
HAL Id: hal-01322537
https://hal.science/hal-01322537

Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Composition Challenges for Sensor Data Visualization
Ivan Logre, Sébastien Mosser, Michel Riveill

To cite this version:
Ivan Logre, Sébastien Mosser, Michel Riveill. Composition Challenges for Sensor Data Visualiza-
tion. International Conference on Modularity (MODULARITY 2015), Mar 2015, Fort Collins, United
States. �10.1145/2735386.2735927�. �hal-01322537�

https://hal.science/hal-01322537
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Composition Challenges for Sensor Data Visualization

Ivan Logre Sébastien Mosser Michel Riveill
Univ. Nice Sophia Antipolis

CNRS, I3S, UMR 7271
06900 Sophia Antipolis, France

lastname@i3s.unice.fr

Abstract

Connected objects and monitoring systems continuously produce
data about their environment. Dashboards are then designed to
aggregate and present these data to end-users. Technologies used to
design and implement visualization dashboards are babbling from a
software engineering point of view. This paper highlights how this
domain could benefit from leveraging separation of concerns and
software composition paradigms to support dashboard design.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Data visualization, Software composition

Keywords Visualization, sensor, data, composition

1. Introduction

The Internet of Things relies on physical objects interconnected be-
tween each others, creating a mesh of devices producing informa-
tion. In this context, sensors are surrounding our environment (e.g.,
cars, buildings, smartphones) and continuously collect data about
our living environment. In order to add value to these raw data sets,
visualization dashboards are designed to support end-user decision
making process. Unfortunately, the tools available to design and
implement such dashboards are holistic and do not take into ac-
count the inherent modularity of this domain. This paper does not
aim to describe a solution, but instead focuses on the challenges
triggered by the design of visualization dashboards, and align them
with modular paradigms such as separation of concerns and soft-
ware composition.

2. Visualization Dashboards

Process overview. To design and implement a visualization dash-
board, one selects the visualizations applied to refined datasets to
achieve some identified goal.

This process involves three roles:

1. a Requirement Engineer (RE);
2. a Data Manager (DM);
3. a Dashboard Designer (DD).

[Copyright notice will appear here once ’preprint’ option is removed.]

Each role is responsible for several tasks: (i) the RE defines what
will be the purpose of the dashboard and audit the resulting dash-
board according to the initial motivation, (ii) the DM selects data
to be visualized and treat it to provide the needed well formatted
datasets, (iii) the DD choose visualization for each group of data
and arrange them spatially into a dashboard. These roles needs to
collaborate, e.g., the choice of visualization the DD has to make
depends on the purpose exposed by the RE. They rely on distinct
domains of expertise and formation, each one bringing its own chal-
lenges and none is optional in order to produce a satisfying final
product. Thus, each role is usually impersonated by a dedicated
stakeholder.

Designing dashboard. One could use existing solutions to imple-
ment each of the mentioned tasks, for example using SQL would
be a suitable choice to query and refine sensor data. The Inter-
action Flow Modeling Language [6] models the wanted organiza-
tion of the dashboard, and temporal logic or Concurrent Tasks Tree
(CTT) [5] define the aimed product and the sequence of actions to
be performed with it. Those tools were not designed for the visual-
ization field and suffers from their generic approaches by being dif-
ficult to use by visualization designers. For example CTT does not
offer concepts to characterize visualization needs. Moreover, there
is a lack of interoperability between those tools due to the distinct
field they come from. This results in a difficulty for the stakehold-
ers to dialogue and converge toward a solution when a compromise
is needed.

Implementing dashboard. To implement a given dashboard, one
can use visualization widget libraries, either professional solutions
such as HighChart1 and AmChart2 or community-based libraries
such as D3.JS3. Then, one will add HTML5/CSS code to structure
the result. However, those widgets do not allow their integration
with a lot of data format, since the development effort is put on the
interaction aspect instead of the interoperability. In addition, the
huge amount of available widgets (e.g., D3.js offers 235 widgets
on January 2015) increase the difficulty to select a suitable visual-
ization. There is a lack of effort in the categorization of those new
visualization capabilities[4]. These last two points strengthen the
difficulty to cooperate with other domains, considering the gap be-
tween the conceptual role of the RE and the implementation role
of the DD, and because of the incompatible constraints imposed by
the chosen libraries on data format then reduce reusability.

1
http://www.highcharts.com/

2
http://www.amcharts.com/

3
http://d3js.org/

1 2016/6/3



3. Challenges

The previous section described how people support the design
and implementation of dashboards using a classical development
process. In this section, we describe the challenge of isolation that
undermine this process, detailing it through two axes: evolution
capacities and dashboard integrity. We discuss how separation of
concerns and software composition could be helpful to support this
process.

Isolation challenge. Each stakeholder should be able to work in
his domain of expertise, isolated from the other domains. This main
challenge implies that each one work without the irrelevant noise of
others’ contributions, focusing on concepts of her own domain, or,
in case of a shared concept, only on the facet of this concept rele-
vant for the task of this role. For example, as a dashboard designer,
one can define a link between the visualization being constructed
and some data, but should not be requested to be competent as a
data manager while working on it. The relevant information from a
data polishing point of view are handled by a specialist of this do-
main, but not only this specialist would need to reference a specific
dataset.

Evolution capabilities. Data visualization is a growing, fast
evolving field: 6,440,000 Google results for ”data visualization”
on 01/15, D3.js offered 133 widgets on 04/14 and now 235 on
01/15. Requirement engineering (RE) is a very active research field
offering new way to capture needs: more than 730 papers published
since 2014 and referenced by Google Scholar contains ”require-
ment engineering”, and 640 ”goal model”. In addition, data scala-
bility is still an open scientific lock. For these reasons, their respec-
tive tool or Domain Specific Languages (DSL) used have to evolve
in time. Exploiting a composition-based approach to represent the
widgets will support the evolution capabilities of the whole design
framework. In addition, each of these domains bring a unique ex-
pertise useful to the data visualization design field. Keeping them
separated allows each stakeholder to perform dedicated tasks with
state of the art capabilities of the associated domain. Nonetheless,
this separation of role specific solutions require to handle the inter-
action between those partial results, bridging the gap between the
domains and manage the high versatility of those research fields.

Integrity. Separation of concerns allows one to contribute to the
dashboard design process in her own domain. It is then possible
to check if this work is consistent inside this domain, even if the
other domains are in an unstable or incoherent state or if it is
not possible to check the global consistency at the moment. For
example, a data manager is allowed to edit a resource measurement
unit to optimize the data transfer and validate her contribution
from the data point of view, even if it may have broke the choice
of visualizations used in the dashboard design domain. In order
to support a proper separation of concerns, each domain solution
has then to be usable independently from any considerations of
interaction with the other collaborating domains. This point raises
a challenge on the interaction of these partial solutions, introducing
the notion of local and global consistency to handle.

Actionable insights: DSL composition. One interesting way to
tackle those challenges would be to design a DSL for each of the
three domains mentioned and then to compose those partial results
in a overall data visualization solution. The state of the art reveals
several ways to manage this composition [2]:
(i) Merge, i.e., the operation to produce one bigger meta model
from several meta models by identification of a pivot and merging

from it, and then refine the associated concrete syntaxes to produce
a global one [7].
(ii) Aggregation, i.e., make enough assumptions about the meta-
models to be able to link them through the transformation of sev-
eral meta-models by adding, deleting or editing specific model el-
ements, essentially to align two concepts from different domains
or to reference an external concept in order to delegate part of the
responsibilities [1].
(iii) Viewpoint unification, i.e., let each domain expert works with
her proper DSL, while composing the abstract syntaxes and se-
mantics of each to produce an integrated meta model to reason
about [8].
(iv) Embedding, i.e., the specialization of one or several concepts
of an host meta model through the definition of a guest one, tailored
to extend the host to a new aspect of the whole system complexity
while preserving its semantics [3].

4. Conclusions & Perspectives

In this paper, we described the domain of visualization dashboard
design. This domain crosscuts several research fields, from human-
computer interactions to big data. We highlighted three challenges
in this domain where a software engineering approach based on
modularity concepts could support it. However, all the challenges
triggered by this domain are not yet solved from a separation of
concerns point of view.

In our upcoming works, we plan to focus on defining a formal
way to support exchanges between the different roles involved in
the domain by a formal identification of the relations between each
stakeholder domain and through integration of domain specific
solutions while emphasizing integrity and isolation properties on
this composition.

References

[1] D. Blouin, Y. Eustache, and J.-P. Diguet. Extensible global model
management with meta-model subsets and model synchronization. In
GEMOC 2014, pages 43–52, 2014. URL http://ceur-ws.org/

Vol-XXX/#paper-07.
[2] M. Emerson and J. Sztipanovits. Techniques for metamodel composi-

tion. In OOPSLA–6th Workshop on Domain Specific Modeling, pages
123–139, 2006.

[3] D. M. Groenewegen, Z. Hemel, L. C. Kats, and E. Visser. Webdsl: a
domain-specific language for dynamic web applications. In Compan-
ion to the 23rd ACM SIGPLAN conference on Object-oriented program-
ming systems languages and applications, pages 779–780. ACM, 2008.

[4] I. Logre, S. Mosser, P. Collet, and M. Riveill. Sensor Data Visu-
alisation: a Composition-based Approach to Support Domain Vari-
ability. In European Conference on Modelling Foundations and Ap-
plications (ECMFA’14), pages 1–16, York, United Kingdom, July
2014. Springer LNCS. URL http://www.i3s.unice.fr/

~

mosser/

media/research/ecmfa14.pdf.
[5] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A Dia-

grammatic Notation for Specifying Task Models. In INTERACT, pages
362–369, 1997.

[6] G. Rossi. Web modeling languages strike back. IEEE Internet Comput-
ing, 17(4):4–6, 2013. ISSN 1089-7801. .

[7] M. Schottle and J. Kienzle. On the challenges of composing multi-view
models. In Proceedings of the First Workshop On the Globalization of
Modeling Languages, GeMOC 2013, pages 1–6, 2013.

[8] A. Vallecillo. On the combination of domain specific modeling lan-
guages. In Modelling Foundations and Applications, pages 305–320.
Springer, 2010.

2 2016/6/3


