
Sensor Data Visualisation: a Composition-based
Approach to Support Domain Variability

Ivan Logre, Sébastien Mosser, Philippe Collet, and Michel Riveill

Université Nice – Sophia Antipolis
CNRS, I3S, UMR 7271

06900 Sophia Antipolis, France
{logre,mosser,collet,riveill}@i3s.unice.fr

Abstract. In the context of the Internet of Things, sensors are sur-
rounding our environment. These small pieces of electronics are inserted
in everyday life’s elements (e.g., cars, doors, radiators, smartphones) and
continuously collect information about their environment. One of the
biggest challenges is to support the development of accurate monitoring
dashboard to visualise such data. The one-size-fits-all paradigm does
not apply in this context, as user’s roles are variable and impact the way
data should be visualised: a building manager does not need to work
on the same data as classical users. This paper presents an approach
based on model composition techniques to support the development of
such monitoring dashboards, taking into account the domain variabil-
ity. This variability is supported at both implementation and modelling
levels. The results are validated on a case study named SmartCampus,
involving sensors deployed in a real academic campus.

Keywords: Variability, Data visualisation, Sensors, Model composition

1 Introduction

Sensors are everywhere. The Internet of Things (IoT) paradigm relies on a world
of interconnected objects, able to communicate between each others and collect
data about their context. Day after day cars, smartphones and buildings collect
information about our living environment, generating zettabytes of sensed data.
The Gartner group predicts up to 26 billions of things connected to the Internet
by 2020. Intechno Consulting estimates that this market will generate up to
180 billions of euros worldwide. Being able to exploit and interpret these data
means to keep control of this mass of information. Considering data obtained
from sensors, there is a need to ease the design of monitoring dashboards as raw
data remain useless for a user [1]. Aggregating the correlated data into accurate
visualisation interfaces allows humans to interpret them, transforming raw values
into meaningful information.

Such dashboards support users while interpreting these data, allowing one
to take decisions based on the sensed data. The main challenge to tackle is then



to support the intrinsic variability of this domain. This variability is twofold
and thus triggers two concurrent challenges: (i) each user wants to use a dash-
board dedicated to her very own needs, and (ii) visualisation libraries used at
runtime provide different visualisation widgets to be used to implement such
dashboards. In this context, model-driven engineering approaches can support
the first challenge by capturing concepts used by the dashboard designers and
providing appropriate tool support. To tackle the second challenge, Software
Product Lines (SPLs) are defined as “a set of software-intensive systems that
share a common, managed set of features and that are developed from a common
set of core assets in a prescribed way” [2]. SPL engineering is based on the idea
that the reusable artefacts encapsulate common and variable aspects of a family
of software systems [3, 2]. As a consequence, SPLs provide a way to model widget
variability, relying on strong logical foundations and configuration support.

The contribution of this paper is to describe a tool-supported approach en-
abling the mass customisation of dashboards. The approach relies on a dedicated
meta-model that captures the concepts used to design a dashboard. The vari-
ability of the different visualisation libraries is captured using feature models,
expressed according to the concepts defined in the meta-model. The tool support
implements the link between the meta-model and the feature models, supporting
users while designing dashboards and ensuring code generation to reach runtime
environments.

We describe in Sec. 2 the SmartCampus project, which relies on sensors
deployment in a real academic campus. This project serves both as motivation
and application for our work. Sec. 3 describes the Ptah meta-model, used to
support a user while designing a monitoring dashboard. Sec. 4 describes the
method used to capture the variability of a given visualisation library, and how
visualisation libraries are composed. Sec. 5 describes the benefits of the ap-
proach based on a scenario extracted from the SmartCampus use case. Finally,
Sec. 6 discusses related work, and Sec. 7 concludes this paper by exposing some
perspectives for further researches.

2 Motivations & Running Example

This section describes the SmartCampus project as a motivating example for
our contribution. It illustrates the two main challenges this paper addresses:
(i) how one can design a monitoring dashboard at the right level of abstraction
and (ii) how such a dashboard can be realised with respect to the existing
libraries at the implementation level.

2.1 The SmartCampus Project

The University of Nice-Sophia Antipolis is exploiting a new campus named
SophiaTech1, located in the Sophia Antipolis technology park. The ultimate

1 http://campus.sophiatech.fr/en/index.php



goal of this project is to consider sensors deployed in buildings as an open plat-
form to let final users (i.e., students, professors, administrative staff) build their
own innovative services on top of the collected (open) data. This SmartCampus
project was started in September 2013 and involves a team of 18 persons. The
development effort is focused on data visualisation, data collection and scalabil-
ity issues. We consider here this project as an use case in order to bring actual
visualisation needs from a real world problem.

The objective of the project is to develop a middleware acting as a mediation
layer between sensors deployed in buildings and developers who want to develop
innovative services based on these data. The functional analysis phase (ended in
December 2013) relied on a survey and users interviews to identify prototypical
scenarios to be used as relevant validation test cases. As a result, the following
three scenarios were identified:

– Parking lot occupation. The campus contains five different parking lots, with
different occupation rates. Final users complained about the difficulty to
find an available parking place. With respect to environmental constraints,
the occupation rate of each lot is aggregated based on data collected from
sonar sensors (located on arbour overhanging the cars) and counters based
on infra-red rays located at the entry and exit portals of each lot. But if
users only want to know where to park their car on the morning, the estate
department of the University aims at aggregating statistics to analyse the
occupation rates of each parking and take decisions based on these data.

– Crowd monitoring. The food court of the campus is currently under-sized,
leading to long queues during rush hours. Students have identified the need
to estimate the waiting time in the cafeteria and the restaurant. The im-
plementation of such a crowd monitoring system is possible with a simple
image processing algorithm analysing the video stream of a webcam. Based
on the very same technological stack, additional counters can be deployed
to measure people traffic in different places, e.g., library, main corridors.

– Heating regulation. The heating system of the campus suffered from regu-
lation issues when initially started. As a consequence, data collected from
temperature sensors deployed in the buildings had to be aggregated and visu-
alised in dashboard, of which an example is depicted in Fig. 1, as a support
for the technical team fixing the steam stream throughput in the different
pipes. These sensors can now be used to assess the temperature in the build-
ings, identifying open doors or windows during winter and optimising the
heating effort distribution in the building by comparing the occupancy and
temperature of rooms.

2.2 Challenges

The implementation of these use cases in the SmartCampus context triggers
two major issues: (i) there were almost as many dashboards needed as inter-
viewed users and (ii) at the implementation level, developing such dashboards
is error-prone and time-consuming.



(a) Sensors overview (b) Zoom on a specific floor

Fig. 1. Mockup of an heating regulation dashboard, designed by campus’ users

Designing Multiple Dashboards (C1). Based on the interviews conducted
during the analysis phase, we identified the tremendous variability of monitor-
ing dashboards. Actually, SmartCampus is a prototypical example of an open-
data platform: the availability of data about the environment empowers the end
users, allowing each one to design a dashboard based on her very own needs.
Unfortunately, if tools used to mockup dashboards are usable by end-users (e.g.,
Balsamiq2, see Fig. 1), they cannot be used to generate executable dashboards.
Moreover the implementation of such dashboards requires technological skills
(e.g., web programming knowledge) that slowed down or even stopped the de-
velopment effort. Users also experiment a gap between the expression of their
functional needs and the organisation of the corresponding data and visualisa-
tions into a well-formed dashboard. As a consequence, the first challenge is to
support the mass customisation of monitoring dashboards, at the appropriate
level of abstraction.

Handling the technological variability (C2). The implementation of such
dashboards is a complex task. Even if we have restricted the technological stack
to web-based interface (it is one of the assumptions made by the SmartCampus
Description of Work document), many widget libraries can be used to implement
these dashboards, e.g., AmCharts3, Highcharts4, D3.js5. These libraries are het-
erogeneous, and offer different widgets with their own specificities. For example,
(i) AmChart offers 58 different widgets, (ii) Highchart offers 54 widgets and
13 additional widgets dedicated to large datasets (named Highstock), and (iii)
D3.js offers 133 widgets. The effervescence around the big data and open data
paradigms fosters the frequent publication of new tools and widget libraries to
support data visualisation. Moreover, even if we consider a single library, the
evolution of the widget referential must be handled. For example, the D3.js li-
brary is based on a community of users, and new widgets are frequently added

2 http://balsamiq.com
3 http://www.amcharts.com
4 http://www.highcharts.com
5 http://d3js.org



Dashboard

url = "…"
d1 : Data

v1 : Visualisation
url = "…"
d2 : Data

c : Concern

...

C1

C2

Fig. 2. Global overview of the approach

to the library by external contributors. This proliferation of visualisation solu-
tions has become an obstacle to efficient choices during the design of monitoring
dashboards, thus our second challenge is to handle the variability of the offered
amount of solutions.

The contribution of this paper is to address these two challenges, as depicted
in Fig. 2. The user interacts with a model to describe what she wanted to
visualise (C1), and variability models are exploited to support the selection of
concrete widgets among the existing ones, including code generation (C2).

3 Supporting Dashboard Design Variability (C1)

This section describes a meta-model that tackles the first challenge identified
in Sec. 2: “How one can design a monitoring dashboard according to her very
own needs?”. To address this challenge, the key idea is to tame the complexity
of dashboard design using a dedicated meta-model. This meta-model allows a
user to focus on the way she wants to compose her data, and does not require
implementation knowledge. It focuses on the different visualisation concerns one
can apply to a given datasets, and is not bound to any concrete library imple-
mentation. Thus, at this level of abstraction, the user is completely free to work.
The binding with existing visualisation libraries, as well as the introduction of
new libraries with respect to this meta-model corresponds to C2 (see Sec. 4).

Restricting the domain to its essence, a designers works according to three
dimensions while designing a dashboard: (i) the data involved in the dashboard
according to her monitoring needs (i.e., “What am I visualising”), (ii) the dif-
ferent visualisation concerns applied to these data (i.e., “How do I visualise it?”)
and finally (iii) the spatial and temporal layout of the dashboard (i.e., “Where
and when do I visualise it?”).

We consider here a prototypical example extracted from the SmartCampus
analysis: heat regulation in corridors. For a given corridor, one wants to exploit a
temperature sensor to identify issues in the regulation of the heated air streams.
Nevertheless, the temperature is impacted by the presence of people: a group of



(a) Charts juxtaposition (120 LoC) (b) Charts intersection (80 LoC)

Fig. 3. Two alternative dashboards realising part of the “heat regulation” use case.

people chatting in the hallway increases the air temperature, and people exiting
or entering the hallway through the external doors lower it. Thus, one needs to
correlate the data collected from the air temperature sensor and the presence
counter one to properly analyse the data. This can be done in multiple ways with
respect to the user habits, as depicted in Fig. 3 using the AmCharts library.
These two datasets can be visualised as charts displayed side by side (Fig. 3a), or
the two datasets can be composed in the same chart (Fig. 3b). Considering that
working at the implementation level is not acceptable for the SmartCampus
users (due to a lack of programming knowledge), a dedicated meta-model is
provided to focus on the level of abstraction expected by the users. This meta-
model is named Ptah6 and depicted in Fig. 3. We describe the concept it defines
according to the three dimensions identified at the beginning of this section.

“What am I visualising?”. At this level, the user focuses on the data sets
she wants to visualise. Based on the state of practice in the IoT domain, we con-
sider in Ptah that data collected from a given sensor are available as a resource
published at a dedicated URL, following the REST paradigm. The DataSet

concept allows one to refer to such an URL while modelling a dashboard. Meta-
data about the collected information are defined by the Field concept: a user
expresses that the temperature DataSet is indexed by a Field named ttemp
typed as a Date, and contains a value (another Field) named temp typed as a
Numerical value. If the underlying data format supports meta-data definition
(e.g., the SensorML standard published by the OGC [4]), it is possible to au-
tomatically infer from the dataset description the different Fields it contains.
Even if it does not happen in this example due to its simplicity, a user often needs
to adapt the data she wants to visualise, e.g., selecting only an excerpt or inter-
secting a given dataset with another one. To support this task, and considering
that the definition of datasets in Ptah is very close to relational algebra, we rei-
fied in the meta-model the six classical operators available in database querying

6 The Egyptian god of craftsmen and creation.



Fig. 4. Excerpt of the Ptah meta-model, supporting dashboard design.



systems: (i) projection, (ii) selection, (iii) renaming, (iv) set difference, (v) set
union, and (vi) Cartesian product. Considering a mobile sensor (e.g., a smart-
phone) collecting both geographical location and Wi-Fi signal strength [5] in
the campus according to time, one can rely on the previous “classical” relation
operators to compose these data in order to bind the signal strength to a given
location. A domain-dedicated operator supports clock synchronisation between
datasets (i.e., the Offset operator is used to modify a time-based key). Thus,
to realise the heat regulation use case, a user have to model two datasets: one
linked to the presence counter resource, (pds) and a second one linked to the
temperature sensor resource (θds).

θk = (name : t, type : Date) pk = (name : t, type : Date)

θv = (name : temp, type : Num) pv = (name : count, type : Num)

θds = (key : {θk}, vals : {θv}, . . . ) pds = (key : {pk}, vals : {pv}, . . . )

“How do I visualise it?”. At this level, the user focuses on the different vi-
sualisation concerns she wants to compose to the previously modelled datasets.
From an abstract point of view, a visualisation is defined as a concern (i.e., an
intention) to be applied to given datasets. The vocabulary used for the con-
cerns is inspired by the Data Visualisation Catalogue7, a functional reference for
data journalism activities. One may notice that these concerns are not directly
linked to concrete elements such as Line Chart or Pie Chart. At this level of
abstraction, the user works on intentions instead of concrete representations.
An inference engine is used to bind user’s intentions to concrete widgets (see
Sec. 4). For example, a user expresses intentions such as Threshold to identify
special values (e.g., temperature exceeding 30◦C) in the datasets, 2D to work
on two-dimensional charts. When the user does not know exactly which con-
cern apply to the datasets, a Free concern is used to act as a free variable in
logical programming: the inference engine used to bind the concern sets to a
concrete widget will unify the Free intention with any concrete widget. In the
heating regulation use case, the user wants to visualise a 2D representation, as
she is interested by the detection of time-based patterns and more specifically
Extremum detection (visθ). As the presence counter collects discrete values, she
also specifies that she wants to visualise it as a Discrete dataset (visp).

visθ = (data : {θds}, concerns : {2D,Extremum})

visp = (data : {pds}, concerns : {2D,Extremum,Discrete})

Atomic visualisations can also be composed together to built value-added visu-
alisations. For example, the visualisation depicted in Fig. 3b is semantically the
Superposition of the two previously created visualisations, more specifically
an Intersection. Indeed, the Ptah meta-model contains several composition
operators that support the creation of CompositeVisualisation, e.g.,:

– Superposition (abstract). The visualisations are superposed, the left operand
being stacked under the right one.

7 http://datavizcatalogue.com/



– Union. This operator also performs a Superposition and keep the integrity
of the datasets to visualise both entirely.

– Intersection. This operator performs a Superposition and process the
datasets to only keep data within common time range.

“Where and when do I visualise it?”. Finally, the different visualisation
must be composed together from a layout point of view. The Ptah meta-model
allows a user to compose visualisation spatially as Boxes (where, [6]), and to
arrange several Boxes together in a sequence of execution (when). Thus, the
dashboard depicted in Fig. 3a contains two Boxes (one for each visualisation),
composed in a CompositeBox that uses the Left spatial organiser. The dash-
board depicted in Fig. 3b contains only one box, bound to the intersection of
the two previously created visualisations.

Fig. 3a = BoxC(Left , {Box(visθ), Box(visp)})

Fig. 3b = Box(visθ ∩ visp)

Complex dashboards like the one depicted in Fig. 1 requires Transition from
one box to another one. For example, in the heating regulation use case, a tab
system is used to switch from the global overview dashboard to the floor-based
one. This is supported in Ptah through the definition of Transition that holds
a given Interactor, e.g., Next (replacing the current element by the targeted
one), Tabs (supporting the user while going back and forth).

4 Handling the Technological Variability (C2)

The Ptah meta-model was designed as flexible as possible: the concepts defined
in this meta-model are intrinsically freed from technical concerns such as concrete
widget implementations. As a consequence, there is no immediate link between
the meta-classes and concrete widgets. Thus, if one wants to generate concrete
visualisation code from a Ptah model, each concept from Ptah must be asso-
ciated to an implementation pattern that supports it. The challenge addressed
here is twofold: (i) there is a tremendous number of available visualisation li-
braries and (ii) the relationship between concrete widgets and Ptah concepts is
not a simple one-to-one mapping.

Actually, when the user builds a visualisation in Ptah, she is following a kind
of configuration process to obtain a visualisation product, just like in SPLs. Con-
sidering a variability model of a given domain, one can configure a product of
the SPL by selecting needed features [7]. The general idea is that the reusable
artefacts encapsulate common and variable aspects of a family of software sys-
tems in a manner that facilitates planned and systematic reuse. In our case
each Concern concept defined in Ptah is clearly a feature, and each concrete
product satisfies (or not) such features. Thus, it is possible to rely on variability
modelling techniques and existing configuration tools (formally based on propo-
sitional logic and SAT-solving algorithms) to support the realisation of a Ptah
model at the concrete level.



µ

L

L' µ

Key
Mandatory 

feature
Optional 
feature

XOR

OR

s1

s2

s3

sL

sL'
s

w1w2w3
...

...

Fig. 5. Merge process used to build the variability model

The main difficulty is now to build the associated variability model. To sup-
port this task, we used a tool-assisted methodology that relies on Feature Models
(FMs) [8, 9] to model variability, and a merging operator (denoted as µ), depicted
in Fig. 5 on these feature models [10]. The key idea of this methodology is to
focus on the different products available, i.e., each widget provided by a given
library L, and to characterise it using the terms of the targeted meta-model,
ensuring by construction the consistency of features with the selected elements
in the meta-model. As a result, we obtain a variability matrix describing each
concrete widget {w1, . . . , wn} ∈ L using Ptah concepts. Each widget descriptor
wi is considered as an asset and is associated to a FM si that can only derive
a single product: wi. This technique is directly inspired from the construction
of feature models from product descriptions [11]. The set of FMs {s1, . . . , sn}
is then merged using the µ operator, which implements a “merge with strict
union” [10]. Being automatic, this operation facilitates the addition or edition of
a widget description.. Formally, this operator ensures that given two FMs s and
s′, the result of µ(s, s′) can be used to derive the products modelled by s and the
ones modelled by s′, without any additions or restrictions. As a consequence, the
result of µ(s1, µ(s2, ...)) = sL implements, together with the widget descriptors,
the product line that exactly models all the widgets available in L. To introduce
a new library L′ in the product line, the same process is applied to produce sL′ ,
and the resulting product line is eventually obtained as s = µ(sL, sL′).

We consider here the AmCharts visualisation library. According to its demon-
stration web page, it defines 58 concrete widgets8. Each widget was analysed
according to the Ptah concepts, and an excerpt of the resulting comparison
matrix is represented in Tab. 1. Based on this matrix exported as a CSV file,

8 http://www.amcharts.com/demos/



Feature \ Product Pie Bubble Line ...

Comparison X X
Proportion X X
Relationship X X
Probability X
Distribution X
Patterns X X
Extremum X X

Feature \ Product Pie Bubble Line ...

Range
Discrete X X
Value X X X
Variations X X
TimedValue X X
Dimension(s) 1D 3D 2D

Table 1. Excerpt of the AmChart variability matrix

fm1 = FM(widget:Name Comparison Proportion Value Discrete Dimension;

Name:"Pie Chart"; Dimension:1D;)

//...

fm10 = FM(widget:Name Comparison Relationship Patterns DataOverTime Value

Discrete Variations Dimension; Name:"Step Chart"; Dimension:2D;)

// ...

amCharts = merge sunion fm_*

Fig. 6. Excerpt of the Familiar code used to model the AmChart library.

each column is translated into a tool-ready representation of each descriptor,
using the Familiar language [12] (see Fig. 6).

The resulting feature model, based on a simplified version of the AmCharts
that only contains 12 widgets is depicted as a feature diagram in Fig. 7 (31
additional constraints not shown). This model is then exploited to support the
user while defining models conforms to the Ptah meta-model. For example, the
visualisation visθ refers to the features 2D and Extremum. While configuring the
AmCharts feature model with the selection of these two features, the configu-
ration engine results in four potential candidates to realise this intention: Line
chart, Smoothed Line, Bar chart or a Column chart, i.e., 33% of the initial prod-
uct set. Considering that the second visualisation visp refers in addition to the
feature Discrete, leading to cut the widget dedicated to continuous data and
resulting to only offer a Bar chart or a Column chart, i.e., 13% of the initial
widget set. This example illustrates the reduction of possibilities induced by the
use of a feature model related to the Ptah meta model.

5 Validation

The validation of the contribution described in this paper relies on a prototype
implemented in Java. It provides a semi-automated support for the presented
approach, according to the following steps: (i) the user expresses a dashboard
composition using the Ptah meta-model, (ii) the tool search for an equivalent
solution handled by a library, interacting with the user to select concrete widgets



Widget

Name
Relationship

Range Distribution
Comparison

Value
Probability

OHCL Pie

Key
Mandatory 

feature
Optional 
feature
XOR

OR

Discrete Pattern

Timed

Bar StepRadar Column AreaAngular 
Gauge

Smoothed 
LineLine Bubble Funnel

Dimension

3D1D 2D

Proportion

ExtremumVariations

Fig. 7. Feature diagram generated by Familiar tool

(a) Juxtaposition of line charts (b) Superposition on a column chart

(c) Juxtaposition of column charts (d) Superposition on a line chart

Fig. 8. Possible visualisation of three temperature data sets

and finally the tool (iii) automatically generate the corresponding and executable
code in HTML/CSS and JavaScript.

The following example illustrates the benefits of our contribution in compar-
ison with the required manual manipulations needed while using the solutions
provided by the state of practice. Considering a fixed number of data set (here



Evolution LoC impact
From To dels adds

Fig. 8a
Fig. 8c 11% 11%
Fig. 8b 75% 31%
Fig. 8d 75% 31%

Fig. 8c
Fig. 8a 11% 11%
Fig. 8b 75% 31%
Fig. 8d 75% 31%

Evolution LoC impact
From To dels adds

Fig. 8b
Fig. 8c 55% 134%
Fig. 8a 55% 134%
Fig. 8d 18% 18%

Fig. 8d
Fig. 8c 55% 134%
Fig. 8a 55% 134%
Fig. 8b 18% 18%

Table 2. Cost of changing a given visualisation choice at the implementation level

three different temperature sensors), the user want to prototype several dash-
boards in order to chose the final one she is going to use to monitor her system.
We consider here only the AmCharts library, and more specifically only two
types of widgets among the 58 available in this library: (i) Line charts and (ii)
Column charts. We represent in Fig. 8 four different prototype associated to
these three datasets.

We describe in Tab. 2 the cost of transforming one dashboard into another
one, in terms of code instructions. It illustrate the time-consuming aspect of
a prototyping process, even on this limited scenario. For example, in order to
prototype the figure Fig. 8a, giving that the code of Fig. 8b is already available,
one needs to remove 54,84% of the existing instructions and add 134,41% of new
code. Even between two representations that looks close to each other (e.g.,
Fig. 8a and Fig. 8c), up to 11% of the code needs to be changed.

The concrete dashboards depicted in Fig. 8 can be classified into two cate-
gories:(i) visualising three graphs at a time (Fig. 8a and Fig. 8c) or (ii) compar-
ing the three datasets on the very same graph (Fig. 8b andFig. 8d). Inside each
categories, the main difference between the two dashboards is the discrete rep-
resentation of the data sets, leading to a line-based representation (continuous)
or a column-based one (discrete). Thus, at the Ptah level, the only difference
between these elements are the layout and the visualisation concerns applied to
each data sets, which corresponds exactly to the semantics expected at the user
level. Then, one can represent and generate these different visualizations with a
14 elements model for Fig. 8a and Fig. 8c, and a 12 elements model for Fig. 8b
and Fig. 8d.9

6 Related Work

The Interaction Flow Modeling Language (IFML, [13]) is a standard of the OMG
dedicated to model and generate front-end applications and human-computer
interactions. IFML’s purpose is to model front-end of applications composed of
several layers, supporting the compositions required in such domain and the links
with other layers of the application. In comparison, Ptah is dedicated to the

9 details available at http://www.i3s.unice.fr/~logre/ECMFA14.html



design of monitoring dashboards thus our approach focuses on sensor data visual-
isations and related specific compositions. Both approaches are complementary,
as our composition model can reify the IFML concept of ViewComponent in
order to handle this specific type of visualisation, and we could use IFML ex-
pressiveness in terms of events and user actions to define dashboard transitions.
The CAMELEON Reference Framework (CRF, [14]) offers a methodology for
human-computer interfaces design and generation. Our meta-model can be seen
as a specialised implementation of the abstract visualisation layer described in
CRF, allowing one to design complex data visualisations that are not yet sup-
ported by UsiComp [15] (reference implementation of the CRF). Indeed, the
support in UsiXML is currently more focused on form-based interfaces, which
are not completely adapted to sensor data visualisation. The concept of mashups
as “composed applications” has reach the user interfaces domain [16]. This way
of composing User Interfaces (UIs) suffers from a lack of globalisation of their
composition process, mainly focused on spatial arrangement and connection be-
tween data and widgets, where the Ptah meta-model brings useful concepts
to handle the goal through visualisation concerns. Work on spatial composition
in mashups is nonetheless an inspiration for further work. COntext sensitive
Multi-target widgETs (COMETs, [17]) model abstract interactors that can be
composed to design UIs. The effort has been placed on the context adaptation of
those form interface elements. Such an approach complements ours, handling the
context awareness part as we focus on the proper design of resulting interfaces
and the link with real world solutions, provided that COMETs could represent
composite widgets.

Software product lines engineering techniques [2, 3] have been used in many
domains, but only a few works considered them in the context of UIs. Blouin
et al. use aspect-oriented techniques coupled with feature selections based on
the context change at runtime so that dynamic adaptations of UIs can be re-
alised [18]. Variability modeling and SPL techniques are also used to cover the
whole development of Rich Internet Applications, including UIs components [19].
However, it only captures the UI relations to the rest of the web architectures,
not the fine-grained selection of widgets. As for the construction of the feature
models from the widgets description, the followed approach is directly inspired
from Acher et al. work where the authors automatically extract a feature model
from tabular data describing wiki engines [11]. This approach seems the best
suited to our needs as other extraction techniques deal with different software
artifacts such as source code [20], some models [21], or feature combinations [22].
Besides, the merge operation on feature models that we use in our approach is
itself based on the results of She et. al. on reverse engineering feature models [23].

7 Conclusions & Perspectives

In this paper, we described a tool-supported approach used to tame the com-
plexity of monitoring dashboard design. Based on a set of concrete scenarios ex-
tracted from a real deployment of sensors in an academic campus, we proposed



a meta-model to support the design of monitoring dashboard, so that one can
specify the what, how, when and where with no implementation knowledge.As
the meta-model has been defined to meet business requirements of dashboard
designers, it seems reusable for sensor data visualization in other contexts.We
also proposed a variability model to facilitate the configuration of user-specific
dashboard product from the obtained dashboard model. Then, code generation
mechanisms are used to obtain a concrete dashboard executed at runtime, based
on user’s intention expressed at the model level.

In order to complete this work, we aim at using goal models, such as task
trees employed in the Human-Computer Interaction community, as an entry
point to define the scenario the user wants to perform. From this representation
of her intention, we plan to extract constraints and guidance about the design
of a model, conforming to our meta-model and adapted to her goals. This up-
stream work seems necessary before choosing the final concrete syntax of Ptah
and integrating all parts in a tool, on which we plan to perform an empirical
validation of the construction time using our approach.As perspectives, we also
plan to use feature models to represent the variability of possible customisation
of each widget, extracting this knowledge from the library API, and allowing the
user to choose a configuration from those models. These parameter requirements
will impact the design of the composition model, implying a bottom-up approach
in contrary to the contribution of this paper, which can be seen as top-down.
In conclusion, we aim at dealing at the same time with both capacities, leading
us to define bidirectional links between our models, and thus providing a better
support for tailored visualisation dashboard development.

Acknowledgements. Authors want to thanks Simon Urli for his expertise with Fa-
miliar and the SmartCampus team: Romain Alexandre, Mireille Blay-Fornarino,
Cecile Camilieri, Adrien Casanova, Cyril Cecchinel, Joel Colinet, Thomas Di’Me-
co, Fabien Foerster, Mathieu Jimenez, Laura Martellotto, Jean Oudot, Jérome
Rancati, Marie-Catherine Turchini and Guillaume Zanotti.

References

1. Few, S.: Information Dashboard Design. O’Reilly (2006)
2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag (2005)
3. Clements, P., Northrop, L.M.: Software Product Lines : Practices and Patterns.

Addison-Wesley Professional (2001)
4. Botts, M., Robin, A.: OpenGIS Sensor Model Language (SensorML) Implementa-

tion Specification. Technical report, OGC (July 2007)
5. Haderer, N., Rouvoy, R., Seinturier, L.: Dynamic Deployment of Sensing Exper-

iments in the Wild Using Smartphones. In Dowling, J., Täıani, F., eds.: DAIS.
Volume 7891 of Lecture Notes in Computer Science., Springer (2013) 43–56

6. Brel, C., Pinna-Déry, A.M., Faron-Zucker, C., Renevier, P., Riveill, M.: Onto-
Compo: An Ontology-Based Interactive System To Compose Applications. In:
Seventh International Conference on Web Information Systems and Technolo-
gies(WEBIST 2011), short paper. , Springer-Verlag (May 2011) 322–327



7. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques: Research articles. Softw. Pract. Exper. 35(8) (2005) 705–754

8. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software
Engineering 5(1) (1998) 143–168

9. Batory, D.: Feature models, grammars, and propositional formulas. In: Proc. of
SPLC’2005. Volume 3714 of LNCS., Springer (2005) 7–20

10. Acher, M., Collet, P., Lahire, P., France, R.B.: Composing feature models. In
van den Brand, M., Gasevic, D., Gray, J., eds.: SLE. Volume 5969 of Lecture
Notes in Computer Science., Springer (2009) 62–81

11. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P.,
Lahire, P.: On extracting feature models from product descriptions. In Eisenecker,
U.W., Apel, S., Gnesi, S., eds.: VaMoS, ACM (2012) 45–54

12. Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: A domain-specific language
for large scale management of feature models. Sci. Comput. Program. 78(6) (2013)
657–681

13. Rossi, G.: Web modeling languages strike back. IEEE Internet Computing 17(4)
(2013) 4–6

14. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting
with Computers 15(3) (2003) 289–308

15. Garćıa Frey, A., Ceret, E., Dupuy-Chessa, S., Calvary, G., Gabillon, Y.: Usicomp:
an extensible model-driven composer. In: EICS. (2012) 263–268

16. Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated user interface mashups using
w3c widgets. In Harth, A., Koch, N., eds.: Current Trends in Web Engineering.
Volume 7059 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 49–61

17. Demeure, A., Calvary, G., Coninx, K.: Comet(s), a software architecture style and
an interactors toolkit for plastic user interfaces. In: DSV-IS. (2008) 225–237

18. Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel, J.M.: Com-
bining aspect-oriented modeling with property-based reasoning to improve user
interface adaptation. In: Proceedings of the 3rd ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems. EICS ’11, New York, NY, USA, ACM
(2011) 85–94

19. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: Architectural and technological variability
in rich internet applications. IEEE Internet Computing 14(3) (2010) 24–32

20. Xue, Y.: Reengineering legacy software products into software product line based
on automatic variability analysis. In: Proceedings of the 33rd International Con-
ference on Software Engineering. ICSE ’11, New York, NY, USA, ACM (2011)
1114–1117

21. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Model comparison to synthesize a
model-driven software product line. In de Almeida, E.S., Kishi, T., Schwanninger,
C., John, I., Schmid, K., eds.: SPLC, IEEE (2011) 90–99

22. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On extracting feature models
from sets of valid feature combinations. In: Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering. FASE’13, Berlin,
Heidelberg, Springer-Verlag (2013) 53–67

23. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In Taylor, R.N., Gall, H., Medvidovic, N., eds.: ICSE, ACM (2011)
461–470


