
From Sensors to Visualization Dashboards:
Need for Language Composition

Sébastien Mosser1, Ivan Logre1, Nicolas Ferry2, and Philippe Collet1

1 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis
2 SINTEF IKT, NSS Department, Oslo, Norway

Abstract. In the context of the Internet of Things, the SensApp plat-
form is designed to collect data from sensors and support the building of
associated monitoring dashboards. Bridging the gap between sensors and
visualization involves up to eleven kind of models, from state machine
modeling the behavior of a sensor to task diagrams modeling the actions
of the end-user. This paper describes this case study, emphasizing the
need for domain specific modeling language composition mechanisms to
support the activity of modeling modern software-intensive systems.

1 Introduction: Modeling a Platform for the IoT

According to the Internet of Things (IoT) paradigm, things can exchange data
with other things, creating a network of interconnected things. Things rely on
sensors to collect data (e.g., temperature sensors to regulate radiators in smart
buildings, probes in smartphones pushing statistics to phone companies).

In another context, means of transport with accurate sensors (e.g., speed,
location) can log context information about a given travel. Data are then pushed
to applications that produce innovative services on top of this information (e.g.,
air quality monitoring). Data might also be stored for data-mining purpose or
correlation between data collected on the fly and older data sets. For example,
the bike depicted in Fig. 1a holds 12 sensors and 2 cameras3. The collected
data are used to gather information about the city surroundings. Eventually,
all these data need to be visualized. Fig. 1b represents a monitoring dashboard
associated to the bike. It aggregates the video feed obtained from the front
camera (top-right) with the bike position displayed on a map (bottom-right).
It also displays the altitude, heading and speed of the bike, with both instant
values (bottom-left) and graph representation of past data (top-left).

In this context, SINTEF and I3S have been developing the SensApp plat-
form [1] since 2010. It exploits the cloud-computing paradigm to implement a
scalable platform able to collect and store data, eventually consumed by third-
party service to build monitoring dashboard. An overview of the platform is
represented in Fig. 2, where arrows represents the dataflow associated to the
collected data. Things send data to the SensApp platform, hosted in a cloud.
Data are then stored in dedicated databases, and forwarded to specialized dash-
boards that subscribe to given sensor feeds. These applications consume the data,
in real-time for monitoring purpose or asynchronously for analysis purpose.

3 http://www.youtube.com/watch?v=kia5Vkx59nY

(a) Enhanced bike (b) Monitoring dashboard

Fig. 1: Bike equipped with sensors, and its monitoring interface

In this paper, we present the SensApp platform from a modeling point of
view, based on our experience and using state of the art Domain-Specific Mod-
eling Languages (DSMLs). This paper is mainly descriptive, reporting facts ob-
tained from this real-life application used in several EU projects. Our objective is
to sketch a complete case study for DSMLs composition that relies on a applica-
tion used by several research teams and industrial partners. We first describe the
different DSMLs that are well-suited to capture the different concerns involved
in the SensApp architecture (Section 2). We then report on our first analysis
on the kind of relationships identified between the used DSMLs (Section 3).

2 Proliferation of Modeling Languages

The definition of the complete SensApp platform led to tackling different chal-
lenges, at different levels of abstraction and in completely different domains. The
systematic use of DSMLs for each concern of the SensApp platform involves the
definition of models in eleven different languages. We briefly describe each con-
cern and DSML, starting from the ones that are closer to things and moving up
to models related to monitoring dashboards.

Graph models. Sensors and things are organized in networks to collect data.
These networks are modeled as graphs, where each vertex is a sensor and
edges represent communication channels between sensors. This is captured
through a basic and ad hoc graph meta-model. Models are notably used to
formally ensure properties on the sensor network (e.g., assess gossip protocols
used for data propagation).

Thing’s behavior models. To implement the behavior of a given thing, we
used a part of the ThingML [2] DSML. This formalism is a combination
of architecture models, state machines and an imperative action language.
These models are exploited to (i) generate code executed on microcontrollers
and (ii) simulate the modeled behaviors for verification purpose.

Communication models. Sensors communicate with SensApp according to
different protocols (e.g., bluetooth, radio). An architecture model is needed
to properly assemble the different gateways and generate the relevant glue

things dashboards end
users

data
experts

Platform as a Serviceprotocols

sensor networks

variability
models

task
models

resource
models

data
models

components
models

behavior
models

communication
models

graph
models

user interface
models

req.
models

computation
modelsΔ ≡ λx.xx

Fig. 2: Proliferation of Domain-specific Modeling Languages in SensApp

code on the intermediate layers. We used ThingML architecture description
language to achieve this task.

Component models. Deployed SensApp instances must be frequently recon-
figured to handle overload of incoming data. SensApp thus relies on a mod-
ular implementation and the Kevoree component middleware [3] is used to
reify software component and assemble them through models at runtime
techniques. Kevoree models are dedicated to clouds, and can be adapted at
runtime, supporting the dynamic reconfiguration of a given assembly.

Data models. The modeling of data is essential for SensApp, as data are the
core of the platform. Data and their encoding are modeled according to the
SENML [4] formalism, and stored in databases relying on different paradigms
(e.g., document-oriented, journalized datasets, video blobs). Class diagrams
are used to model SENML data types, and model mappings are used to
assess the proper transformation between SENML and its storage-specific
encoding (classical PIM → PSM transformation).

(Data) Computation models. Stored data are exploited by data miners to
extract knowledge from the collected datasets. As sensors might produce
tremendous amount of data, dedicated languages are used to express such
data handling processes. The Pig DSL [5] supports the definition of these
processes in a declarative way.

Resource models. In order to deploy and operate SensApp, we use the Cloud-
ML [6] environment. It provides a DSML along with a run-time environment
that facilitates the specification of provisioning and deployment concerns of
multi-cloud systems at design-time and their enactment at run-time.

Requirement models. The way data are used dramatically differs from one
class of users to another. For example, a diabetic person needs to be alerted
when her blood glucose concentration is too high, whereas a physician has

to monitor the evolution of such a concentration during a given period of
time. UML Use Case diagrams are used to model these actors and their
interactions with the monitoring interfaces.

Task models. For each use case, a detailed scenario is modeled, ordering the
different tasks to be achieved for this use case. Task models are classically
used by the HCI community, for example using the CTT formalism [7] to
organize hierarchically and temporally the tasks to be done.

User Interface models. Widgets used to visualize data need to be organized
in the final dashboard, according to two dimensions: (i) the spatial organi-
zation of widgets in a given frame, and (ii) the sequential organization of
frames between each others. User interface models are designed for this pur-
pose, according to the CAMELEON reference framework [8]. This framework
does not provide any DSML reference implementation, so ad hoc languages
are defined “according to” it.

Variability models. While building a monitoring dashboard, software engi-
neers are in front of large collections of widgets that can be used for the
implementation of a given task. Considering that variability models support
the reification of this diversity, we used the Familiar DSML [9] to address this
point. These models are exploited to check logical constraints, preventing an
engineer to select, when configuring the dashboard, inappropriate widgets
according to a given task.

3 Field Experience: Need for Language Composition

The previous section described each DSML used in the case study independently.
Based on this case study, we identified two scenarios of composition between
DSMLs. First, DSMLs need to be integrated one with each others, for exam-
ple when one language is used to implement a model element of another one.
Secondly, DSMLs must support co-evolution, typically when the two domains
are really different. We illustrate these two classes of composition based on two
scenarios identified in the SensApp example.

Integration: From Sensors to the Cloud. The communication models used
to reify the way sensors communicate with the cloud platform are critical
from a verification & validation point of view. These models are used by the
sensor network architectural model (a graph), and also by the component
model used to reify the cloud application. It is then critical that each tiers
involved in the communication shares the same communication model. As
a consequence, the architect of the sensor network must interact with con-
cepts from the communication domain, shared with the cloud expert who
distribute the different software components in a cloud architecture.

Co-evolution: Bridging the gap Between Visualizations and Sensors.
Task models are designed by ergonomists, where data models are handled by
database experts. These two domains are too far from each other to imag-
ine the share of concepts. But the associated models are closely related: one
cannot realize a given task if the expected data are not provided (e.g., mon-
itoring the diabete threshold is not possible without the availability of the

graphstate
machine

communication

components resource

data

computation

layouttask

requirements

variability

implements
uses

constrains
co-exist with

Things
Platform
Dashboards

Fig. 3: Composition of Domain-specific Modeling Languages

blood sugar concentration level in the data model). Thus, a way to identify
the relationships between heterogeneous model elements must be defined, as
well as appropriate mechanisms to automatically compute the impact of the
evolution of one model over another.

From these scenarios, we refine four kinds of relationship between the different
languages. We represent in Fig. 3 the eleven DSMLs used in the SensApp case
study and their relationships. We see the definition of these relationships as
an interesting research line. As a first step, we illustrate each one on concrete
examples in the following list.

– co-exists with. The component model used to reify the cloud application is
loosely coupled with the task models defined for each user role. We expect
these models to be coupled by a small and well-defined interfaces.

– uses. The component model uses the data model that reify the sensed data.
In this case an evolution of the data model impacts the component one.

– constrains. The way end user tasks are organized in the task model will
disallow several layout configurations that cannot implement it. As a con-
sequence, the task model constrains the expressiveness of the layout ones.
This interaction is bi-directional, as a given layout will also disallow several
task organizations. In our case study we observe a bi-directional nature in
each occurrence of this relationship.

– implements. A task diagram actually implements a given use case. Several
alternative task models can be used to implement the same use case.

4 Summary

In this paper, we described the SensApp platform, dedicated to collect data
from the IoT. It includes eleven DSMLs used to model each part of the system.
Based on this case study, we described the need for composition of these lan-
guages at the modeling level, to support both integration and co-evolution of the
designed models. Actually, the definition of all these models was cumbersome,
time-consuming and trigger challenging maintenance issues. Thus, without any
composition support provided at the DSML level, the approach advocating the
systematic use of domain-specific artefact did not fit such a large case study.
However, we do believe that each domain of SensApp needed to be modeled,
with respect to the four intentions of the modeling activity: (i) to abstract, (ii)

to reason about, (ii) to document and finally (iv) to transform [10]. This case
study emphasize the need for DSMLs composition mechanisms. Ongoing work
consists in building the complete SensApp platform, while carefully observing
and listing the compositions that are implemented between ad hoc and reused
DSMLs. We thus plan to expose SensApp as a precisely defined case study for
DSML composition issues. We will then focus on the relationships between spe-
cific models such as the interactions between the data, task and layout models
in order to design adapted visualizations of sensor data from user task.

Acknowledgments. This work is partially supported by the IDOL project (PHC
Aurora #28864TK) and the STM3 (Solution for the Treatment and Monitoring
in Mobile Medicine, http://www.pole-scs.org/projets?letter=S&page=5)
project. Authors want to thank Antoine Pultier for his work on the visualization
platform, Brice Morin and Anne-Marie Déry for their feedback.

References

1. Mosser, S., Fleurey, F., Morin, B., Chauvel, F., Solberg, A., Goutier, I.: SENSAPP
as a Reference Platform to Support Cloud Experiments: From the Internet of
Things to the Internet of Services. In: Management of Resources and Services in
Cloud and Sky Computing (MICAS), Timisoara, IEEE (September 2012)

2. Fleurey, F., Morin, B., Solberg, A., Barais, O.: MDE to Manage Communica-
tions with and between Resource-Constrained Systems. In: MoDELS’11: 14th
International Conference on Model Driven Engineering Languages and Systems,
Wellington, New Zealand, October 16-21, 2011. Proceedings

3. Fouquet, F., Daubert, E., Plouzeau, N., Barais, O., Bourcier, J., Jézéquel, J.M.:
Dissemination of Reconfiguration Policies on Mesh Networks. In Göschka, K.M.,
Haridi, S., eds.: DAIS. Volume 7272 of LNCS., Springer (2012) 16–30

4. Jennings, C., Arkko, J., Shelby, Z.: Media Types for Sensor Markup Language
(SENML) (2012)

5. Gates, A., Natkovich, O., Chopra, S., Kamath, P., Narayanam, S., Olston, C.,
Reed, B., Srinivasan, S., Srivastava, U.: Building a highlevel dataflow system on
top of mapreduce: The pig experience. PVLDB 2(2) (2009) 1414–1425

6. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
CLOUD 2013: IEEE 6th International Conference on Cloud Computing, IEEE
Computer Society (2013) 887–894

7. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic No-
tation for Specifying Task Models. In Howard, S., Hammond, J., Lindgaard, G.,
eds.: INTERACT. Volume 96 of IFIP., Chapman & Hall (1997) 362–369

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting
with Computers 15(3) (2003) 289–308

9. Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: A domain-specific language
for large scale management of feature models. Sci. Comput. Program. 78(6) (2013)
657–681

10. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley
Professional (2005)

