i is defined
by:

Gβ,p ∈ Gp
i

def⇐⇒ ∃α > 0 s.t. Gp
i = Gα,p and Gα,p Rp Gβ,p

Definition 4. Let p ∈ N∗. A dynamic p-graph Gp = (Gp
1, G

p
2, G

p
3, . . .) of an

observation O is the ordered sequence of the classes of equivalence induced by
Rp on the timed p-graphs issued from O.

Hence, instead of considering every timed p-graphs issued from an obser-
vation, we only retain the successive different ones. There is no more time in
this definition. We now give an algorithm to determine the dynamic p-graphs
starting from an observation.

9

4.2. Algorithm

For any given observation O = (Gt0 , Gt1 , . . .), the dynamic p-graphs of
the observation are obtained as follows. We denote by T 0 the set of dates
t0, t1, . . . provided by the observation.

1. Let T+ = {t+0 , t+1 , . . .} the set of dates built from T 0 such that t+i =
ti + δ(p) for any integer i ≥ 0.
Let T− = {t−1 , t−2 , . . .} the set of dates built from T 0 such that t−i =
ti − δ(p) for any integer i ≥ 1 such that ti ≥ δ(p).
Let define T = T 0 ∪ T+ and T ′ = T 0 ∪ T+ ∪ T−.

2. Let O′ = (Gt)t∈T ′ be the sequence of graphs defined as follows:

• for any date t ∈ T ′ ∩ T 0, Gt = Gti where ti = t;

• for any date t ∈ T ′ \ T 0, Gt = Gti where ti is the largest date of
T 0 which is smaller than t.

3. For p ∈ N∗ and t ∈ T such that t > δ(p), the timed p-graph at date
t is obtained from the intersection of all graphs of O′ present in the
interval [t− δ(p), t]:

Gt,p =
⋂

t′ ∈ [t− δ(p), t]
Gt′ ∈ O′

Gt′

4. To determine the dynamic p-graph of the observation O, we scan the
ordered set of dates T , and for each date t ∈ T , we compute the timed
p-graphs at date t. If this gives a graph different from the previously
computed p-graph, then it gives the next p-graph (the next class of
equivalence). The sequence of all p-graphs obtained from this compu-
tation defines the dynamic p-graph of the observation O.

This is summarized in Algorithm 1. Figure 2 displays the dynamic 1-
graph built from the example of observation in Figure 1. The shaded rectan-
gles display the windows of width δ(1) considered for computing the inter-
sections.

4.3. Families of dynamic p-graphs

Any observation of a dynamic distributed system S admits a unique dy-
namic p-graph Gp, for a given integer p > 0. We now introduce the family of
dynamic p-graphs by considering all such integers p.

10

Algorithm 1 Dynamic p-graph construction

Require: the observation O, sets of dates T and T ′

1: initialization: Gp0 = ∅; Gp = ∅; j = 1; O′ = ∅
2: for any date t ∈ T ′ do
3: Gt = Gti where ti ≤ t < ti+1

4: O′ = O′ ∪Gt
5: if t ∈ T and t > δ(p) then
6: Gpj =

⋂
t′∈[t−δ(p),t]

Gt′

7: if Gpj 6= Gpj−1 then
8: Gp = Gp ∪Gpj
9: j++

10: end if
11: end if
12: end for

Definition 5. The family of dynamic p-graphs F of a dynamic distributed
system S is the sequence of dynamic p-graphs Gp for p ∈ N∗: F = (G1,G2, . . .).

Figure 3 displays the family of dynamic p-graphs built from the example
of observation in Figure 1.

Theorem 1. For any dynamic distributed system S, the family of dynamic
p-graphs F = (G1,G2,G3, . . .) of the dynamic distributed system is finite.

Proof. Consider an edge of S observed from date t to date t+ ∆.

Either there is no p ∈ N∗ such that δ(p) > ∆, i.e., δ() is bounded by
∆. In this case, any timed p-graph Gt,p will include this edge. Then
all the dynamic p-graphs will become identical regarding this edge.

Or there exists q ∈ N such that δ(q) > ∆. In this case the edge
disappears from the timed p-graphs Gt,p starting from p ≥ q (cf.
Figure 3). Hence, all the dynamic p-graphs with p ≥ q are identical
regarding this edge.

There is a finite number of nodes and then a finite number of possible
edges. So there exists ∆ and q ∈ N∗ such that for any p ∈ N∗, if
p > q then Gp is empty or Gp = Gq. This implies that the family is
finite and that Gq is the last element of the family. 2

11

t
0

t
1
t
2

t
3

t
4

t
5
t
6

t
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G1
1

G1
2
G1
3

G1
4

G1

5
G1

6
G1
7

δ(1)

Figure 2: Dynamic 1-graph built from the observation of Figure 1 by considering intersec-
tions of graphs of the observation. The shaded rectangles display the windows of width
δ(1) considered for computing the intersections.

In the rest of the paper, we will denote the family of dynamic p-graphs
by F = (G1,G2,G3, . . . ,Gq), with Gq the last element of the family.

We claim that the families of dynamic p-graphs fully characterize dynamic
distributed systems as defined in Section 2. By comparison, the existing mod-
els (e.g evolving graphs, TVG, ...) for dynamic networks give no indication
on the number of messages it is possible to send on edges. Two very dif-
ferent dynamic systems could lead to the same evolving graph while a given
algorithm could work only in one of them. Moreover, a single dynamic p-
graph gives no indication on the possibility to send p+1 messages on a given
edge. By considering all the family of such graphs, we obtain a complete de-
scription of the dynamics abstracting both the structural properties and the
communication technologies. It then allows some comparisons of dynamic
distributed systems whatever the nodes speed or the communication mean
are (underlying technology and communication protocol). Moreover it does
not rely on the time (to the contrary of the TVG). It is then more adapted
to the analysis of distributed algorithms, as we illustrate in the next section.

12

t
0

t
1
t
2

t
3

t
4

t
5
t
6

t
7

Gt0
Gt1

Gt2
Gt3

Gt4
Gt5

Gt6
Gt7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G1
1

G1
2
G1
3

G1
4

G1

5
G1
6
G1
7

G2
1
G2
2

G2

3
G2
4

G2

5
G2

6

δ(2)

δ(1)

27 28 29 30

G14
1

δ(14)

G14
2

Figure 3: Family of dynamic p-graphs built from the observation of Figure 1.

5. Properties

In the previous section, we introduced the families of dynamic p-graphs.
In this section, we give some of their properties useful for studying both dis-
tributed systems and distributed algorithms. First we show how the dynamic
p-graphs allow comparing different dynamic distributed systems regarding to

13

their ability to support a given distributed algorithm. Then we explain how
using the families of dynamic p-graphs for inferring properties on distributed
algorithmic problems. As an illustration, we explicit some intrinsic limita-
tions of topology-based routing in dynamic distributed systems.

5.1. Comparing dynamic distributed system

The families of dynamic p-graphs we introduced are more convenient
than the observations for comparing dynamic distributed systems. We begin
by showing that the relationship between observations and families is not
straightforward.

Theorem 2. Let Sa and Sb two different dynamic systems, Oa and Ob their
respective observations, δa(p) and δb(p) their transfer duration functions and
Fa and Fb their family of dynamic p-graphs. Then the following holds:

1. Oa = Ob ; Fa = Fb
2. Fa = Fb ; Oa = Ob

3. (δa = δb and Oa = Ob) ⇒ Fa = Fb
4. (δa = δb and Fa = Fb) ; Oa = Ob

Proof. Using Theorem 1, we note that two families of dynamic p-graphs
Fa = (G1a,G2a, . . . ,Gqa) and Fb = (G1b ,G2b , . . . ,G

q′

b) are equal if and
only if q = q′ and Gpa = Gpb for all p ∈ {1, . . . , q}.
1. For the first case, we use a counter example. Let Sa a dynamic
distributed system composed with two nodes u and v. Let Oa an
observation of Sa such that the edge (u, v) appears at date t = 2k and
disappears at date t = 2k + 1 for k ∈ N. Let Sb another distributed
system composed with nodes u′ and v′ such that Sa 6= Sb and let
Ob an observation of Sb such that Oa = Ob. Let δa(p) = 2p and
δb(p) = p, ∀p ∈ N∗. Then, for p = 1, we have G1a = ∅ and G1b = Oa.
This proves that Oa = Ob ; Fa = Fb.
2. We use again a counter example. Let Sa, Oa, δa and Sb as de-
scribed in the first part above. Let Ob an observation of Sb such
that at date t = 4k the edge (u′, v′) appears and at date t = 4k + 1
it disappears. Let δb(p) = 2p. We then have Fa = Fb = ∅ while
Oa 6= Ob. This proves that Fa = Fb ; Oa = Ob.

3. By construction of the families (see Alg. 1), we have (δa = δb ∧
Oa = Ob)⇒ Fa = Fb.

14

4. We use again a counter example. Let Sa, Oa, δa and Ob as
described in the second part above. Let Ob an observation of Sb such
that no edge is observed. Let δb(p) = 2p. Then we have δa = δb and
Fa = Fb = ∅ while Oa 6= Ob. This proves that (δa = δb∧Fa = Fb) ;
Oa = Ob. 2

This theorem shows that two different dynamic distributed systems with
different observations can give the same family of dynamic p-graphs. Like-
wise, two different dynamic distributed systems with the same observation
can give two different families of dynamic p-graphs. Hence an observation
does not fully characterize a dynamic distributed system. As a complement,
the following theorem shows that the families of dynamic p-graphs allow com-
paring two different systems (that can be of different nature, see the example
of snail network versus vehicular network introduced in Section 1), regarding
their ability to run a given distributed algorithm.

Theorem 3. Let Sa and Sb two different dynamic distributed systems and
Fa and Fb their families of dynamic p-graphs.

For any distributed algorithm A such that Sa and Sb satisfy both its mini-
mum requirement, if Fa = Fb then A has the same behavior on both systems.

Proof. Suppose that there is a distributed algorithm A which satisfies its
specifications in Sa and does not satisfy them on in Sb while Sa and
Sb satisfied the minimum requirements of A. This means that there
is at least one communication completed in Sa and that could not be
done in Sb. So there is at least one edge which has allowed sending a
number of messages q in Sa larger than the number of messages q′ it
has allowed sending in Sb. So Gqa 6= G

q
b implying that Fa 6= Fb, which

contradicts the initial assumption. 2

This theorem shows that if two dynamic distributed systems – whatever
their nature – have the same family of dynamic p-graphs, then any distributed
algorithm will give the same results on both dynamic distributed systems
(providing both systems are able to run the algorithm, in term of capacity).

5.2. Studying distributed algorithms

In addition to the comparison of different dynamic distributed systems,
the families of dynamic p-graphs allow inferring properties on the algorithms
themselves. We begin by introducing the p-graph at/from a configuration

15

for dealing with communication which are possible just before or just af-
ter a given configuration. Then we give some properties about topological
information in dynamic distributed systems.

Definition 6. For a given observation O, let tc be the date when the dis-
tributed system reaches a given configuration c. The p-graph at configuration
c denoted by Gp

cp is the timed p-graph Gp
tc observed at the date tc. The p-graph

from configuration c denoted by Gp
pc is the timed p-graph Gp

tc+δ(p)
observed at

the date tc + δ(p).

The graph Gp
pc is composed of all edges allowing to send p messages from

configuration c. In an execution e = c1, c2, . . ., the graph G1
pc1 is the initial

topology. It is important to note that the initial topology of a dynamic
distributed system cannot be observed before a delay of δ(1) as there is no
guarantee that two close nodes at t = 0 will not move before δ(1), avoiding
any communication possibility (see the previous example with the vehicle
passing the convoy in Section 3.2).

A dynamic distributed system is stable during the execution e if, for any
integer p > 0, G1

pc1 = Gp
pc1 , where c1 is the initial configuration of e. This

does not imply that no communication link appears nor disappears in the
dynamic system but these changes are not significant from the point of view
of the messages. The dynamic distributed system contains some stable edges
during the execution e if Gp

pc1 6= ∅ for every integer p > 0. It contains some
stable edges starting from configuration c if Gp

pc 6= ∅ for every integer p > 0.
Obviously if an edge allows sending pmessages, it also allows to send q < p

messages. This gives the following proposition (notation G(V,E) ⊆ G′(V,E ′)
means that any edge of E belongs to E ′):

Proposition 1. For any configuration c in an execution and for any integer
p and q, if p > q, then Gp

pc ⊆ Gq
pc and Gp

cp ⊆ Gq
cp.

Proof. Assume that there exists a configuration c and two integers p and q
with p > q such that Gp

pc 6⊆ Gq
pc. Then there is at least one edge e

such that e ∈ Gp
pc and e /∈ Gq

pc. From Definition 6, e ∈ Gp
pc and e /∈ Gq

pc
means that e exists during the time interval [tc, tc + δ(p)] and does
not exist during the whole time interval [tc, tc+δ(q)]. However, since
p > q, we have δ(p) ≥ δ(q) (Remark 1) and we obtain a contradiction.
Thus Gp

pc ⊆ Gq
pc.

16

By the same way, we can prove that Gp
cp ⊆ Gq

cp. 2

In other words, when p increases, there is less and less edges in a timed
p-graph. A timed p-graph is built by withdrawing edges with too short
duration. By comparison a Temporal Reachability Graph [23] is built by
adding some edges. In the first case, there is an edge when several consecutive
messages can be sent while in the second there is an edge when several hops
(a journey) allow joining the extremities.

Now we defined the p-graph at/from a configuration, we illustrate the
interest of the families of dynamic p-graphs for inferring properties on dis-
tributed computations. The next theorem gives a condition to obtain a valid
local information related to the topology at several hops. By valid, we intend
that, each time a local topology change is propagated, it is still up-to-date
when it is received. For instance, suppose that u informs a remote node v
about one of its new neighbor u′. Then v will receive this information later
due to the distance between u and v. If u′ is still a neighbor of u when v
receives the information, the information is said valid.

Theorem 4. Consider a dynamic distributed system and its family of dy-
namic p-graphs F = ((Gp)p∈N∗). If Gq−1 6= Gq then no distributed algorithm
can give a valid local description of the topology at q hops.

Proof. If Gq−1 6= Gq then, for any algorithm running in the dynamic dis-
tributed system, there exists at least one configuration c in the exe-
cution such that Gq−1

pc 6= Gq
pc. Let (u, u′) be one of the edge existing

in Gq−1
pc and not in Gq

pc. The duration of this edge is then less than
δ(q).

Sending a message from u up to q hops requires a delay of at least
q × δ(1). As δ(q) ≤ q × δ(1) (Remark 1), a delay of at least δ(q) is
required. Then, when the message sent by u is received by a node v
such that dist(u, v) = q in Gq

pc, edge (u, u′) does not exist anymore.
Thus, no valid local description of the topology can be sent at q hops
if Gq−1 6= Gq. 2

Theorem 4 gives an interesting indication regarding the use of local topol-
ogy description for routing. Indeed, by studying the family of dynamic p-
graphs of a given dynamic distributed system, it is possible to deduce the
maximal distance from which it is no more interesting to forward local topo-
logical information.

17

6. Applications

In order to illustrate the practical usefulness of our modeling, we present
in this section some examples.

6.1. Cumulative acknowledgment

Consider a bi-directional communication between two neighbor nodes u
and v where u is the sender willing to send a bunch of messages to the re-
ceiver v. To enforce the robustness of the communication, v acknowledges
the received messages. However, to better use the network resources, v may
acknowledge several messages with a single acknowledgment. We define the
n-ack algorithm as follows: the receiver acknowledges the n previously re-
ceived messages using a single acknowledgment returned to the sender.

Obviously the nodes ability to exchange data using such an algorithm
depends on the dynamic of the network. However the dynamic p-graphs
permit to easily determine them.

Theorem 5. Consider a dynamic distributed system S and its family of dy-
namic p-graphs F = ((Gp)p∈N∗).

The set of pairs sender-receiver that have the ability to communicate using
the n-ack algorithm in S from the configuration c is equal to the set of edges
of Gn+1

pc .

Proof. If the edge (u, v) belongs to Gn+1
pc , it permits to send n messages and

an acknowledgment (graphs are not oriented), satisfying the n-ack
algorithm.

Reciprocally, suppose that starting from configuration c, Node u sent
n messages to v that returned an acknowledgment received by u.
Then the edge (u, v) permitted to send at least n+1 messages. Thus
it belongs to Gn+1

pc . 2

6.2. Cyclic diffusion of fragments

Consider a node that has to diffuse a large piece of data in n fragments.
For this purpose, it sends to its neighbors nmessages (each of them containing
a single fragment) before restarting the process indefinitely. A neighbor will
then receive the data after nmessages, whatever is the first fragment received.

Such a use case is encountered in vehicular networks where a Road-Side-
Unit (RSU) has to broadcast data to arriving vehicles. Depending on the

18

size of the data and the MTU3, several fragments are required to receive the
whole data. If the RSU broadcasts cyclically the n fragments (ie. it sends
one fragment after the other in its vicinity, restarting from the first one when
the last one has been sent), an approaching vehicle obtains the whole data
as soon as it has received n messages from the RSU. Taking into account
the packets losses rate leads to a similar result (with more messages) but to
simplify, we consider no loss here.

The problem consists in determining the vehicles able to receive the com-
plete data, for a given number of fragments n. This depends on the dynamic
of the distributed system. By modeling the dynamic using the families of
dynamic p-graphs, we obtain easily the answer.

Recall that the underlying graph U(Gp) is composed with the nodes of
the system and all edges of the successive graphs Gp

1, G
p
2, . . . of the dynamic

graph Gp.

Theorem 6. Consider a dynamic distributed system S and its family of dy-
namic p-graphs F = ((Gp)p∈N∗). Let u a node sending a large data using a
cyclic diffusion of n fragments.

Then all nodes v such that the edge (u, v) belongs to U(Gn) receives the n
fragments composing the data.

Proof. Let denote by Gp
1, G

p
2, G

p
3, . . . the p-graphs composing Gp. If (u, v)

belongs to U(Gn), there exists an integer k ∈ N such that (u, v)
belongs to the graph Gn

k . Hence the edge (u, v) permitted to send at
least n successive fragments. Thus Node v received the whole data.
2

6.3. Propagation information with feedback

Our last example focuses on the PIF algorithm. We propose an adapta-
tion for dynamic distributed systems named DPIF and we prove a condition
ensuring that DPIF satisfies its specifications. We begin by explaining the
original PIF algorithm.

3MTU: Maximum Transfer Unit.

19

6.3.1. PIF definition

The propagation information with feedback (PIF) has been introduced in
[20]. It builds a spanning tree to gather information in a fix network. Like
most of general wave algorithms [21], the PIF algorithm works in two steps
– both of them evoking a wave.

Consider a fixed network modeled by a graph G(V,E) (where V is the
set of vertices and E ⊆ V × V is the set of edges). The first step is a
flooding phase started by the initiator node u ∈ V . During this step, the
initiator sends a broadcast message to all its neighbors. When a node w ∈
V receives a broadcast message for the first time, it considers the sender
v ∈ V as its parent by setting its local variable parentw to v (parentw = v).
Then it forwards the broadcast message to all its neighbors except its parent.
Behaving like this, a spanning tree is built in the network.

The second step is a feedback phase started by the leaves of the spanning
tree. More precisely, each time a node v receives a broadcast message from
a node w which is not its parent (parentv 6= w), it sends back to w an ac-
knowledgment message. When a node receives an acknowledgment from all
its neighbors except its parent, it sends back to its parent an acknowledg-
ment. When the initiator itself has received an acknowledgment from all its
neighbors, the algorithm ends. Information of each node has been gathered
by the initiator thanks to the acknowledgments sent by each node (except
the initiator) to its parent.

Let denote by PIF(u) this algorithm starting from Node u. Let Vu ⊂ V
be the set of vertices of G belonging to the connected component of u and
Eu be the set of corresponding edges: Eu = (Vu × Vu) ∩ E. We denote by
Ku(G) the subgraph of G composed with the set of vertices Vu and the set
of edges Eu. PIF(u) gathers information from all nodes in Vu after building
a spanning tree of Ku(G). The height of this tree can reach |Vu| − 1 in some
cases.

A variant of the PIF algorithm consists in stopping the flooding phase
after a deepness of d; we denote it by PIFd(u). Here, the height of the tree
built by PIFd(u) is at most d. Let denote by Vu,d ⊆ Vu the vertices of Vu
at distance less than or equal to d from u and by Eu,d ⊆ Eu the set of
corresponding edges: Eu,d = (Vu,d × Vu,d) ∩ E. We denote by Ku,d(G) the
subgraph of G composed with the set of vertices Vu,d and the set of edges
Eu,d. In a synchronous system, PIFd(u) gathers information from all nodes
in Vu,d after building a spanning tree of Ku,d(G).

20

6.3.2. DPIF: PIF in dynamic network

The PIF algorithm is mainly applied on wired fixed networks. Obviously
it cannot be used in dynamic networks efficiently because it assumes a sta-
ble spanning tree over the whole system. We then propose an adaptation
of PIFd for dynamic networks called DPIFd where nodes communicate with-
out knowing their neighbors by sending periodically some beacons in their
vicinity using the push primitive. Note that periodic beacons are commonly
used in dynamic networks to sense the environment (eg. vehicular networks,
networks of robots...). In this context, we use piggybacking to implement the
PIFd on the top of the beacons, leading to a synchronous distributed system.

The node u that initiates the DPIFd(u) adds (d, h) to the next beacon
it will push, where d is the deepness of the willing spanning tree and h is
the height of the sender (h = 0 here because the sender is the root). Each
neighbor receiving such a message for the first time learns about the running
DPIF. They compute their own height (h ← h + 1) and adds (d, h) to the
next beacon they will send (as the root did, except the height has been
incremented). Moreover they plan to answer by adding all received data
collected from now in the next (2(d−h)+1)th beacon. Acting like this, more
and more nodes are involved in the DPIF until reaching the leaves where
h = d. Such nodes add their own data to be collected into the next beacon
to push. The parents of the leaves in the tree will receive such data and add
them as well as their own data into the next beacon. From nodes to nodes,
the collected data are gathered towards the root u.

For instance, if d = 3, a neighbor v of the root u contributes to DPIFd(u)
when it receives the beacon from u. It will send the collected data to u
2(3 − 1) + 1 = 5 beacons latter, including all received data in this beacon.
A neighbor w of v at distance 2 of the root will warn the leaves with its
own beacon and will wait for 2(3 − 2) + 1 = 3 beacons to answer. When
receiving such a beacon, the leaves answer with their next beacons because
2(3− 3) + 1 = 1. Node w has then enough time to receive the answers from
its sons in the tree before including them into its beacon in such a way Node
v receives them. In turns, v does the same, waiting enough to receive the
data from its sons before including them into its beacon. Finally the root u
receives all the data before sending its 2(3 − 0) + 1 = 7th beacon since the
beginning of the algorithm DPIFd(u).

21

6.3.3. Result

When starting DPIFd(u) on dynamic distributed system, it is expected
that, as PIFd(u) would do on a fixed network, it gathers on u all data from
nodes at distance less than or equal to d from u. Obviously, the dynamic of
the system may prevent DPIFd(u) to satisfy such specifications.

Let formalize the problem. Consider a dynamic distributed system S
and its family of dynamic p-graphs F = ((Gp)p∈N∗). The problem consists
in determining, for a given deepness d ∈ N∗ and a given configuration ci,
the nodes u of S such that DPIFd(u) starting at configuration ci succeeds in
gathering all data of nodes of Ku,d(G

1
pci). Alternatively, for a given node u, the

problem consists in determining the maximal deepness d so that DPIFd(u)
succeeds. Such questions are essential in vehicular networks where vehicles
take benefit of data produced by sensors and calculators of close vehicles.

Obviously, the DPIFd(u) algorithm satisfies its specifications on a dis-
tributed system which is stable (see Section 5.2), or partially stable on
Ku,d(U(G)) where U(G) is the underlying graph of the system (see Sec-
tion 2.2). Nevertheless, thanks to the families of dynamic p-graphs, we
propose a simple and less restrictive answer to the problem, relying only
on graphs considerations, avoiding reasoning with the timing information of
edges.

Theorem 7. Consider a dynamic distributed system S and its family of dy-
namic p-graphs F = ((Gp)p∈N∗). Let d a positive integer.

If there exists an integer p > 2d such that Ku,d(G
1
pci) = Ku,d(G

p
pci), then

DPIFd(u) starting from the configuration ci will satisfy its specifications.

Proof. The DPIFd(u) algorithm starts with the first beacon of u contain-
ing (d, 0). Before u sends its second beacon, the algorithm involves
neighbors of u. Before u sends its (d + 1)th beacon, the leaves are
reached. Before it sends its (2d + 1)th beacon, it has received all
data of reached nodes. Since Ku,d(G

1
pci) = Ku,d(G

p
pci), every edge of

Ku,d(G
1
pci) allows sending p beacons, meaning that it still exists when

the root receives the collected data. 2

Note that such a condition can easily be checked in practice after compu-
tation of the family of dynamic p-graphs from GPS traces using Algorithm 1.

22

7. Conclusion

In this paper, we introduced a new model of dynamic distributed systems:
the dynamic p-graphs. This modeling takes into account the ability of the
dynamic network to send consecutive messages on a link, encompassing both
the nodes move and the capacity of the underlying communication technol-
ogy. We claim that the dynamics of dynamic distributed systems can be fully
described with the finite family of dynamic p-graphs for different values of
p ∈ N∗. The importance of such modeling for algorithmic issues is shown in
this paper.

First, we have shown that dynamic distributed systems of very different
nature can be compared according to their ability to support a given algo-
rithm. Then we proved the intrinsic limitation of topology-based routing
protocols for a given dynamic distributed system. Finally we illustrated the
interest of our modeling by exhibiting conditions on the dynamics that en-
sure the desired behavior of three distributed algorithms commonly used in
dynamic distributed systems.

Our future work will focus on the comparison of real dynamic distributed
systems and on the proof of complex algorithms and protocols in the context
of vehicular networks and swarm of UAVs.

Acknowledgment

The authors would like to thank the reviewers for their valuable comments
that permitted to significantly improve this paper.

This work has been partially supported by the project Celtic Plus Co-
MoSeF (Cooperative Mobility Services of the Future) and the research project
Toredy funded by the Région Picardie and the Fond Européen de Dévelop-
pement Régional (European Regional Development).

References

[1] A. F. Anta, A. Milani, M. A. Mosteiro, and S. Zaks. Opportunistic in-
formation dissemination in mobile ad-hoc networks: the profit of global
synchrony. Distributed Computing, 25(4):279–296, 2012.

[2] R. Baldoni, A. Fernández Anta, K. Ioannidou, and A. Milani. The
impact of mobility on the geocasting problem in mobile ad-hoc networks:

23

Solvability and cost. Theor. Comput. Sci., 412(12-14):1066–1080, March
2011.

[3] P. Borgnat, E. Fleury, J.-L. Guillaume, and C. Robardet. Characteristics
of the dynamic of mobile networks. In Proc. BIONETICS 2009, vol.
6811, pages 130–139.

[4] A. Boukerche, editor. Algorithms and Protocols for Wireless, Mobile Ad
Hoc Networks. John Wiley and Sons, 2008.

[5] B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. In International Journal
of Foundations of Computer Science, 14(2):267–285, 2003.

[6] A. Casteigts, S. Chaumette, and A. Ferreira. On the Assumptions about
Network Dynamics in Distributed Computing CoRR, abs/1102.5529,
2011.

[7] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-
varying graphs and dynamic networks. In Proc. ADHOC-NOW 2011,
pp. 346–359.

[8] B. Ducourthial, Y. Khaled, and M Shawky. Conditional transmis-
sions: performances study of a new communication strategy in VANET.
IEEE Transactions on Vehicular Technology, 56(6):3348–3357, Novem-
ber 2007.

[9] B. Ducourthial, S. Khalfallah, and F. Petit. Best-effort group service
in dynamic networks. In Proceedings of the 22nd ACM SPAA, Greece,
June 2010.

[10] F. El Ali and B. Ducourthial. On-line videos
and screenshot movies of the pth algorithm.
https://www.hds.utc.fr/airplug/doku.php?id=en:doc:movies:start.

[11] F. El Ali and B. Ducourthial. A distributed algorithm for path main-
taining in dynamic networks. In International Workshop on Dynamicity
(DYNAM’11), collocated with (OPODIS’11), Toulouse, France, Decem-
ber 2011.

24

[12] A. Ferreira. Building a reference combinatorial model for manets. IEEE
Network, 18(5):24–29, 2004.

[13] B. Haeupler and D.R. Karger. Faster information dissemination in dy-
namic networks via network coding. Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011,
San Jose, CA, USA, pages 381–390, 2011

[14] F. Harary and G. Gupta. Dynamic graph models. Mathematical and
Computer Modelling, 25(7):79 – 87, 1997.

[15] F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dy-
namic networks. In Proceedings of the 42nd ACM symposium on Theory
of computing, STOC ’10, pages 513–522, New York, NY, USA, 2010.
ACM.

[16] N. Meghanathan. Survey and taxonomy of unicast routing protocols for
mobile ad hoc networks. The International Journal on Applications of
Graph Theory in Wireless Ad hoc Networks and Sensor Networks, 1(1),
2009.

[17] J. Monteiro, A. Goldman, and A. Ferreira. Performance evaluation of dy-
namic networks using an evolving graph combinatorial model. WiMob,
2006.

[18] S. Olariu and M. C. Weigle, editors. Vehicular Networks: From Theory
to Practice. CRC Press, 2010.

[19] R. ODell and R. Wattenhofer. Information dissemination in highly dy-
namic graphs. In Proceedings of DIALM-POMC, pages 104–110, 2005.

[20] A. Segall. Distributed network protocols. IEEE Transactions on Infor-
mation Theory, 29(1):23 – 34, 1983.

[21] G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 1994

[22] K. Wehmuth, E. Fleury, and A. Ziviani. A New Model for Time-Varying
Graphs. In Temporal and Dynamic Networks: From Data to Models, ,
March 2013.

25

[23] J. Whitbeck, M. Dias de Amorim, V. Conan, and J.-L. Guillaume. Tem-
poral reachability graphs. In Proceedings of ACM Mobicom, Istambul,
2012.

26

