Xinxin Chen 
  
Thomas Madaule 
  
Bastien Mallein 
  
On the trajectory of an individual chosen according to supercritical Gibbs measure in the branching random walk

.

Introduction

A branching random walk on the real line is a point process on R defined as follow : It starts with a unique individual sitting at the origin, forming the 0 th generation of the process. At time 1, this individual dies and gives birth to children, which are positioned on R according to a point process law L. These children form the 1 th generation. Similarly, at each time n ∈ N, every individual z of the (n -1) th generation dies, giving birth to children positioned according to an independent copy of L translated from the position of z.

We denote by T the genealogical tree of the process. Obviously T is a Galton-Watson tree. For any individual z ∈ T, we write |z| for the generation at which z belongs and V (z) ∈ R for the position of z. With these notations, (V (z), |z| = 1) has the law of L. The collection of positions (V (z), z ∈ T), together with the genealogical information, defines the branching random walk.

If z ∈ T, for all k ≤ |z|, we denote by z k the ancestor of z alive at generation k. * Université Lyon 1 † Université Paul Sabatier ‡ Université Paris VI & ENS Paris 1 Throughout this paper, we suppose that the point process law L verifies some integrability conditions. We assume that the Galton-Watson tree is supercritical, in other words, (1.1)

E   |z|=1 1   > 1.
Note that we do not assume that P |x|=1 1 = +∞ = 0. Under this assumption, the survival set (1.2) S := {∀n ∈ N, ∃u ∈ T, |u| ≥ n} is of positive probability.

Assume also that we are in the so-called "boundary case" defined in [START_REF] Biggins | Fixed points of the smoothing transform: the boundary case[END_REF], i.e.

(1.

3)

E   |z|=1 e -V (z)   = 1 and E   |z|=1 V (z)e -V (z)   = 0.
Under mild assumptions, a branching random walk can be reduced to this case by an affine transformation -see Appendix A in [START_REF] Jaffuel | The critical barrier for the survival of branching random walk with absorption[END_REF] for a detailed discussion. Furthermore, we assume that are martingales. Chen [START_REF] Chen | A necessary and sufficient condition for the non-trivial limit of the derivative martingale in a branching random walk[END_REF] proved that (1.4) is a necessary and sufficient condition to obtain the almost sure convergence of (Z n ) to a non-negative random variable Z ∞ . Moreover, S = {Z ∞ > 0} a.s. Let β > 1, we write W n,β = |z|=n e -βV (z) . It is proved in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] that W n,β is of order n -3β/2 in probability. In a recent article [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF], Madaule proved the convergence in law of finite-dimensional distributions of n 3β/2 W n,β , β > 1 , yielding the following fact: The point process (V (z) -3 2 log n + log Z ∞ ; |z| = n) converges in law to a Poisson point process with intensity e x , decorated by another point process D.

(1.4) E X(log + X) 2 + E X log + X + E   |z|=1 V (z)
In this article, we consider a probability measure on the n th generation of the branching random walk, defined on the set {W n,β > 0} by

ν n,β = 1 W n,β |z|=n e -βV (z) δ z ,
which is called the Gibbs measure in the literature. We prove that conditionally on the survival S, the trajectory followed by an individual chosen according to ν n,β converges, when suitably rescaled, to a Brownian excursion. For a given individual z ∈ T such that |z| ≤ n, we define

H (n) (z) := V (z ⌊tn⌋ ) √ σ 2 n , 0 ≤ t ≤ |z| n ,
the Brownian normalisation of the trajectory followed by individual z up to time |z|. This is an element of D([0, |z| n ]): the set of càdlàg functions -left-continuous functions with right limits at each point-equipped with the Skorokhod topology. For all β > 1 and n ∈ N, on {W n,β > 0}, we define the image measure of ν n,β by H (n) (•) by µ n,β on D as, i.e.,

µ n,β = 1 W n,β |u|=n e -βV (u) δ H n (u) .
Let C b (D) be the set of continuous bounded functions from D to R, and C u b (D) ⊂ C b (D) the collection of uniformly continuous functions. The following theorem gives the weak limit, as n goes to infinity, of µ n,β (F ) for F ∈ C u b (D).

Theorem 1.1. For all β > 1 and F ∈ C u b (D), conditionally on the survival of the branching random walk, the following convergence in law holds:

µ n,β (F ) =⇒ n→+∞ k∈N p k F (e k ),
where (e k ) is a sequence of i.i.d. normalised Brownian excursions, and (p k , k ∈ N) follows an independent Poisson-Dirichlet distribution with parameter ( 1 β , 0).

Remark 1.2.

A direct consequence of this theorem and Theorem 5.2 in [START_REF] Billingsley | Convergence of probability measures[END_REF] is that the -annealedmeasure E(µ n,β |S) converges weakly to the law of a normalised Brownian excursion.

The case β = 1 has been investigated in [START_REF] Madaule | First order transition for the branching random walk at critical parameter[END_REF]. It is proved that

lim n→+∞ µ n,1 (F ) = F (M) in probablity,
where M is a Brownian meander ; in the case β = +∞, the measure µ n,∞ is the uniform measure on the trajectories leading to the leftmost position at time n, which has been treated in [START_REF] Chen | Scaling limit of the path leading to the leftmost particle in a branching random walk. Theory of Probability and its Applications[END_REF]. It is believed that for β < 1, the trajectory of a particle chosen according to ν n,β behaves as a random walk with positive drift.

Using the techniques leading to Theorem 1.1, we obtain information on the genealogy of two individuals sampled according to the Gibbs measure ν n,β . For z, z ′ ∈ T, we set MRCA(z, z ′ ) to be the generation at which the most recent common ancestor of z and z ′ was alive, in other words, MRCA(z,

z ′ ) = max{k ≤ min(|z|, |z ′ |) : z k = z ′ k }.
Derrida and Spohn conjectured in [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF] that for any β > 1

ν ⊗2 n,β MRCA(z, z ′ ) n ∈ dx =⇒ n→+∞ p β δ 1 + (1 -p β )δ 0 ,
where p β is a random variable such that lim β→+∞ p β = 1 and lim β→1 p β = 0 in probability.

The following immediate consequence of Theorem 1.1 strengthen this conjecture, as a similar behaviour holds for the probability that two trajectories split before time t.

Corollary 1.3. For any β > 1 and t ∈ (0, 1), conditionally on the survival of the branching random walk, we have

(1.6) ν ⊗2 n,β V (z ⌊nt⌋ ) = V (z ′ ⌊nt⌋ =⇒ n→+∞ 1 -π β .
where

(p k , k ≥ 1) has Poisson-Dirichlet distribution with parameter ( 1 β , 0) and π β = k∈N p 2 k .
This corollary can be seen as an explicit computation of the well-known fact that in a branching random walk, two individuals within distance O(1) from the leftmost position are either close relatives, or their ancestral lineages split early in the process. In the context of Gibbs measure, the probability of an early splitting is π β .

In particular, we note that E(π β ) = 1 -1 β , which is consistent with the probability of overlapping in a Gaussian free field, obtained by Arguin and Zindy in [START_REF] Arguin | Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field[END_REF]. Moreover, we observe that when β → ∞, 1π β goes to zero. This is consistent with the fact that µ n,∞ only puts mass on particles which are at the leftmost position at time n, which are eventually close relatives. Similarly, when β → 1, 1π β goes to 1 ; therefore the corresponding paths are asymptotically independent, which coincides with the weak convergence (3.3) in [START_REF] Madaule | First order transition for the branching random walk at critical parameter[END_REF].

To prove Theorem 1.1 as well as Corollary 1.3, the main idea is to understand the tail decay of the random variable

µ n,β (F ) := n 3β/2 W n,β × µ n,β (F ) = n 3β/2 |u|=n e -βV (u) F (H n (u))
by borrowing ideas from Chen [START_REF] Chen | Scaling limit of the path leading to the leftmost particle in a branching random walk. Theory of Probability and its Applications[END_REF] and Madaule [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF]. This tail decay is used to obtain the limit Laplace transform of µ n,β (F ), see Proposition 4.1 for details.

We introduce in Section 2 a general method linking additive moments of the branching random walk with the law of a random walk. This method is applied in Section 3 to obtain a tight estimate on the tail decay of µ n,β (F ). Finally the proofs of Theorem 1.1 and Corollary 1.3 are given in Section 4.

Many-to-one lemma and random walk estimates

We introduce in a first time the Lyon's change of measure of the branching random walk and the spinal decomposition. This result enables to compute additive moments of the branching random walk using random walk estimates. In a second part, we consider a random walk, conditioned to stay above 0 until time n and ending at time n at distance o( √ n). We prove that the endpoint is asymptotically independent with the rescaled shape of this random walk, which converges to a Brownian excursion.

Lyon's change of measures and the many-to-one lemma

For any a ∈ R, let P a be the probability measure of the branching random walk started from a, and let E a be the corresponding expectation. We recall that (W n,1 , n ∈ N) is a non-negative martingale with respect to the natural filtration

F n = σ(x, V (x), |x| ≤ n).
We define a new probability measure Pa on F ∞ such that for all n ∈ N,

(2.1) d Pa dP a Fn = e a W n,1 .
The so-called spinal decomposition, introduced by Russell Lyons in [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF] gives an alternative construction of the measure Pa , by introduction of a special individual, the "spine", which reproduction is modified. We introduce another point process law L with Radon-Nikodým derivative ℓ e -ℓ with respect to the law of L. The branching random walk with spine starts with one individual located at a at time 0, denoted by ω 0 . It generates its children according to the law L. Individual ω 1 is chosen among the children z of ω 0 with probability proportional to e -V (z) . Then, for all n ≥ 1, individuals at the n th generation die, giving birth to children independently according to the law L, except for the individual ω n which uses the law L. The individual ω n+1 is chosen at random among the children z of ω n , proportionally to e -V (z) . We denote by T the genealogical tree of this process, and by P a the law of (V (x), x ∈ T, (ω n , n ≥ 0)) as we just defined. 

(ω n = z |F n ) = e -V (z)
W n,1 , and (V (ω n ), n ≥ 0) is a centred random walk under P a , starting from a, and with variance σ 2 .

In particular, this proposition implies the many-to-one lemma, which has been introduced for the first time by Peyrière in [START_REF] Peyrière | Turbulence et dimension de Hausdorff[END_REF], and links additive moments of the branching random walks with random walk estimates.

Lemma 2.2.

There exists a centred random walk (S n , n ≥ 0), starting from a under P a , with variance σ 2 such that for all n ≥ 1 and g : R n → R + measurable, we have

(2.2) E a   |z|=n g(V (z 1 ), • • • V (z n ))   = E a e Sn-a g(S 1 , • • • S n ) Proof. We use Proposition 2.1 to compute E a   |z|=n g(V (z 1 ), • • • V (z n ))   = Ēa   e -a W n,1 |z|=n g(V (z 1 ), • • • V (z n ))   = e -a E a   |z|=n 1 {z=ωn} e V (z) g(V (z 1 ), • • • V (z n ))   = E a e V (ωn)-a g(V (ω 1 ), • • • , V (ω n )) .
Therefore we define the random walk S under P a to have the same law as (V (ω n ), n ≥ 0) under P a , which ends the proof.

Approximation of a random walk excursion

In this subsection, (S n , n ≥ 0) is a centred random walk on R with finite variance σ 2 . We write, for 0 ≤ m ≤ n, S [m,n] = min m≤k≤n S k and S n = S [0,n] the minimal position of the random walk until time n. We introduce in a first time a piece of notation, before computing the probability for a random walk to make an excursion of length n above 0.

Some random walk notation and preliminary results

The ballot theorem We present the following estimates, which bounds the probability for a random walk to make an excursion of length n above a given level. Let λ ∈ (0, 1). There exists a constant c 1 > 0 such that for any b ≥ a ≥ 0, x, y ≥ 0 and n ≥ 1, we have

(2.3) P x S n ∈ [y + a, y + b], S n ≥ 0, S [λn,n] ≥ y ≤ c 1 (1 + x)(1 + b -a)(1 + b)n -3/2 .
Ladder epochs and height processes We denote by (τ + k , k ≥ 0) and (H + k , k ≥ 0) the strictly ascending ladder epochs and the height process, writing τ + 0 = 0, H + 0 = 0 and, for k ≥ 1,

(2.4)

τ + k = inf{n > τ + k-1 : S n > H + k-1 } and H + k = S τ + k .
Note that (τ + k , k ≥ 0) and (H + k , k ≥ 0) are renewal processes, i.e., random walks with i.i.d. nonnegative increments. Similarly, we write τ -and H -the strictly ascending ladder epoch and the height process associated to -S. It is given in Theorem A of [START_REF] Kozlov | The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment[END_REF] that there exist two constants C ± > 0 such that (2.5)

P(τ ± 1 > n) = P(min k≤n (±S k ) ≥ 0) = C ± √ n + o(n -1/2 ).

Renewal function We write

V -(•) (respectively V + (•)) the renewal function associated to (H - k , k ≥ 0) (resp. (H + k , k ≥ 0)), defined by (2.6) ∀x ≥ 0, V -(x) = k≥0 P H - k ≤ x .
Observe that V -is a non-decreasing, right-continuous function with V -(0) = 1. We can rewrite V -in the following way

(2.7) V -(x) = k≥0 P (-x ≤ S k < S k-1 )
As a consequence of the Renewal Theorem in [START_REF] Feller | An introduction to probability theory and its applications[END_REF] (p. 360), there exist two constants c ± > 0 such that (2.8)

V ± (x) ∼ x→+∞ c ± x.
Local measure of the random walk staying non-negative We introduce, for n ≥ 1, the measure (2.9) π + n (x, dy) := P x S n ≥ 0, S n ∈ dy , Let K > 0, it has been proved by Doney [START_REF] Doney | Local behavior of first passage probabilities[END_REF] that uniformly in x = o( √ n) and y = o( √ n),

(2.10)

π + n (x, [y, y + K]) = 1 σ √ 2πn 3/2 V -(x) [y,y+K] V + (z)dz (1 + o n (1)) .
and that uniformly in

x = o( √ n) and y ∈ [0, ∞), (2.11) π + n (x, [y, y + K]) = C -y σ 2 n 3/2 e -y 2 2nσ 2 KV -(x) + o(n -1 ).
Obviously, similar estimates holds for π -the measure associated to -S.

Random walk conditioned to stay non-negative

We observe the renewal function V -is invariant for the semigroup of the random walk killed when first enters the negative half-line (-∞, 0), i.e.

(2.12)

∀x ≥ 0, ∀N ∈ N, V -(x) = E V -(x + S N )1 { S N ≥-x}
This estimate can be found in [START_REF] Kozlov | The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment[END_REF]. Using (2.12), for all x ≥ 0, we define the probability measure P ↑ x by (2.13)

P ↑ x (B) := 1 V -(x) E x 1 B V -(S N ); S N ≥ 0 .
for N ≥ 1 and B ∈ σ(S 0 , . . . S N ). We call P ↑ x the law of the random walk conditioned to stay positive. For any positive sequence (x n ) such that xn √ σ 2 n → x ≥ 0, we have the following invariance principle, Theorem 1.1 of [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] (2.14)

∀F ∈ C b (D), E ↑ xn F ( S ⌊nt⌋ √ σ 2 n ; t ∈ [0, 1]) ---→ n→∞ E x F (R(t), t ∈ [0, 1]) ,
where R = (R(t); t ≥ 0) is a three-dimensional Bessel process. We also state another functional central limit theorem related to (2.14), which has been proved by Iglehart [START_REF] Iglehart | Functional central limit theorems for random walks conditioned to stay positive[END_REF], Bolthausen [START_REF] Bolthausen | On a functional central limit theorem for random walks conditioned to stay positive[END_REF] and Doney [START_REF] Doney | Conditional limit theorems for asymptotically stable random walks[END_REF].

(2.15) ∀F ∈ C b (D), E F ( S ⌊nt⌋ √ σ 2 n ; t ∈ [0, 1]) S n ≥ 0 ---→ n→∞ E F (M) ,
where M = (M(t); t ∈ [0, 1]) is a Brownian meander process. The following equality from Imhof [START_REF] Imhof | Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications[END_REF] reveals the relation between these two limit processes. For any t ∈ (0, 1],

(2.16)

∀Φ ∈ C b (D[0, t]), E [Φ(M(u), u ≤ t)] = π 2 E √ t R(t) Φ(R(u), u ≤ t) .
Decomposition of the excursions We write ρ t x,y = (ρ t x,y (s), s ∈ [0, t]) for a 3-dimensional Bessel bridge of length t ∈ [0, 1] between x and y, where x, y ∈ R + . Intuitively, (2.17)

∀F ∈ C b (D), E F (ρ t x,y ) = E x F (R(s), s ∈ [0, t]) R(t) = y .
For all λ ∈ (0, 1),

G 1 ∈ C(D([0, λ])), G 2 ∈ C(D([0, 1 -λ])) and x ∈ D we set G 1 ⋆ G 2 (f ) = G 1 (x s , s ≤ λ)G 2 (x s+λ , s ≤ 1 -λ).
Lemma 2.3. Let (e t , t ∈ [0, 1]) be a normalised Brownian excursion. We write (M t , t ∈ [0, λ]) and (ρ 1-λ x,0 (t), x ∈ R + , t ∈ [0, 1λ] two independent processes, with M a Brownian meander of length λ and ρ 1-λ x,0 a Bessel bridge between x and 0 of length 1λ. We have

(2.18) E [G 1 ⋆ G 2 (e)] = 2 π 1 λ 1/2 (1 -λ) 3/2 E M(λ)e -M(λ) 2 2(1-λ) G 1 (M) G 2 ρ 1-λ M(λ),0 . 
Proof. We show that both sides in (2.18) are equal to

(2.19) 2 π ∞ 0 x 2 λ 3/2 (1 -λ) 3/2 e -x 2 2λ(1-λ) E G 1 ρ λ 0,x E G 2 ρ 1-λ x,0 dx.
Recall that e has the same law as ρ 1 0,0 a 3-dimensional Bessel bridge of length 1. Conditioning on the value of ρ 1 0,0 (λ), we have

E [G 1 ⋆ G 2 (e)] = E G 1 ρ 1 0,0 (s), s ≤ λ G 2 ρ 1 0,0 (s), λ ≤ s ≤ 1 = ∞ 0 P ρ 1 0,0 (λ) ∈ dx E G 1 ρ 1 0,0 (s), s ≤ λ G 2 ρ 1 0,0 (s), λ ≤ s ≤ 1 ρ 1 0,0 (λ) = x ,
where the density of ρ 1 0,0 (λ

) is P ρ 1 0,0 (λ) ∈ dx = 2 π 1 λ 3/2 (1-λ) 3/2 x 2 e -x 2 2λ(1-λ) 1 x≥0 dx. It hence follows that E [G 1 ⋆ G 2 (e)] = 2 π +∞ 0 dx x 2 λ 3/2 (1 -λ) 3/2 e -x 2 2λ(1-λ) E G 1 ρ 1 0,0 (s), s ≤ λ G 2 ρ 1 0,0 (s), λ ≤ s ≤ 1 ρ 1 0,0 (λ) = x .
Applying the Markov property at time λ yields to

E G 1 ρ 1 0,0 (s), s ≤ λ G 2 ρ 1 0,0 (s), λ ≤ s ≤ 1 ρ 1 0,0 (λ) = x = E G 1 ρ 1 0,0 (s), s ≤ λ ρ 1 0,0 (λ) = x E G 2 ρ 1-λ x,0 = E G 1 ρ λ 0,x E G 2 ρ 1-λ x,0 . As a consequence E [G 1 ⋆ G 2 (e)] = 2 π ∞ 0 x 2 λ 3/2 (1 -λ) 3/2 e -x 2 2λ(1-λ) E G 1 ρ λ 0,x E G 2 ρ 1-λ x,0 dx.
On the other hand, writing

Γ(G 1 , G 2 , λ) = 2 π 1 λ 1/2 (1 -λ) 3/2 E M(λ)e -M(λ) 2 2(1-λ) G 1 (M) G 2 ρ M(λ) , by (2.16) we have Γ(G 1 , G 2 , λ) = 2 π 1 λ 1/2 (1 -λ) 3/2 E G 1 (M) M(λ)e -M(λ) 2 2(1-λ) G 2 ρ 1-λ M(λ),0 = 1 (1 -λ) 3/2 E G 1 (R(s); s ∈ [0, λ]) e - R(λ) 2 2(1-λ) G 2 ρ 1-λ R(λ),0 , where (R(s); 0 ≤ s ≤ λ) is a Bessel process independent with (ρ 1-λ x,0 ). We now condition on the value of R(λ) -recall that the law of R(λ) is P(R(λ) ∈ dx) = 2 πλ 3 x 2 e -x 2 /(2λ) 1 x≥0 dx-to obtain Γ(G 1 , G 2 , λ) = 1 (1 -λ) 3/2 ∞ 0 P R(λ) ∈ dx E G 1 (R(s); s ∈ [0, λ]) e -R(λ) 2 2(1-λ) E G 2 ρ 1-λ R(λ),0 R(λ) = x = 2 π ∞ 0 x 2 λ 3/2 (1 -λ) 3/2 e -x 2 2λ(1-λ) E G 1 ρ λ 0,x E G 2 ρ 1-λ x,0 dx. We conclude that E [G 1 ⋆ G 2 (e)] = Γ(G 1 , G 2 , λ).

Asymptotic independence of the endpoint and the shape of the trajectory in a random walk excursion

For n ∈ N, let S (n) be the normalized path, defined, for t ∈ [0, 1] by (2.20)

S (n) t := S ⌊nt⌋ √ σ 2 n ,
also written S when the value of n is unambiguous. Clearly, (S

(n) t , t ∈ [0, 1]) ∈ D.
We prove in this section that conditionally on {S n ≥ 0} and {S n = o( √ n)}, the endpoint S n is asymptotically independent of S the shape of the excursion. We begin with the following estimate, for a random walk which is at time 0 within distance

O( √ n).
Lemma 2.4. Let (y n ) n≥1 be a non-negative sequence such that lim n→+∞ yn n 1/2 = 0. There exists

C ⋆ = C + σ such that for all K ∈ R + and F ∈ C u b (D), we have (2.21) lim n→+∞ sup x∈R+ nE xσ √ n F (S (n) ); S n ≥ y n , S n ∈ [y n , y n + K] -C ⋆ g(x)E F (ρ 1 x,0 ) K 0 V + (z)dz = 0,
where g : x → xe -x 2 2 1 {x≥0} and ρ 1 x,0 is a three-dimensional Bessel bridge of length 1 from x to 0.

Proof. The proof of this lemma largely depends on the arguments in [START_REF] Caravenna | An invariance principle for random walk bridges conditioned to stay positive[END_REF].

Let n ∈ N and F uniformly continuous, we have, in terms of the local measure

(2.22) E xσ √ n (F (S); S n ≥ y n , S n ∈ [y n , y n + K]) = E xσ √ n-yn ( F (S)| S n ≥ 0, S n ∈ [0, K]) + o n (1) π + n (xσ √ n -y n , [0, K]).
Recall that (2.10) and (2.11) give estimates of π

+ n (x, [y, y + K]) when x = o( √ n). We first show that there exists C ⋆ > 0 such that uniformly in x ≥ 0, (2.23) π + n (x, [0, K]) = C ⋆ n K 0 V + (z)dzg x σ √ n + o 1 n .
Let n ∈ N, we write S - k = S n-k -S n for 0 ≤ k ≤ n, the "time-reversal random walk", which has the same law as -S. We observe that

π + n (x, [0, K]) =P x (S n ≥ 0, S n ∈ [0, K]) = P min 0≤k≤n S - k ≥ S - n -x ≥ -K = n j=0 P T = j, min 0≤k≤n S - k ≥ S - n -x ≥ -K ,
where T := min{j ≤ n : S - j = min 0≤k≤n S - k }. Applying the Markov property at time T = j yields to

(2.24) π + n (x, [0, K]) = n j=0 E 1 { -K≤S - j <min 0≤k≤j-1 S - k } π - n-j (0, [x -K -S - j , x]) τ j .
Applying (2.11) to π -, uniformly in y ≥ 0, we have

(2.25) π - n (0, [y, y + K]) = C + σn g( y σ √ n )K + o n (1) . Therefore, 0≤j≤ √ n τ j = C + σn g( x σ √ n ) + o n (1) 0≤j≤ √ n E 1 {-K≤S - j <min 0≤k≤j-1 S - k } (K + S - j ) = C + σn g( x σ √ n ) + o n (1) K 0 V + (z)dz + o n (1) . (2.26)
Using (2.25), we observe there exists c 2 > 0 such that for all n ∈ N and y ≥ 0,

π - n (0, [y, y + K]) ≤ c 2 (1+K) n+1 , which implies √ n<j≤n τ j ≤ √ n<j≤n c 2 n -j + 1 E 1 {-K≤S - j <min 0≤k≤j-1 S - k } (1 + K + S - j ) ≤ √ n<j≤n c 2 (1 + K) n -j + 1 P(S j ≥ 0, S j ≤ K) by time-reversal ≤ √ n<j≤n c 3 (1 + K) 2 (n -j + 1)j 3/2 using (2.3), so √ n<j≤n τ j = o(n -1
). As a consequence, writing

C ⋆ = C + σ uniformly in x ≥ 0, (2.24) becomes (2.27) π + n (x, [0, K]) = C ⋆ n g( x σ √ n ) K 0 V + (z)dz + o(n -1 ).
Plugging this result into (2.22), we obtain, uniformly in x ≥ 0

E xσ √ n (F (S); S n ≥ y n , S n ∈ [y n , y n + K]) = C ⋆ g(x) n K 0 V + (z)dzE (xσ √ n-yn) [(F (S) |S n ≥ 0, S n ∈ [0, K]] + o(n -1 ).
As lim x→+∞ g(x) = 0, it remains to prove that for any K 0 > 0 fixed,

(2.28) lim n→+∞ sup x∈[0,K 0 ] E (xσ √ n-yn) [F (S) |S n ≥ 0, S n ∈ [0, K]] -E(F (ρ x,0 )) = 0.
Let K 0 > 0 and ε > 0, we prove that (2.28) holds for any

F ∈ C b (D([0, 1 -ε])).
Let M := ⌊(1ε)n⌋. For any x ≥ 0, applying the Markov property at time M gives

E x (F (S) |S n ≥ 0, S n ∈ [0, K]) = E x [F (S); S n ≥ 0, S n ∈ [0, K]] P x [S n ≥ 0, S n ∈ [0, K]] = E x F (S)1 { S M ≥0} P S M (S n-M ≥ 0, S n-M ∈ [0, K]) π + n (x, [0, K]) = E x F (S)1 {S M ≥0} π + n-M (S M , [0, K]) π + n (x, [0, K])
.

We set x n := xσ √ ny n . By change of measures introduced in (2.13), we observe that

E xn [F (S) |S n ≥ 0, S n ∈ [0, K]] = E ↑ xn F (S) V -(xn) V -(S M ) π + n-M (S M , [0, K]) π + n (x n , [0, K]) =E ↑ xn F (S)f n ε,xn ( S M σ √ n ) ,
where we write (recalling that

M = ⌊n(1 -ε)⌋) (2.29) f n ε,xn (z) := V -(x n ) π + n (x n , [0, K]) π + n-M (zσ √ n, [0, K]) V -(zσ √ n) .
On the other hand, for a Bessel bridge ρ 1 x,0 , by the Markov property at time 1ε,

(2.30) E F (ρ 1 x,0 ) = E x F R(s); s ∈ [0, 1 -ε] f ε,x R(1 -ε) , where (2.31) f ε,x (z) := e -z 2 /(2ε) ε 3/2 e -x 2 /2 .
As a result,

E xn [F (S) |S n ≥ 0, S n ∈ [0, K]) -E F (ρ 1 x,0 ) ≤ E ↑ xn F (S)f n ε,xn ( S M σ √ n ) -E ↑ xn F (S)f ε,x ( S M σ √ n ) + E ↑ xn F (S)f ε,x ( S M σ √ n ) -E x F R(s); s ∈ [0, 1 -ε] f ε,x R(1 -ε) ,
which leads to

E xn [F (S) |S n ≥ 0, S n ∈ [0, K]) -E F (ρ 1 x,0 ) ≤ sup z≥0,x∈[0,K] f n ε,xn (z) -f ε,x (z) ||F || ∞ + E ↑ xn F (S)f ε,x ( S M σ √ n ) -E x [F (R(s); s ∈ [0, 1 -ε]) f ε,x (R(1 -ε))] .
By use of (2.23) and (2.10), we have

(2.32) lim n→∞ sup z≥0,x∈[0,K] f n ε,xn (z) -f ε,x (z) = 0. It follows from (2.14) that (2.33) lim n→+∞ sup x∈[0,K] E ↑ xn F (S)f ε,x ( S M σ √ n ) -E x F R(s); s ∈ [0, 1 -ε] f ε,x R(1 -ε) = 0.
We end up with checking the tightness of S under 

P xn (• |S n ≥ 0, S n ∈ [0, K])
P xn sup 0≤k≤δn S n-k ≥ ησ √ n S n ≥ 0, S n ∈ [0, K] = 0,
which holds immediately by time reversal properties.

Using Lemma 2.4, we obtain the main result of this section, the joint convergence of this normalized path and the terminal position in a random walk excursion. 

n 3/2 E F (S) f (S n -y); S n ≥ 0, S [λn,n] ≥ y -C 1 E [F (e 1 )] R + f (x)V + (x)dx = 0.
Proof. This lemma is a slight refinement of Lemma 2.4 in [START_REF] Chen | Scaling limit of the path leading to the leftmost particle in a branching random walk. Theory of Probability and its Applications[END_REF], which proved the convergence when the function F (S) = Φ(S t , t ∈ [0, α]) for some α < 1. Without loss of generality, we assume 0 ≤ F ≤ 1. For convenience, we set

(2.36) χ(F, f ) := E F (S)f (S n -y); S n ≥ 0, S [λn,n] ≥ y .
For any K > 0, writing

f K (x) = f (x)1 {x∈[0,K]} , we observe that χ(F, f ) = χ (F, f K ) + χ (F, f -f K ) . As 0 ≤ F ≤ 1, we have χ (F, f -f K ) ≤ χ (1, f -f K ), and 
χ (1, f -f K ) ≤ +∞ j=K E f (S n -y); S n ≥ 0, S [mn,n] ≥ y, S n ∈ [y + j, y + j + 1] ≤ +∞ j=K f (j) P S n ≥ 0, S [mn,n] ≥ y, S n ∈ [y + j, y + j + 1] ≤c 1 (2+j)n -3/2
. by use of (2.3). As +∞ 0

x f (x)dx < +∞, we have lim K→+∞ +∞ j=K (2 + j) f (j) = 0. Therefore, we only need to estimate χ(F, f K ), and, as f is Riemann-integrable, it is enough to consider functions of the form 1 {[0,K]} , for K ∈ R. We now compute an equivalent of

χ(F, K) := χ(F, 1 {[0,K]} ) = E F (S); S n ≥ 0, S [m,n] ≥ y, S n ≤ y + K . We choose F = G 1 ⋆ G 2 where G 1 ∈ C(D([0, λ])) and G 2 ∈ C(D([0, 1 -λ]
)) are two uniformly continuous functions. We prove that uniformly in y ∈ [0, r n ], we have

(2.37) lim n→+∞ n 3/2 χ(G 1 ⋆ G 2 (S), K) -C 1 E [G 1 ⋆ G 2 (e 1 )] K 0 V + (x)dx = 0
This result implies (2.35), by monotone classes. Applying the Markov property at time m = m n := ⌊λn⌋, we have

(2.38) χ (G 1 ⋆ G 2 , K) = E G 1 (S t ; t ∈ [0, λ]) Ψ K,G 2 Sm σ √ n ; S m ≥ 0 ,
where for x ≥ 0,

Ψ K,G 2 (x) := E xσ √ n G 2 S ⌊n(t+λ)⌋-m σ √ n ; t ∈ [0, 1 -λ] ; S n-m ≤ y + K, S n-m ≥ y .
Recall that ρ t x,y is a 3-dimensional Bessel bridge of length t between x and y. Using Lemma 2.4, uniformly in x ≥ 0 and y ∈ [0, r n ], we have

Ψ K,G 2 (x) = C ⋆ (1 -λ)n K 0 V + (z)dzψ(x) + o(n -1 ), where ψ(x) := g x √ 1-λ E G 2 ρ 1-λ x,0 and C ⋆ = C + σ . As a consequence, (2.38) becomes χ (G 1 ⋆ G 2 , K) C ⋆ (1 -λ)n K 0 V + (z)dzE G 1 (S t ; t ∈ [0, λ]) ψ Sm σ √ n ; S m ≥ 0 + o(n -1 )P (S m ≥ 0) = C + C - σ(1 -λ) √ λn 3/2 K 0 V + (z)dzE G 1 S ⌊nt⌋ σ √ n ; t ∈ [0, λ] ψ Sm σ √ n S m ≥ 0 + o(n -3/2 ),
where the last equality is a consequence of (2.5). Using (2.15), conditionally on {S m = S ⌊λn⌋ ≥ 0}, the normalised random walk S (n) converges in law to a Brownian meander of length λ, written M = (M(t), 0 ≤ r ≤ λ). Therefore, uniformly in y ∈ [0, r n ],

χ (G 1 ⋆ G 2 , K) = C + C - σ(1 -λ) √ λn 3/2 K 0 V + (z)dzE [G 1 (M) ψ (M(λ))] + o(n -3/2 ) = C + C - σn 3/2 K 0 V + (z)dzΓ(G 1 , G 2 , λ) + o(n -3/2 ),
where we write

Γ(G 1 , G 2 , λ) = 1 λ 1/2 (1 -λ) 3/2 E G 1 (M) M(λ)e -M(λ) 2 2(1-λ) E G 2 ρ 1-λ M(λ),0
, with (M(t); 0 ≤ r ≤ λ) and (ρ 1-λ x,0 (t); t ∈ [0, 1], x ∈ R + ) two independent processes. Applying Lemma 2.3, we have, uniformly in y ∈ [0, r n ],

(2.39)

χ(G 1 ⋆ G 2 ; K) = C 1 n 3/2 K 0 V + (z)dz × E (G 1 ⋆ G 2 (e 1 )) + o(n -3/2 ),
where 

C 1 := C + C - σ π 2 ,
n 3/2 E F (S) f (S n -y); S n ≥ -a, S [λn,n] ≥ y -C 1 V -(a)E [F (e 1 )] R + f (x)V + (x)dx = 0.
Proof. We set

(2.41) χ a (F, f ) := E F (S)f (S n -y); S n ≥ -a, S [λn,n] ≥ y .
Decomposing with respect to the first time at which the random walk hits its minimum, we prove that uniformly in a ∈ [0,

r n ], χ a (F, f ) ≈ V -(a)χ(F, f ). Let τ := inf{0 ≤ k ≤ m : S k = S n }, we
show that τ ≤ √ n with high probability. By Markov property at time k, we have

χ a (F, f ) = E F (S)f (S n -y); τ = k, S n ≥ -a, S [m,n] ≥ y ≤ E f (S n -y); τ = k, S n ≥ -a, S [λn,n] ≥ y ≤ E ζ(S k , n -k)1 {S k-1 >S k ≥-a} , where ζ(x, n -k) := E(f (S n-k -y + x); S n-k ≥ 0, S [λn-k,n-k] ≥ y -x).
On the one hand, observe that

ζ(x, n -k) ≤E f (S n-k -y + x)1 {S n-k ≥y-x} ; S n-k ≥ 0 ≤ +∞ j=0 E f (S n-k -y + x)1 {S n-k ∈[y-x+j,y-x+j+1]} ; S n-k ≥ 0 ≤ +∞ j=0 f (j)P (S n-k ∈ [y -x + j, y -x + j + 1], S n-k ≥ 0) ,
which, by (2.3), is bounded by

c 1 ∞ j=0 f (j) (j + y -x + 2) (n -k) 3/2 ≤ c 1 (1 -λ) 3/2 n 3/2 2(1 + y -x) ∞ j=0 (1 + j) f(j). As x f (x)dx < ∞, uniformly in a, y ∈ [0, r n ], x ∈ [-a, 0] and k ≤ λn, we have (2.42) ζ(x, n -k) ≤ c 2 (1 + y + a)n -3/2 .
On the other hand, by (2.3),

P(S k-1 > S k ≥ -a) ≤ c 1 (1+a) 2 k -3/2 . As a consequence, writing k n = ⌊ √ n⌋, we have λn k=kn+1 E F (S)f (S n -y); τ = k, S n ≥ -a, S [λn,n] ≥ y ≤c 3 n -3/2 (1 + y + a)(1 + a) 2 λn k=kn+1 k -3/2 ≤c 4 (1 + log n) 3 k 1/2 n n -3/2 .
Thus

χ a (F, f ) = λn k=0 E F (S)f (S n -y); τ = k, S n ≥ -a, S [λn,n] ≥ y = kn k=0 E F (S)f (S n -y); τ = k, S n ≥ -a, S [λn,n] ≥ y + o(n -3/2 ).
We now prove that max k≤τ S k ≤ n 1/4 . Let M > 0, by Markov property and (2.42),

kn k=0 E F (S)f (S n -y); τ = k, max j≤k S j ≥ M, S n ≥ -a, S [λn,n] ≥ y ≤ kn k=0 E ζ(S k , n -k)1 {S k-1 >S k ≥-a;max j≤k S j ≥M } ≤c 2 n -3/2 (1 + y + a) kn k=0 P S k-1 > S k ≥ -a; max j≤k S j ≥ M .
We recall that (τ - k , H - k ) k≥0 are the strict descending epochs and heights of (S n ). For all k ≥ 1, the sequence

S n-τ - k-1 + H - k-1 , n ≤ τ - k -τ - k-1 , k ≥ 0 is i.i.d. Let M k = max{S n + H - k-1 , τ - k-1 ≤ n ≤ τ - k }, we deduce that (H - k -H - k-1 , M k ) is i.i.d. Consequently, kn k=0 P S k-1 > S k ≥ -a; max j≤k S j ≥ M ≤ P(M 1 ≥ M) + k≥1 P(H - k ≤ a, M 1 < M, . . . , M k < M + H - k-1 , M k+1 > M + H - k ) ≤ P(M 1 ≥ M) + k≥1 P(H - k ≤ a, M k+1 > M + H - k ) ≤ P(M 1 ≥ M) + k≥1 P(H - k ≤ a)P(M 1 > M) ≤ R(a)P(M 1 > M).
According to Corollary 3 in [START_REF] Doney | Conditional limit theorems for asymptotically stable random walks[END_REF],

P(M 1 > n) = c n + o(n -1 ). Taking M = n 1/4 yields to kn k=0 E F (S)f (S n -y); τ = k, max j≤k S j ≥ n 1/4 , S n ≥ -a, S [λn,n] ≥ y = o(n -3/2 ).
Finally, by uniform continuity of F , we have

χ a (F, f ) = kn k=0 E F (S)f (S n -y); τ = k, max j≤k S j ≤ n 1/4 , S n ≥ -a, S [λn,n] ≥ y + o(n -3/2 ) (2.43) = kn k=0 E ζ(S k , n -k, F )1 {S k-1 >S k ≥-a} + o(n -3/2 ), where ζ(x, n -k, F ) := E   F S ⌊(n-k)t⌋ σ 2 (n -k) , t ∈ [0, 1] f (S n-k -y + x); S n-k ≥ 0, S [λn-k,n-k] ≥ y -x   .
Observe that for k ≤ √ n, the asymptotic behaviour of ζ(x, nk, F ) follows from that of χ(F, f ).

It follows from (2.35) that uniformly in k ≤ k n , x ∈ [-a, 0] and a, y ∈ [0, r n ], ζ(x, n -k, F ) = C 1 n 3/2 E (F (e)) ∞ 0 f (z)V + (z)dz + o(n -3/2 ).
Going back to (2.43), we have

χ a (F, f ) = kn k=0 E ζ(S k , n -k, F )1 {mS k-1 >S k ≥-a} + o(n -3/2 ) = C 1 n 3/2 E (F (e)) ∞ 0 f (z)V + (z)dz kn k=0 P (S k-1 > S k ≥ -a) + o(n -3/2 ).
Observe also that +∞ k=0 P (S k-1 > S k ≥ -a) = V -(a) and that uniformly in a ∈ [0, r n ],

∞ k=kn+1 P (S k-1 > S k ≥ -a) = o n (1).
We conclude that uniformly in y, a ∈ [0, r n ],

(2.44) lim

n→+∞ n 3/2 χ(F, f ) = C 1 V -(a)E (F (e 1 )) ∞ 0 f (z)V + (z)dz,
which ends the proof.

Laplace transform of the Gibbs measure

We recall that for a branching random walk (V (u), u ∈ T) and β > 1,

µ n,β (F ) = n 3β 2 |u|=n e -βV (u) F (H n (u)).
This section is devoted to the computation of the Laplace transform of µ n,β (F ), which is closely related to already known estimates on the minimal displacement of the branching random walk. Therefore, we define M n as the smallest occupied position in the n-th generation, i.e., 

(3.2) sup n≥N sup x∈[A, 3 2 log n-A] e x x E 1 -exp -e -βx µ n,β (F ) -C β E F (e 1 ) 1 β ≤ ε,
where e 1 is a standard Brownian excursion.

Observe that if F = θ ∈ R + is a constant, Proposition 3.1 is: For all ε > 0, there exists (A, N) ∈ R + × N such that (3.3) sup n≥N sup x∈[A, 3 2 log n-A] e x x E 1 -exp -θe -βx µ n,β (1) -C β θ 1 β ≤ ε,
which has been proved in [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF]. Therefore, it is enough to prove, using Lemma 2.5 that

E exp -e -βx µ n,β (F ) ≈ E exp -e -βx µ n,β (1)F (e 1 )
where e 1 is a Brownian excursion independent of the branching random walk. For all n ∈ N, following [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], we write a n = 3 2 log n and a n (z) = a nz. For all x ∈ R, F ∈ C u b (D, R + ) and E a measurable event, we write Σ(n, x, F ) := E exp -e -βx µ n,β (F ) and Σ E (n, x, F ) := E exp -e -βx µ n,β (F )1 E .

For λ ∈ (0, 1), L, L 0 ≥ 0 and z > K 0 > 0, we define the set of individuals (3.4)

J L λ,z,K 0 ,L 0 (n) = u ∈ T : |u| = n, V (u) ≤ a n (z -L), min k≤n V (u k ) ≥ -z + K 0 , min λn≤k≤n V (u k ) ≥ a n (z + L 0 ) ,
For simplicity, we often write J λ,z,K 0 ,L 0 (n) instead of J 0 λ,z,K 0 ,L 0 (n). We now consider the following event (3.5)

E n := {m (n) ∈ J λ,x-∆,K 0 ,L 0 (n)}.
At the end of the section, we will choose ∆ < L 0 ≪ K 0 ≪ x, and L ∈ {0, L 0 }. We prove in a first time that Σ and Σ En are close to each other.

Lemma 3.2.

There exists α 1 > 0 small enough such that for all ε > 0, there exists ∆ ε,1 ≥ 1 such that such that for all ∆ ≥ ∆ ε,1 , L 0 ≥ 2∆/α 1 , x ≥ 2e K 0 +∆ /ε and n ≥ 1, we have

(3.6) 0 ≤ Σ En (n, x, F ) -Σ(n, x, F ) ≤ εxe -x .
Proof. Observe that

Σ En (n, x, F ) =E exp -e -βx µ n,β (F ) ; E n + P (E c n ) , Σ(n, x, F ) =E exp -e -βx µ n,β (F ) ; E n + E exp -e -βx µ n,β (F ) ; E c n .
As a consequence,

(3.7) 0 ≤ Σ En (n, x, F ) -Σ(n, x, F ) = E 1 -exp{-e -βx µ n,β (F )}; E c n .
We observe that 1e -W = ∞ 0 e -u 1 {W ≥u} du, thus

Σ En (n, x, F ) -Σ(n, x, F ) = E ∞ 0 e -u 1 { e -βx µ n,β (F )≥u} du; E c n = ∞ 0 e -u P e -βx µ n,β (F ) ≥ u; E c n du.
Using the fact that F is non-negative bounded, we have

Σ En (n, x, F ) -Σ(n, x, F ) ≤ +∞ 0 e -u P µ n,β (1) ≥ u F ∞ e βx ; E c n . Let ∆ ∈ (1, x -1), as E c n ⊂ {M n ≥ a n (x -∆)} ∪ (E c n ∩ {M n ≤ a n (x -∆)}), we have (3.8) Σ En (n, x, F ) -Σ(n, x, F ) ≤ ∞ 0 e -u P µ n,β (1) ≥ u F ∞ e βx ; M n ≥ a n (x -∆) du P † + ∞ 0 e -u P (M n ≤ a n (x -∆); E c n ) P ‡
du.

On the one hand,

P ‡ =P m (n) / ∈ J λ,x-∆,K 0 ,L 0 (n); M n ≤ a n (x -∆) ≤P (∃z : |z| = n, V (z) ≤ a n (x -∆), z / ∈ J λ,x-∆,K 0 ,L 0 (n))
≤ e K 0 + e -c 6 L 0 x e -x+∆ (3.9) applying Lemma 3.3 in Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF].

On the other hand, by change of variables, (3.10)

P † = R βe -e βy +βy P µ n,β (1) ≥ 1 F ∞ e β(x+y) ; M n ≥ a n (x -∆) P † (x,y)
dy.

To bound P † (x, y), we use Proposition 2.1 of [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF]. For all 0 ≤ K ≤ ∆, one sees immediately that, for |y| ≤ K,

P † (x, y) = P µ n,β (1) ≥ 1 F ∞ e β(x+y) ; M n ≥ a n (x -∆) ≤ j≥∆+y P µ n,β (1) ≥ 1 F ∞ e β(x+y) ; M n -a n (0) ∈ [j -(x + y); (j + 1) -(x + y)] ≤ c 7 (x + y)e -(x+y) e -α(∆+y)
≤ c 8 xe -x e (1+α)K-α∆ . (3.11) In the same way, for |y| > K, we have We set α 1 := min{ (β-1)α α+β , c 6 } and L 0 ≥ 2∆/α 1 , we have

P † (x, y) ≤ P µ n,β (1) ≥ 1 F ∞ e β(
Σ En (n, x, F ) -Σ(n, x, F ) ≤ c 12 xe -x e -α 1 ∆ + e K 0 +∆ x xe -x .
Since α 1 > 0, for all ε > 0, there exists ∆ ε,1 > 1 such that c 12 e -α 1 ∆ ε,1 ≤ ε/2. For all ∆ ≥ ∆ ε,1 and x ≥ 2e K 0 +∆ /ε we obtain finally

(3.15) Σ En (n, x, F ) -Σ(n, x, F ) ≤ εxe -x ,
which ends the proof.

In what follows, we prove that on the set E n , individuals who make the most important contribution to µ n,β (F ) are the ones who are geographically close to m (n) . For any L ≥ 1, let

(3.16) µ L n,β (F ) := n 3β/2 u∈J L λ,x-∆,K 0 ,L 0 (n)
e -βV (u) F (H n (u)) and W L n,β := µ L n,β (1).

In the same way as above, for all measurable event E, we denote by

(3.17) Σ L E (n, x, F ) := E exp -e -βx µ L n,β (F )1 E .
We now prove the following lemma.

Lemma 3.3.

There exists α 2 > 0 such that for all ε > 0 there exists ∆ ε,2 ≥ 1 such that for all

∆ ≥ ∆ ε,2 , L = L 0 ≥ 2∆/α 2 , x ≥ 2e K 0 +∆ /ε and n ≥ 1, we have (3.18) 0 ≤ Σ L En (n, x, F ) -Σ En (n, x, F ) ≤ εxe -x . Proof. As µ n,β (F ) ≥ µ L n,β (F ), we have Σ L En (n, x, F ) -Σ En (n, x, F ) = E exp -e -βx µ L n,β (F ) -exp -e -βx µ n,β (F ) ; E n ≥ 0,
We observe that, for all 0

≤ W 1 ≤ W 2 , e -W 1 -e -W 2 1 {W 2 -W 1 ≥0} ≤|W 1 -W 2 |1 {0≤W 2 -W 1 ≤δ} + 1 {W 2 -W 1 >δ} ≤δ + 1 {W 2 -W 1 >δ} .
Applying this inequality with δ = e -β∆ , W 1 = µ L n,β (F ) and W 2 = µ n,β (F ) gives

Σ L En (n, x, F ) -Σ En (n, x, F ) ≤ e -β∆ P (E n ) + P µ n,β (F ) -µ L n,β (F ) ≥ e β(x-∆) ; E n . As E n ⊂ {M n ≤ a n (x -∆)}, we have (3.19) Σ L En (n, x, F ) -Σ En (n, x, F ) ≤ e -β∆ P M n ≤ a n (x -∆) + P ⋄ ,
where

P ⋄ := P   n 3β/2 |u|=n 1 u / ∈J L λ,x-∆,K 0 ,L 0 (n) e -βV (u) ≥ e β(x-∆) ; M n ≤ a n (x -∆)   .
From (3.19), on the one hand we recall that

P (M n ≤ a n (x -∆)) ≤ c 9 (x -∆)e -(x-∆) .
On the other hand, by Proposition 4.6 of [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF], there exists α 2 ∈ (0, β -1) such that for L = L 0 , (3.20)

P ⋄ ≤ e K 0 +∆ e -x + c 13 xe -x e -α 2 L 0 +∆ .
As a consequence,

Σ L En (n, x, F ) -Σ En (n, x, F ) ≤ c 14 xe -x e -α 2 ∆ + e -α 2 L 0 +∆ + e K 0 +∆ e -x .
For any ε > 0, there exists ∆ ε,2 > 0 such that c 14 e -α 2 ∆ ε,2 ≤ ε/4. We set ∆ ≥ ∆ ε,2 , L 0 ≥ 2∆/α 2 and x ≥ 2e K 0 +∆ /ε, and obtain that

(3.21) 0 ≤ Σ L 0 En (n, x, F ) -Σ En (n, x, F ) ≤ εxe -x
which ends the proof.

Recall that m (n) is uniformly chosen from the set of leftmost individuals at time n. For any 1 ≤ k ≤ n, we use m

(n) k
to represent the ancestor of m (n) at generation k. We prove now that the individuals who make significant contributions to µ are the close relatives of m (n) . We write, for k ≤ n

(3.22) µ L n,k,β (F ) := n 3β/2 u∈J L λ,x-∆,K 0 ,L 0 (n) 1 u≥m (n) k e -βV (u) F (H n (u)),
and for E a measurable event

(3.23) Σ L E (n, k, x, F ) := E exp -e -βx µ L n,k,β (F )1 E .
Lemma 3.4. For all ε > 0 and L 0 ≥ 1, there exist

K = K ε,L 0 > 0, B = B ε,L 0 ≥ 1 and N = N ε,L 0 ≥ 1 such that for all K 0 ≥ K + L 0 , n ≥ N and b ≥ B, (3.24) 0 ≤ Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) ≤ εxe -x .
Before giving the proof of Lemma 3.4, we state a result about the branching random walk under P. Recall that (ω k ; k ≥ 0) is the spine of T. For any integer b ≥ 0, we define 

P (ξ n (z, L, b) c , ω n ∈ J λ,z,K,L (n)) ≤ η(1 + L) 2 (1 + z -K)n -3/2 .
Fact 3.5 is a slight refinement of Lemma 3.8 in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], so we feel free to omit its proof. Using this result, we prove Lemma 3.4 as follows.

Proof. As µ L 0 n,k,β (F ) ≤ µ L 0 n,β (F ), we have Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) ≥ 0.
We also observe that

Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) = E exp -e -βx µ L 0 n,n-b,β (F ) -exp -e -βx µ L 0 n,β (F ) ; E n .
By change of measures, we have

Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) = E   exp -e -βx µ L 0 n,n-b,β (F ) -exp -e -βx µ L 0 n,β (F ) W n ; m (n) ∈ J λ,x-∆,K 0 ,L 0 (n)   = E   e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} |u|=n 1 {V (u)=Mn} exp -e -βx μL 0 n,n-b,β (F ) -exp -e -βx µ L 0 n,β (F )   , where μL 0 n,k,β (F ) := n 3β/2 u∈J L 0 λ,x-∆,K 0 ,L 0 (n) 1 {u≥ω k } e -βV (u) F (H n (u)). Observe that 0 ≤ exp{-e -βx μL 0 n,n-b,β (F )} -exp{-e -βx µ L 0 n,β (F )} ≤ 1. Moreover, on the event ξ n (x -∆, L 0 , b), we have μL 0 n,n-b,β (F ) = µ L 0 n,β (F ). Therefore, Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) ≤ E   e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} |u|=n 1 {V (u)=Mn} ; ξ c n (x -∆, L 0 , b)   ≤ E e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} ; ξ c n (x -∆, L 0 , b) ≤n 3/2 e -x+∆ P (ξ c n (x -∆, L 0 , b), ω n ∈ J λ,x-∆,K 0 ,L 0 (n)) . (3.27) Applying Fact 3.5 to η = εe -∆ /(1 + L 0 ) 2 shows that (3.28) Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) ≤ εxe -x ,
holds for n ≥ N(η), b ≥ B(L 0 , η) and x > K 0 ≥ K(η) + L 0 , which ends the proof.

We now study Σ L 0 En (n, nb, x, F ), to prove Proposition 3.1. We begin with the following estimate, which brings out the Brownian excursion. Lemma 3.6. For any ε > 0, set Lemma 3.4. For all K 0 ≥ K + L 0 , n ≥ N and b ≥ B, there exists n ε ≥ N such that for all n ≥ n ε and x ≥ 2e K 0 +∆ /ε,

∆ = ∆ ε := ∆ ε,1 ∨ ∆ ε,2 and L 0 = 2∆ α 1 ∧α 2 . Let K = K ε,L 0 > 0, B = B ε,L 0 ≥ 1 and N = N ε,L 0 ≥ 1 as in
(3.29) Σ L En (n, n -b, x, F ) -E exp -e -βx µ n,β (1)F (e 1 ) ≤ εxe -x .
Proof. By change of measures, we have

Σ L 0 En (n, n -b, x, F ) = E exp -e -βx µ L 0 n,n-b,β (F )1 En = E   e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} |u|=n 1 {V (u)=Mn} exp -e -βx μL 0 n,n-b,β (F )   + P(E c n ).
First, we are going to compare it with E exp -e -βx µ L 0 n,n-b,β (1)F (e 1 )1 En , which equals to

E   e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} |u|=n 1 {V (u)=Mn} exp -e -βx μL 0 n,n-b,β F (e 1 )   + P(E c n ).
The strategy is to show that

Υ L 0 En (n, n -b, x, F ) := Σ L 0 En (n, n -b, x, F ) -P(E c n ) and Υ L 0 En (n, n -b, x, F (e 1 )) :=E exp -e -βx µ L 0 n,n-b,β (1)F (e 1 )1 En -P(E c n )
are both close to the same quantity as n → ∞. Then we compare E exp -e -βx µ L 0 n,n-b,β (1)F (e 1 )1 En with E exp -e -βx µ n,β (1)F (e 1 ) .

We set (3.30)

Z := e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} |u|=n 1 {V (u)=Mn}
and

Z b := e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)} |u|=n 1 {V (u)=Mn,u≥ω n-b } , so that Υ L 0 En (n, n -b, x, F ) = E Ze -e -βx μL 0 n,n-b,β (F ) .
Under the measure P, on the set

ξ n (x -∆, L 0 , b), we have Z = Z b , thus (3.31) Υ L 0 En (n, n -b, x, F ) = E Z b e -e -βx μL 0 n,n-b,β (F ) + E (Z -Z b ) exp -e -βx μL 0 n,n-b,β (F ) ; ξ c n (x -∆, L 0 , b) .
Recall that under P, we have

μL 0 n,n-b,β (F ) = n 3β/2 u∈J L 0 λ,x-∆,K 0 ,L 0 (n) 1 {u≥ω n-b } e -βV (u) F (H n (u)).
For n ≫ b large and |u| = n, we define the path

H n s (u) = V (u ⌊ns∧(n-b)⌋ ) σ √ n , ∀s ∈ [0, 1]. Observe that, for all u ≥ ω n-b , H n (u) is identical to H n (ω n ). For all ε 0 > 0, let (3.32) X F,ε 0 := F H n s (ω n ); s ∈ [0, 1] ∨ ε 0 . We prove that Υ L 0 En (n, n -b, x, F ) is close to E Z b exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 . It follows from (3.31) that (3.33) Υ L 0 En (n, n -b, x, F ) -E Z b exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 ≤ E Z b exp -e -βx μL 0 n,n-b,β (F ) -exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 + E |Z -Z b | exp -e -βx μL 0 n,n-b,β (F ) ; ξ c n (x -∆, L 0 , b) . As |Z -Z b | ≤ e V (ωn) 1 {V (ωn)=Mn,ωn∈J λ,x-∆,K 0 ,L 0 (n)}
, by (3.27) and Fact 3.5 applied to η = εe ∆ (1+L 0 ) 2 , this quantity is bounded from above by

(3.34) E Z b exp -e -βx μL 0 n,n-b,β (F ) -exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 + εxe -x .
It remains to bound the first term of (3.34). We compare μL 0 n,n-b,β (F ) with μL 0 n,n-b,β (1) × X F,ε 0 , by comparing F ( H s (u); s ∈ [0, 1]) with F (H n s (u); s ∈ [0, 1]). Since F is uniformly continuous, for ε 0 > 0, there exists δ 0 > 0 such that on the set

{max n-b≤k≤n V (u k ) ≤ V (u) + δ 0 √ n}, |F ( H s (u); s ∈ [0, 1]) -F (H n s (u); s ∈ [0, 1])| ≤ ε 0 . And on the complement set, |F ( H s (u); s ∈ [0, 1]) -F (H n s (u); s ∈ [0, 1])| ≤ 1 as 0 ≤ F ≤ 1. One then observes that E Z b exp -e -βx μL 0 n,n-b,β (F ) -exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 ≤ E Z b e -βx μL 0 n,n-b,β (F ) -μL 0 n,n-b,β (1) × X F,ε 0 ≤ 2 E     Z b e -βx n 3β/2 u∈J L 0 λ,x-∆,K 0 ,L 0 (n) 1 {u≥ω n-b } e -βV (u) ε 0 + 1 {maxn-b≤k≤n V (u k )≥V (u)+δ 0 √ n}     ,
which by the Markov property at time nb is equal to

(3.35) 2n 3/2 e -x+(β-1)(L 0 -∆) E G L 0 ,b,ε 0 (V (ω n-b ) -a n (z + L 0 )) ; min 0≤k≤n-b V (ω k ) ≥ -z + K 0 , min λn≤k≤n-b V (ω k ) ≥ a n (z + L 0 ) ,
where G L 0 ,b,ε 0 (t) is defined as

(3.36) E t   e V (ω b ) 1 { V (ω b )=M b ;min 0≤k≤b V (ω k )≥0,V (ω b )≤L 0} |u|=b 1 {V (u)=M b } × |u|=b e -βV (u) 1 { min 0≤k≤b V (u k )≥0,V (u)≤2L 0 } ε 0 + 1 { max 0≤k≤b V (u k )≥V (u)+δ 0 √ n}   .
To bound G L 0 ,b,ε 0 (t), we return to the probability P and observe that

G L 0 ,b,ε 0 (t) = e (1-β)t E   |u|=b e -βV (u) 1 {min0≤k≤b V (u k )≥-t,V (u)≤2L 0 -t} ε 0 + 1 {max0≤k≤b V (u k )≥V (u)+δ 0 √ n} ; min 0≤k≤b V (m (b) k ) ≥ -t, V (m (b) ) ≤ L 0 -t   thus G L 0 ,b,ε 0 (t) ≤ e (1-β)t E   |u|=b e -βV (u) 1 {min0≤k≤b V (u k )≥-t,V (u)≤2L 0 -t} ε 0 + 1 {max0≤k≤b V (u k )≥V (u)+δ 0 √ n}   .
By Many-to-one lemma,

G L 0 ,b,ε 0 (t) ≤ E t e (1-β)S b (ε 0 + 1 {max0≤k≤b S k -S b ≥δ 0 √ n} ); S b ≤ 2L 0 , S b ≥ 0 ≤ 2P t (S b ≤ 2L 0 ) ≤ 2P(2L 0 -S b ≥ t).
We observe that the function t → P(2L 0 -S b ≥ t) is non-increasing, and

+∞ 0 tP(2L 0 -S b ≥ t)dt ≤ 1 2 E((2L 0 -S b ) 2 ) < +∞.
Using the dominated convergence theorem, we have

(3.37) lim n→+∞ R + G L 0 ,b,ε 0 (t)tdt ≤ 1 2 E((2L 0 -S b ) 2 )ε 0 .
Moreover, the function G L 0 ,b,ε 0 is Riemann-integrable. Therefore, using Lemma 2.5 proves that for all n sufficiently large,

E     Z b e -βx n 3β/2 u∈J L 0 λ,x-∆,K 0 ,L 0 (n) 1 {u≥ω n-b } e -βV (u) ε 0 + 1 {maxn-b≤k≤n V (u k )≥V (u)+δ 0 √ n}     ≤ c 16 ε 0 xe -x+(β-1)(L 0 -∆) ,
plugging this result in (3.35), for all n large enough, we have

E Z b exp -e -βx μL 0 n,n-b,β (F ) -exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 ≤ 2c 16 ε 0 e (β-1)(L 0 -∆) xe -x .
In view of (3.33) and (3.34), we can choose ε 0 > 0 sufficiently small so that

(3.38) Υ L 0 En (n, n -b, x, F ) -E Z b exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 ≤ 2εxe -x .
In the similar way, we get that

(3.39) Υ L 0 En (n, n -b, x, F (e 1 )) -E Z b exp -e -βx μL 0 n,n-b,β (1) × F (e 1 ) ∨ ε 0 ≤ 2εxe -x .
We now consider the quantity e x x E Z b exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 and show that it is close to e x

x E Z b exp -e -βx μL 0 n,n-b,β (1) × (F (e 1 ) ∨ ε 0 ) . However, we can not compare these quantities directly, thus we prove that 

e x x E Z b 1 -exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 ∼ n→+∞ e x x E Z b 1 -exp -e -βx μL 0 n,n-b,β (1) × (F (e 1 ) ∨ ε 0 ) . Applying the equation 1 -e -λW = R + λe -λt 1 {W ≥t} dt with λ = X F,ε 0 leads to (3.40) e x x E Z b 1 -exp -e -βx X F,ε 0 μL 0 n,n-b,β (1) = R + e x x E Z b X F,ε 0 e -tX F,ε 0 ; μL 0 n,n-b,β (1) ≥ te βx dt = R β e x x E Z b e βy X F,ε 0 e -e
= n 3/2 e ∆ x E   e βy X F,ε 0 e -e βy X F,ε 0 f L 0 ,b (V (ω n-b ) -a n (z + L 0 ), y + ∆) ; min 0≤k≤n-b V (ω k ) ≥ -z + K 0 , min λn≤k≤n-b ≥ a n (z + L 0 )   ,
where z = x -∆ and

(3.42) f L 0 ,b (z, y) := E z   e V (ω b )-L 0 1 {V (ω b )=M b } |u|=b 1 {V (u)=M b } 1 { min 0≤k≤b V (ω k )≥0,V (ω b )≤L 0} × 1 |u|=b e -βV (u) 1 { min 0≤k≤b V (u k )≥0,V (u)≤2L 0} ≥e β(y-L 0 )   .
According to Lemma 2.23 in [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF], f L 0 ,b is Riemann integrable and bounded by P(S b ≤ L 0 -z). For all y ∈ R + and n ≥ 10b, we have

(3.43) e x
x E Z b e βy X F,ε 0 e -e βy X F,ε 0 ; μL 0 n,n-b,β (1) ≥ e β(x+y) ≤ c 17 e βy e -ε 0 e βy , which is integrable with respect to the Lebesgue measure. Using (3.41) then applying Lemma 2.5 show that for any y ∈ R, as n → ∞,

lim n→∞ e x x E Z b e βy X F,ε 0 e -e βy X F,ε 0 ; μL 0 n,n-b,β (1) ≥ e β(x+y) = C 1 e ∆ V -(z -K 0 ) x R + f L 0 ,b (z, y + ∆)V + (z
)dzE e βy (F (e 1 ) ∨ ε 0 ) e -e βy (F (e 1 )∨ε 0 ) .

By the exact same argument, we have Therefore, applying the dominated convergence theorem, (3.40) becomes Thus, we obtain that for all n sufficiently large,

C 1 e ∆ V -(z -K 0 ) x R + f L 0 ,b (z, y + ∆)V + (z)
e x x E Z b 1 -exp -e -βx X F,ε 0 μL 0 n,n-b,β (1) 
e x x E Z b exp -e -βx μL 0 n,n-b,β (1) × X F,ε 0 - e x x E Z b exp -e -βx μL 0 n,n-b,β (1) × (F (e 1 ) ∨ ε 0 ) ≤ ε.
In view of (3.38) and (3.39), we check that for all n sufficiently large,

(3.45) Υ L 0 En (n, n -b, x, F ) -Υ L 0 En (n, n -b, x, F (e 1 )) ≤ 5εxe -x .
It hence follows that for all n sufficiently large,

(3.46) Σ L 0 En (n, n -b, x, F ) -E exp -e -βx µ L 0 n,n-b,β (1)F (e 1 )1 En ≤ 5εxe -x .
It remains to compare E exp -e -βx µ L 0 n,n-b,β (1)F (e 1 )1 En with E exp -e -βx µ n,β F (e 1 ) . Applying Lemmas 3.2, 3.3 and 3.4 to E exp{-e -βx µ n,β (1)F (e 1 )} implies that (3.47) 0 ≤ E exp -e -βx µ L 0 n,n-b,β (1)F (e 1 )1 En -E exp -e -βx µ n,β (1)F (e 1 ) ≤ 3εxe -x .

As a consequence, for all n sufficiently large,

(3.48) Σ L 0 En (n, n -b, x, F ) -E exp -e -βx µ n,β F (e 1 ) ≤ 8εxe -x ,
which completes the proof.

We now prove Proposition 3.1.

Proof of Proposition 3.1. For any non-negative

F ∈ C u b (D) and ε > 0, we choose ∆ = ∆ ε := ∆ ε,1 ∨ ∆ ε,2 and L = L 0 = 2∆ α 1 ∧α 2 . Set K 0 = K ε,L 0 + L 0 , n ≥ n ε and A ≥ 2e K 0 +∆ /ε, we observe that Σ(n, x, F ) -E exp -e -βx µ n,β (1)F (e 1 ) ≤ |Σ(n, x, F ) -Σ En (n, x, F )| + Σ L 0 En (n, x, F ) -Σ En (n, x, F ) + Σ L 0 En (n, n -b, x, F ) -Σ L 0 En (n, x, F ) + Σ L 0 En (n, n -b, x, F ) -E exp -e -βx µ n,β (1)F (e 1 ) .
Using Lemmas 3.2, 3.3, 3.4 and 3.6, we have

(3.49) Σ(n, x, F ) -E exp -e -βx µ n,β (1)F (e 1 ) ≤ 4εxe -x ,
where µ n,β [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] and F (e 1 ) are independent. Recall that Σ(n, x, F ) = E exp -e -βx µ n,β (F ) . It hence follows that

(3.50) e x x E 1 -exp -θe -βx µ n,β (F ) - e x x E 1 -exp -θe -βx µ n,β (1)F (e 1 ) ≤ e x x Σ(n, x, F ) -E exp -e -βx µ n,β (1)F (e 1 ) ≤ 4ε.
We replace θ by θF (e 1 and then deduce from (3.3) that for all n sufficiently large,

e x x E 1 -exp -θe -βx µ n,β (1)F (e 1 ) e 1 -C β θ 1 β F (e 1 ) 1 β ≤ ε.
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In particular, for all n sufficiently large,

e x x E 1 -exp -θe -βx µ n,β (1)F (e 1 ) -C β θ 1 β E F (e 1 ) 1 β ≤ ε.
Going back to (3.50), we have We apply the Laplace transform estimates obtained in the previous section to prove the main results of this article. We first study the convergence of the Laplace transform of µ n,β (F ). We recall that Z n = |u|=n V (u)e -V (u) is a martingale, and that Z ∞ = lim n→+∞ Z n a.s. 

e x x E 1 -exp{-θe -βx µ n,β (F )} -C β θ 1 β E[F (e 1 ) 1 
E 1 {Z l >0} e -αZ l -µ n+l,β (F ) = E exp -C β Z ∞ E F (e 1 )
1 β e -αZ∞ 1 {Z∞>0} .

In particular, conditionally on the survival event S, we have

(4.2) lim n→+∞ E e -µ n,β (F ) S = E exp -C β Z ∞ E F (e 1 ) 1 β S .
Remark 4.2. Theorem 1.1 is a consequence of (4.2). However (4.1) enlightens the appearance of Z ∞ .

Proof. Note that (4.2) is a direct consequence of (4.1) as S = {Z ∞ > 0}. We observe that

(4.3) µ n+l,β (F ) = n + l n 3β 2 |u|=l e -βV (u) n 3β 2 |v|=n+l v≥u e -β(V (v)-V (u)) F (H n+l (v)). For |u| = l, v ≥ u with |v| = n + l and t ∈ [0, 1], we write H (n),u (v) t := V (v l+⌊nt⌋ )-V (u) √ σ 2 n and µ (u) n,β (F ) := n 3β/2 |v|=n+l v≥u e -β(V (v)-V (u)) F H (n),u (v) ,
By uniform continuity of F , we have

(4.4) µ n+l,β (F ) = |u|=l e -βV (u) µ (u) n,β (F )(1 + o(1)),
where o(1) → 0 as l n → 0. Therefore (4.1) is a consequence of (4.5) lim

l→+∞ lim sup n→+∞ E e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F ) = lim l→+∞ lim inf n→+∞ E e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F ) = E exp -C β E F (e 1 ) 1 β 
Z ∞ e -αZ∞ 1 {Z∞>0} .

Applying the Markov property at time l, we have

E e -αZ l 1 {Z l >0} e -|u|=l e -βV (u) µ (u) n,β (F ) = E   e -αZ l 1 {Z l >0} |u|=l Ψ(V (u))   ,
where Ψ : x → E e -e -βx µ n,β (F ) . For any 1 ≤ l ≤ n, we set Ξ n,l := |u| = l : log l 3 ≤ V (u) ≤ log n , and we prove that |u|=l Ψ(V (u)) ≈ u∈Ξ n,l Ψ(V (u)) with high probability. Note that (4.6) lim n→+∞ u∈Ξ n,l V (u)e -V (u) = Z l a.s.for l large enough, as lim inf l→+∞ M l log l = 1 2 > 1 3 (see [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF]). We first observe that

E e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F ) ≤ E   e -αZ l 1 {Z l >0} u∈Ξ n,l Ψ(V (u))   .
By Proposition 3.1, for any ε > 0, there exist L, N such that for any n ≥ N, l ≥ L and u ∈ Ξ n,l ,

Ψ(V (u)) -1 + ψ β V (u)e -V (u) ≤ εV (u)e -V (u) n, (4.7) 
where

ψ β = C β E F (e 1 ) 1 
β . This yields E e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F ) ≤ E   e -αZ l 1 {Z l >0} u∈Ξ n,l 1 -(ψ β -ε) V (u)e -V (u)   ≤ E e -αZ l 1 {Z l >0} e -u∈Ξ n,l V (u)e -V (u) (ψβ-ε) ,
where the last inequality follows from the fact that for any x ≥ 0, 1x ≤ e -x . By (4.6) and the convergence of the derivative martingale, we have

lim sup n→+∞ E   e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F )   ≤ E e -(α+ψ β -ε)Z l 1 {Z l >0} .
Letting l → +∞ then ε → 0, it leads to

(4.8) lim sup n→+∞ E   e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F )   ≤ E   e -α+C β E F (e 1 ) 1 β Z∞ 1 {Z∞>0}   .
The lower bound follows from similar arguments. Applying once again the Markov property at time l,

E   e -αZ l 1 {Z l >0} e -|u|=l e -βV (u) µ (u) n,β (F )   ≥ E   e -αZ l 1 {Z l >0,3M l ≥log l} |u|=l Ψ(V (u))   .
Therefore,

E   e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F )   ≥ E   e -αZ l 1 {Z l >0,3M l ≥log l} u∈Ξ n,l Ψ(V (u)) × |u|=l,u ∈Ξ n,l Ψ(V (u))   = E   e -αZ l 1 {Z l >0,3M l ≥log l} u∈Ξ n,l Ψ(V (u)) × |u|=l,V (u)≥log n Ψ(V (u))   .
For n ≥ 1 large enough, by [21, Proposition 2.1], there exists c > 0 such that (4.9) ∀x ≥ log n, 1 -Ψ(x) ≤ cxe -x .

Consequently, (4.7) yields

E   e -αZ l 1 {Z l >0} e - |u|=l e -βV (u) µ (u) n,β (F )   ≥E   e -αZ l 1 {Z l >0,3M l ≥log l} |u|=l 1 -1 {V (u)≤log n} ψ β + c1 {V (u)≥log n} + ε V (u)e -V (u)   ≥E e -αZ l 1 {Z l >0,3M l ≥log l} e -(1+ε) |u|=l (1{V (u)≤log n} ψ β +c1 {V (u)≥log n} +ε)V (u)e -V (u) ,
for l ≥ 1 large enough, as for any x > 0 small enough, 1x ≥ e -(1+ε)x . Letting n → +∞, we have

lim inf n→+∞ E   e -αZ l 1 {Z l >0} e -|u|=l e -βV (u) µ (u) n,β (F )   ≥ E 1 {Z l >0,3M l ≥log l} e -(α+(1+ε)(ψ β +ε)) .
Finally, using the fact that S = {Z ∞ > 0} and that lim inf l→+∞ M l / log l > 1/3, we obtain, letting l → +∞ then ε → 0

lim inf l→∞ lim inf n→∞ E e -|u|=l e -βV (u) µ (u) n,β (F ) e -αZ l 1 {Z l >0} ≥ E   e -α+C β E F (e 1 ) 1 β Z∞ 1 {Z∞>0}  
which ends the proof of (4.5).

We now prove that for any F ∈ C u b (D), we have (4.10)

µ n,β (F ) =⇒ n→+∞ k∈N p k F (e k ),
where (e k ) is a sequence of i.i.d. normalised Brownian excursions, and (p k , k ∈ N) follows an independent Poisson-Dirichlet distribution with parameter ( 1 β , 0).

Proof of Theorem 1.1. We recall that µ n,β is defined on S by µ n,β (F ) =

µ n,β (F )
µ n,β (1) , for F ∈ C b (D). To prove the convergence in law of µ n,β , we start by identifying the limit law of µ n,β .

Let (∆ k , k ∈ N) be a Poisson point process on R with intensity e x dx and (e k , k ∈ N) be an independent sequence of i.i.d. normalised Brownian excursions, independent from the branching random walk. We introduce a random measure µ ∞,β on D by

µ ∞,β = Z β ∞ +∞ k=1 e -β(∆ k -c⋆(β)) δ e k ,
where c ⋆ (β) := log Using Theorem 1.1, we can compute a variety of quantities related to the trajectory of individuals chosen according to the Gibbs measure. In this theorem, we proved the convergence of µ n,β (F ) for F a uniformly continuous bounded function on D. Unfortunately, this is not enough to conclude to the convergence of the random measure µ n,β . However, the convergence can be proved for several restrictions of this measure.

We first prove the finite dimensional distributions of µ n,β converge, as n → +∞ to the finite dimensional distributions of µ ∞,β . For 0 ≤ t 1 < t 2 < • • • < t k ≤ 1, we write Proof. As R d is a locally compact, second-countable and Hausdorff, by [START_REF] Kallenberg | Foundations of modern probability. Probability and its applications[END_REF]Theorem 14.16] it is enough to prove that for any continuous function f with compact support on R d , we have

Π t 1 ,•
µ F D n,β (f ) =⇒ n→+∞ µ F D ∞,β (f ).
As f • Π t 1 ,...,t k is uniformly continuous, Theorem 1.1 leads to

µ n,β (f • Π t 1 ,...,t k ) =⇒ n→+∞ µ ∞,β (f • Π t 1 ,...,t k ),
which concludes the proof.

We also observe that the (non-random) measure on D k defined by integrating µ ⊗k n,β with respect to the branching random walk law converge weakly too. 

M k n,β =⇒ n→+∞ M k ∞,β , with M k ∞,β (f 1 , . . . f k ) = E k j=1 n≥1
p n f j (e n ) . Proof. By Prokhorov theorem, to prove this convergence, we prove the convergence of finitedimensional distributions and the tension of the sequence of measures (M k n,β , n ≥ 1). Let h ∈ N, we introduce 0 ≤ t 1 < t 2 < . . . < t h ≤ 1 and F : (R h ) k → R + a uniformly continuous bounded function, we observe that F • (Π t 1 ,...,t h ) ⊗k : D k -→ R + (f 1 , . . . f k ) -→ F (f 1 (t 1 ), . . . f 1 (t h )) , . . . , f k (t 1 ), . We observe that for any δ > 0, ω δ is a 2-Lipschitz function, thus uniformly continuous. By Theorem 1.1, we have lim

n→+∞ M k n,β (ω δ ) = M k ∞,β (ω δ ).
Moreover by continuity of the Brownian excursions, we have lim δ→0 M k ∞,β (ω δ ) = 0, yielding lim 

e

  -V (z) and X := |z|=1 V (z) + e -V (z) . It follows from (1.3) that W n,1 = |z|=n e -V (z) and Z n = |z|=n V (z)e -V (z) 

Lemma 2 . 5 .

 25 Let f : R + → R be a Riemann-integrable function such that there exists a nonincreasing function f verifying |f (x)| ≤ f(x) and R + x f (x)dx < +∞. Let (r n ) be a non-negative sequence such that lim sup n→+∞ rn log n < +∞. There exists a constant C 1 > 0 such that for all such functions f , λ ∈ (0, 1) and F ∈ C u b (D), (2.35) lim n→+∞ sup y∈[0,rn]

(3. 1 )Proposition 3 . 1 .

 131 M n := inf |u|=n V (u), with the convention inf ∅ := +∞. We denote by m (n) an individual uniformly chosen in {u : |u| = n, V (u) = M n } the set of leftmost individuals at time n.The rest of this section is devoted to the proof of the following result. Let β > 1, under (1.3) and (1.4), there exists C β > 0 such that for all non-negative F ∈ C u b (D) and ε > 0, there exists (A, N) ∈ R + × N such that

x+y) ≤ c 9

 9 (x + y)e -(x+y) 1 {x+y≥1} + 1 {y+x≤1} ≤ c 9 xe -x 1 {y>K} + c 9 e -(x+y) 1 {-K>y≥1-x} + 1 {x+y≤1} . (3.12) Combining (3.11) with (3.12) yields to P † ≤ c 8 xe -x e (1+α)K-α∆ + c 9 xe -x +∞ K βe -e βy +βy dy + c 9 xe -x {1-x≤y<-K} βe -e βy +βy-y dy + 1-x -∞ βe -e βy +βy dy ≤ c 8 xe -x e (1+α)K-α∆ + c 10 xe -x e (1-β)K + e (1-β)x . Taking K = α∆ α+β , we obtain (3.13) P † ≤ c 11 xe -x e -(β-1)α∆ α+β . Using (3.9) and (3.13), inequality (3.8) becomes (3.14) Σ En (n, x, F ) -Σ(n, x, F ) ≤ c 11 xe -x e -(β-1)α∆ α+β + e K 0 + e -c 6 L 0 x e -x+∆ .

( 3 .Fact 3 . 5 .

 335 25) ξ n (z, L, b) := {∀k ≤ nb, min u≥ω k ;|u|=n V (u) ≥ a n (z) + L}. For any η > 0 and L > 0, there exists K(η) > 0, B(L, η) ≥ 1 and N(η) ≥ 1 such that for any b ≥ B(L, η) ≥ 1, n ≥ N(η) and z ≥ K ≥ K(η) + L, (3.26)

  βy X F,ε 0 ; μL 0 n,n-b,β (1) ≥ e β(x+y) dy, by change of variables t = e βy . Applying the Markov property at time nb implies that (3.41) e x x E Z b e βy X F,ε 0 e -e βy X F,ε 0 ; μL 0 n,n-b,β (1) ≥ e β(x+y)

  dzE e βy (F (e 1 ) ∨ ε 0 ) e -e βy (F (e 1 )∨ε 0 ) = lim n→∞ e x x E Z b e βy (F (e 1 ) ∨ ε 0 ) e -e βy (F (e 1 )∨ε 0 ) ; μL 0 n,n-b,β (1) ≥ e β(x+y) .

  e βy X F,ε 0 e -e βy X F,ε 0 ; μL 0 n,n-b,β (1) ≥ e β(x+y) dy = R β e x x E Z b e βy (F (e 1 ) ∨ ε 0 ) e -e βy (F (e 1 )∨ε 0 ) ; μL 0 n,n-b,β (1) ≥ e β(x+y) dy + o n (1) = e x x E Z b 1exp -e -βx (F (e 1 ) ∨ ε 0 ) μL 0 n,n-b,β (1) + o n (1). (3.44)

β 3 4. 1

 31 ] ≤ 5ε, which completes the proof and gives Proposition 3.1. 4 Proof of Theorem 1.1 and Corollary 1.Proof of Theorem 1.1

Proposition 4 . 1 .E 1

 411 Under (1.1), (1.3) (1.4), for any α ≥ 0 and any non-negative F ∈ C u b ({Z l >0} e -αZ l -µ n+l,β (F ) = lim l→+∞ lim inf n→+∞

-β 1 E 1 E 1 Remark 4 . 3 .

 11143 R (e -e -βu -1)e u du . We first prove that for any non-negative F ∈ C u b (D),(4.11) µ n,β (F ) =⇒ n→+∞ µ ∞,β (F ).We compute the Laplace transform of µ (F ). As S = {Z ∞ > 0}, for any θ > 0, we haveE exp (-θ µ ∞,β (F )) 1 {S} = E exp -θZ β ∞ +∞ k=1 e -β[∆ k -c⋆(β)] F (e k ) 1 {Z∞>0} = E exp -+∞ k=1 φ θe -β[∆ k -log Z∞-c⋆(β)] 1 {Z∞>0} ,where φ : x → log E [exp (-uF (e 1 ))]. By Campbell's formula,E exp (-θ µ ∞,β (F )) 1 {S} = E exp R e φ(θe -β[x-log Z∞-c⋆(β)] )+x-1 dx 1 {Z∞>0} . As φ θe -β[x-log Z∞-c⋆(β)] = log E exp -θe -β[x-log Z∞-c⋆(β)] F (e 1 ) Z ∞ , it yields E exp (-θ µ ∞,β (F )) 1 {S} = E exp R E exp -θe -β[x-log Z∞-c⋆(β)] F (e 1 ) Z ∞ -1 e x dx1 {Z∞>0} = E exp E R exp -θe -β[x-log Z∞-c⋆(β)] F (e 1 ) -1 e x dx Z ∞ 1 {Z∞>0} . By change of variables u = xlog Z ∞c ⋆ (β) -1 β [log θ + log F (e 1 )], we obtain that E R exp -θe -β[x-log Z∞-c⋆(β)] F (e 1 ) -1 e x dx Z ∞ =E R e -e -βu -1 e u+log Z∞+c⋆(β)+ 1 β [log θ+log F (e 1 )] du Z ∞ =e c⋆(β) Z ∞ E (θF (e 1 ))1 β R e -e -βu -1 e u du = -C β Z ∞ E (F (e 1 )θ) 1 β , since c ⋆ (β) = log C β-R (e -e -βu -1)e u du . We thus end up withE exp (-θ µ ∞,β (F )) 1 {S} = E exp -C β Z ∞ E (F (e 1 )θ) 1 {Z∞>0} .Consequently, by Proposition 4.1, for any θ > 0 we havelim n→+∞ {Z∞>0} e -θ µ n,β (F ) = E 1 {Z∞>0} e -θ µ ∞,β (F ) ,which concludes (4.11) by Lévy's theorem. Furthermore, for any F ∈ C u b (D) and θ 1 , θ 2 , θ 3 ∈ (0, +∞), we havelim n→+∞ {Z∞>0} e -θ µ n,β (θ 1 F + +θ 2 F -+θ 3 ) = E 1 {Z∞>0} e -θ µ ∞,β (θ 1 F + +θ 2 F -+θ 3 ) , yielding ( µ n,β (F + ), µ n,β (F -), µ n,β (1)) =⇒ n→+∞ ( µ ∞,β (F + ), µ ∞,β (F -), µ ∞,β(1)) .Using the fact that µ ∞,β (1) > 0 a.s. on S, we haveµ n,β (F ) = µ n,β (F + )µ n,β (F -) µ n,β(1)=⇒ n→+∞ k≥0 e -β∆ k +∞ j=0 e -β∆ j F (e k ) on S. We obtain in a similar way the joint convergence of (µ n,β (F 1 ), • • • µ n,β (F k )), for any (F 1 , . . . , F k ) ∈ C u b (D) k . Using[24, Proposition 10], for a Poisson point process (∆ k , k ≥ 0) of intensity e x , we have e -β∆ k +∞ j=0 e -β∆ j , k ≥ 0 (d) =(p k , k ≥ 0), where (p k ) is a process of Poisson-Dirichlet distribution with parameters ( 1 β , 0), ending the proof.

Corollary 4 . 6 .

 46 Let k ≥ 1 and n ∈ N ∪ {+∞}, we set M k n,β = 1 P(S) E 1 {S} µ ⊗k n,β .We have

  . . f k (t h ) is uniformly continuous. By Theorem 1.1, we have lim n→+∞ M k n,β F • (Π t 1 ,...,t h ) ⊗k = M k ∞,β F • (Π t 1 ,...,t h ) ⊗k ,proving the convergence in finite-dimensional distributions convergence. Let δ > 0 and f 1 , . . . f k be continuous functions on [0, 1], we setω δ (f 1 , . . . , f k ) = max j≤k sup |t-s|<δ |f j (t)f j (s)| ∧ 1.

  δ→0 lim sup n→+∞ M k n,β (ω δ ) = 0. As M k n,β f 1 0 = 0, . . . , f k 0 = 0 = 1, we conclude that (M k n,β , n ∈ N) is tensed, ending the proof.

  to conclude Lemma 2.4. By Theorem 15.3 of[START_REF] Billingsley | Convergence of probability measures[END_REF], for any η > 0, it suffices to say that

	(2.34)	lim δ→0	lim n→∞	sup x∈[0,K]

  which leads to (2.37), hence(2.35). Finally, we can express any uniformly continuous functional F as a mixture of G 1 ⋆ G 2 , which concludes the proof. This lemma can be extended, using standard computations, to the following estimate, which enables to choose the starting point uniformly in [0, r n ].

	Lemma 2.6. Under the hypotheses of Lemma 2.5, we have
	(2.40)	lim

n→+∞ sup a,y∈

[0,rn] 

  Note that a direct application of Corollary 4.4 proves Corollary 1.3.

•• ,t k : C(D) -→ R d f -→ (f (t 1 ), . . . , f (t k )). Corollary 4.4. Let 0 < t 1 < • • • < t k < 1 and n ∈ N ∪ {+∞}, we define on S the random measure µ F D n,β as the image measure of µ n,β by Π t 1 ,...t k . We have µ F D n,β =⇒ n→+∞ µ F D ∞,β . Remark 4.5.