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Abstract

In this article, we study the maximal displacement in a branching random walk. We
prove that its asymptotic behaviour consists in a first almost sure ballistic term, a negative
logarithmic correction in probability and stochastically bounded fluctuations. This result,
proved in [14] and [2] is given here under close-to-optimal integrability conditions. Borrowing
ideas from [5] and [23], we provide simple proofs for this result, also deducing the genealogical
structure of the individuals that are close to the maximal displacement.

1 Introduction

A branching random walk on R is a particle process that evolves as follows. It starts with a unique
individual located at the origin at time 0. At each time k, each individual alive in the process
dies, while giving birth to a random number of children, that are positioned around their parent
according to i.i.d. version of a point process. We denote by T the genealogical tree of the process.
For any u ∈ T, we write V (u) for the position of u and |u| for the generation to which u belongs.
The quantity of interest is the maximal displacement Mn = max|u|=n V (u) at time n in the process.

Under sufficient integrability conditions, the asymptotic behaviour of Mn is fully known. Ham-
mersley [13], Kingman [16] and Biggins [9] proved it grows almost surely at linear speed. In 2009,
Hu and Shi [14] exhibited a logarithmic correction in probability, with almost sure fluctuations;
and Addario-Berry and Reed [2] showed the tightness of the maximal displacement, shifted around
its median. More recently, Aı̈dékon [4] proved the fluctuations converge in law to some random
shift of a Gumbel variable, under integrability conditions that Chen [12] proved to be optimal.

Aı̈dékon and Shi gave in [5] a simple method to obtain the asymptotic behaviour of the maximal
displacement. They bounded the maximal displacement by computing the number of individuals
that cross a linear boundary. However, the integrability conditions they provided were not optimal,
and the fluctuations they obtained were up to o(log n) order. With a slight refinement of their
method, we compute the asymptotic behaviour up to terms of order 1.

We were able to obtain the asymptotic of the maximal displacement up to a term of order 1 by
choosing a bended boundary for the study of the branching random walk, a method already used
by Roberts [23] for the related model of the branching Brownian motion. This idea follows from a
bootstrap heuristic argument, which is explained in Section 4. The close-to-optimal integrability
conditions arise naturally using the well-known spinal decomposition, introduced by Lyons in [18],
and recalled in Section 2.

We introduce some notation. In the rest of the article, c, C are two positive constants, respec-
tively small enough and large enough, which may change from line to line, and depend only on the
law of the random variables we consider. For a given sequence of random variables (Xn, n ≥ 1)
we write Xn = OP(1) if the sequence is tensed, i.e. limK→+∞ supn≥1 P (|Xn| ≥ K) = 0. More-
over, we always assume the convention max ∅ = −∞ and min ∅ = +∞. For any u ∈ R, we write
u+ = max(u, 0) and log+ u = (log u)+.

The main assumptions on the branching random walk (T, V ) that we consider are the following.
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The Galton-Watson tree T of the branching random walk is supercritical:

E



∑

|u|=1

1


 > 1 and we write S = {#T = +∞} for the survival event. (1.1)

The relative displacements V (u) of the children u are in the so-called (see [10]) boundary case

E



∑

|u|=1

eV (u)


 = 1, E



∑

|u|=1

V (u)eV (u)


 = 0 and σ2 := E



∑

|u|=1

V (u)2eV (u)


 < +∞. (1.2)

For any branching random walk satisfying (1.2), we have limn→+∞ Mn/n = 0 a.s. on S. Any
branching random walk with mild integrability assumption can be normalized to satisfy these
inequalities, see e.g. Bérard and Gouéré [8]. We also assume that

E



∑

|u|=1

eV (u) log+



∑

|v|=1

(1 + V (v)+)eV (v)




2

 < +∞, (1.3)

which is a standard assumption to the study of the maximal displacement.

generation

position

(a) A branching random walk

generationposition

(b) Reduced to the boundary case

Figure 1: A branching random walk on R

The main result of the article is the following.

Theorem 1.1. Under the assumptions (1.1), (1.2) and (1.3), we have

Mn = −
3

2
log n + OP(1) on S.

As a side result (see Theorem 4.5), we prove the following well-known fact: the individuals with
the largest displacements at time n are either close relatives, or their most recent common ancestor
is a close relative of the root (see [3, 6] for similar results for the branching Brownian motion).

The rest of the article is organised as follows. In Section 2, we introduce the so-called spinal
decomposition of the branching random walk, which links additive moments of the branching
random walk with random walk estimates. In Section 3, we give a list of well-known random walk
estimates, and extend them to random walks enriched with additional random variables. Section 4
is devoted to the study of the left tail of Mn. This result is used in Section 5 to prove Theorem 1.1,
using a coupling between the branching random walk and a Galton-Watson process.

2 Spinal decomposition of the branching random walk

We introduce in this section the spinal decomposition of the branching random walk. This result
consists in an alternative description of a size-biased version of the law of the branching random
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walk. Spinal decomposition of a branching process has been introduced for the first time to study
Galton-Watson processes in [19]. In [18], this technique is adapted to the study of branching
random walks.

We precise in a first time the branching random walk notation we use. In particular, we
introduce the Ulam-Harris notation for (plane) trees, and define the set of marked trees and marked
trees with spine. Using this notation, we then state the spinal decomposition in Section 2.2, and
use it in Section 2.3 to compute the number of individuals satisfying given properties.

2.1 Branching random walk notation

We denote by U =
⋃

n≥0 N
n, with the convention N

0 = {∅} the set of finite sequences of positive
integers. We write U∗ = U\{∅}. For any u ∈ U , we denote by |u| the length of u. For k ≤ |u|, we
write u(k) for the value of the kth element in u and uk = (u(1), u(2), . . . , u(k)) for the restriction
of u to its k first elements. We introduce π : u ∈ U∗ 7→ u|u|−1 ∈ U , and we call πu the parent of
u. Given u, v ∈ U , we write u.v = (u(1), . . . u(|u|), v(1), . . . , v(|v|)) for the concatenation of u and
v. We define a partial order on U by

u < v ⇐⇒ |u| < |v| and v|u| = u.

We write u ∧ v = umin(|u|,|v|) = vmin(|u|,|v|) the most recent common ancestor of u and v.
The set U is used to encode any individual in a genealogical tree. We understand u ∈ U as the

u(|u|)th child of the u(|u| − 1)th child of the ... of the u(1)th child of the initial ancestor ∅. A tree
T is a subset of U satisfying the three following assumptions:

∅ ∈ T, if u ∈ T, then πu ∈ T, and if u ∈ T, then for any j ≤ u(|u|), (πu).j ∈ T.

Given a tree T, the set {u ∈ T : |u| = n} is called the nth generation of the tree, that we
abbreviate into {|u| = n} if the tree we consider is clear in the context. For any u ∈ T, we write
Ω(u) = {v ∈ T : πv = u} for the set of children of u. We say that T has infinite height if for any
n ∈ N, {|u| = n} is non-empty.

∅

3

3332

322321

31

21

12

122121

11

111

π(31)

Ω(21)

(a) Ulam-Harris notation

•

•• •

• •

• • •

•••

• •

Ω(21)

u v

u2

u1 = u ∧ v

u0 •

•

• •

• •

(b) Notation for the genealogy

Figure 2: A plane tree

Example 2.1. Given a set {ξ(u), u ∈ U} of i.i.d. non-negative integer-valued random variables, we
write T = {u ∈ T : ∀k < |u|, u(k + 1) ≤ ξ(uk)}, which is a Galton-Watson tree. It is well-known
(see e.g. [7]) that T has infinite height with positive probability if and only if E(ξ(∅)) > 1.

A marked tree is a couple (T, V ) such that T is a tree and V : T 7→ R. We refer to V (u) as
the position of u. The set of all marked trees is written T . We introduce the filtration

∀n ≥ 0, Fn = σ ((u, V (u)), |u| ≤ n) .

Given a marked tree (T, V ) and u ∈ T, we set Tu = {v ∈ U : u.v ∈ T}. Observe that Tu is a tree.
Moreover, writing V u : v ∈ Tu 7→ V (v.u) − V (u), we note that (Tu, V u) is a marked tree called
the subtree rooted at u of T.
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Figure 3: A plane marked tree

A branching random walk is a random marked tree (T, V ) such that the family of point processes
{(V (v) − V (u), v ∈ Ω(u)), u ∈ T} is independent and identically distributed. Observe that in a
branching random walk, for any u ∈ T, (Tu, V u) is a branching random walk independent of F|u|.

Given a tree T of infinite height, we say that w ∈ N
N is a spine of T if for any n ∈ N, wn ∈ T

(where wn is the finite sequence of the n first elements in w). A triplet (T, V, w), where T is tree,
V : T → R and w is a spine of T is called a marked tree with spine, and the set of such objects
is written T̂ . For any k ≥ 0, we write Ωk = Ω(wk)\{wk+1}, the set of children of the ancestor at
generation k of the spine, except its spine child. We define three filtrations on this set

Fn = σ ((u, V (u)), |u| ≤ n) and Gn = σ (wk, V (wk) : k ≤ n) ∨ σ (u, V (u), u ∈ Ωk, k < n) . (2.1)

The filtration F is obtained by “forgetting” about the spine of the process, while The filtration G
correspond to the knowledge of the position of the spine and its direct children.

|u|V (u)

•

•
•

•
•

•

•• •

•

•

•
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•

•

•

•
•

•
• • •
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•
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(a) Red spine of the process
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(b) Information in F
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(c) Information in G

2.2 The spinal decomposition

Let (T, V ) be a branching random walk satisfying (1.1) and (1.2). For any x ∈ R, we write
Px for the law of (T, V + x) and Ex for the corresponding expectation. For any n ≥ 0, we set
Wn =

∑
|u|=n eV (u). We observe that (Wn) is a non-negative (Fn)-martingale. We define the law

Px

∣∣
Fn

= e−xWn · Px|Fn
. (2.2)

The spinal decomposition consists in an alternative construction of the law Px, as the projection
of a law on T̂ , which we now define.

We write L (respectively L̂) for the law of the point process (V (u), |u| = 1) under the law P

(resp. P). We observe that L̂ =
∑

|u|=1 eV (u) · L. Let (L̂n, n ∈ N) be i.i.d. point processes with law

L̂. Conditionally on this sequence, we choose independently at random, for every n ∈ N, w(n) ∈ N

such that writing L̂n = (ℓn(1), . . . ℓn(Nn)) we have

∀h ∈ N, P

(
w(n) = h

∣∣∣(L̂n, n ∈ N)
)

= 1{h≤Nn}
eℓn(h)

∑
j≤Nn

eℓn(j)
.
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We write w for the sequence (w(n), n ∈ N).

We introduce a family of independent point processes {Lu, u ∈ U} such that Lwk = L̂k+1, and
if u 6= w|u|, then Lu has law L. For any u ∈ U such that |u| ≤ n, we write Lu = (ℓu

1 , . . . ℓu
N(u)).

We construct the random tree T = {u ∈ U : |u| ≤ n, ∀1 ≤ k ≤ |u|, u(k) ≤ N(uk−1)}, and the the

function V : u ∈ T 7→
∑|u|

k=1 ℓ
uk−1

u(k) . For all x ∈ R, the law of (T, x + V, w) ∈ T̂n is written P̂x, and

the corresponding expectation is Êx. This law is called the law of the branching random walk with
spine.

We can describe the branching random walk with spine as a process in the following manner.
It starts with a unique individual positioned at x ∈ R at time 0, which is the ancestral spine w0.
Then, at each time n ∈ N, every individual alive at generation n dies. Each of these individuals
gives birth to children, which are positioned around their parent according to an independent point
process. If the parent is wn, the law of this point process is L̂, otherwise the law is L. The individual
wn+1 is then chosen at random among the children u of wn, with probability proportional to eV (u).

Observe that under the law P̂,

(
V (wn+1) − V (wn), n ≥ 0

)
,
(
(V (u) − V (wn), u ∈ Ωn), n ≥ 0

)
, and

{
(Tu, V u), u ∈ ∪n∈NΩn

}
,

are respectively i.i.d. random variables, i.i.d. point processes and i.i.d. branching random walks.
Note that while the branching random walks are independent of G, V (wn+1) − V (wn) and (V (u) −
V (wn), u ∈ Ωn) might be correlated.

•
w0

•

P·

•

P·

•

P·

•

P·

•

P·

•
w1

•

P·

•

P·

•
w2

w3
•

Figure 4: The tree of the branching random walk with spine

The following result links the laws P̂x and Px. The spinal decomposition is proved in [18].

Proposition 2.2 (Spinal decomposition). Assuming (1.1) and (1.2), for any n ∈ N, x ∈ R and
|u| = n, we have

Px

∣∣
Fn

= P̂x

∣∣
Fn

and P̂x(wn = u|Fn) =
eV (u)

Wn
.

The spinal decomposition enables to compute moments of any additive functional of the branch-
ing random walk, and links it to random walk estimates, as we observe in the next section.

2.3 Application of the spinal decomposition

Let (T, V ) be a branching random walk. For any n ∈ N, we denote by An a subset of {|u| = n},
such that {u ∈ An} ∈ Fn. We write An for the number of elements in An. We compute in this
section the first and second moments of this random variable.

Lemma 2.3. For any n ≥ 0 and x ∈ R, we have

Ex(An) = ex
Êx

(
e−V (wn)1{wn∈An}

)
.
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Proof. Applying the spinal decomposition, we observe that

Ex(An) = ex
Ex


 1

Wn

∑

|u|=n

1{u∈An}


 = ex

Êx



∑

|u|=n

eV (u)

Wn
e−V (u)1{u∈An}




= ex
Êx



∑

|u|=n

P̂(u = wn|Fn)e−V (u)1{u∈An}


 = ex

Êx

(
e−V (wn)1{wn∈An}

)
.

An immediate consequence of this result is the celebrated many-to-one lemma. This equation,
known at least from the early works of Kahane and Peyrière [22, 15], enables to compute the mean
of any additive functional of the branching random walk.

Lemma 2.4 (Many-to-one lemma). There exists a random walk S verifying Px(S0 = x) = 1 such
that for any measurable positive function f , we have

Ex



∑

|u|=n

f(V (uj), j ≤ n)


 = Ex

(
ex−Snf(Sj , j ≤ n)

)
.

Proof. Let B be a measurable subset of Rn, we set An = {|u| = n : (V (uj), j ≤ n) ∈ B}. Applying
Lemma 2.3 yields

Ex


∑

|u|=n

1{(V (uj),j≤n)∈B}


 = Êx

(
ex−V (wn)1{(V (wj),j≤n)∈B}

)
= Ex

(
ex−Sn1{(Sj ,j≤n)∈B}

)
,

where S is a random walk under law Px with the same law as (V (wj), j ≥ 0) under law P̂x. This
equality being true for any measurable set B, it is true for any measurable positive functions,
taking increasing limits.

Similarly, we can compute the second moment of An.

Lemma 2.5. For any 0 ≤ k < n, we write A
(2)
n,k =

∑
|u|=n,|v|=n 1{|u∧v|=k}1{u∈An}1{v∈An}. We

have A2
n = An +

∑n−1
k=0 A

(2)
n,k. Moreover, for any 0 ≤ k < n,

E(A
(2)
n,k) = Ê

(
e−V (wn)1{wn∈An}Bk,n

)
,

where Bk,n =
∑

u∈Ωk
Ê

(∑
|v|=n,v≥u 1{v∈An}

∣∣∣Gn

)
.

Proof. The first equality is immediate: A2
n is the number of couples of individuals in An, and we

may partition this set according to the generation at which the most recent common ancestor was
alive. We now use the spinal decomposition in the same way as in Lemma 2.3, we have

E(A
(2)
n,k) = Ê


∑

|u|=n

eV (u)

Wn
e−V (u)1{u∈An}

∑

|v|=n

1{|u∧v|=k,v∈An}




= Ê

(
e−V (wn)1{wn∈An}Hk,n

)
,

where Hk,n =
∑

|v|=n 1{|v∧wn|=k}1{v∈An} =
∑

u∈Ωk

∑
|v|=n,v≥u 1{v∈An}. Thus, conditioning on

Gn, we have

E(A
(2)
n,k) = Ê

(
e−V (wn)1{wn∈An}Bk,n

)
.
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3 Some random walk estimates

We collect in this section a series of random walk estimates, and extend these results to random
walk enriched with additional random variables, correlated to the last step of the walk. More
precisely, let (Xj , ξj) be i.i.d. random variables on R

2 such that

E(X1) = 0, σ2 := E(X2
1 ) ∈ (0, +∞) and E((ξ1)2

+) < +∞. (3.1)

We denote by Tn = T0 +
∑n

j=1 Xj , where for any x ∈ R, Px(T0 = x) = 1. We write P = P0 for
short. The process of interest (Tn−1, ξn), n ≥ 1) is an useful toy-model to study the spine of the

branching random walk. It has similar structure as
((

V (wn), (V (u) − V (wn), u ∈ Ωn)
)
, n ≥ 0

)
.

We first recall bounds on the value taken by Tn at time n. Stone’s local limit theorem [24]
bounds the probability for a random walk to end up in an interval of finite size. For any a, h > 0,

lim sup
n→+∞

n1/2 sup
|y|≥an1/2

P(Tn ∈ [y, y + h]) ≤ C(1 + h)e− a2

2σ2 . (3.2)

Caravenna and Chaumont obtained in [11] a similar result for a random walk conditioned to stay
non-negative. Given (rn) = O(n1/2), there exists H > 0 such that for any 0 < a < b,

lim inf
n→+∞

n1/2 inf
y∈[0,rn]

inf
x∈[an1/2,bn1/2]

P(Tn ∈ [x, x + H ]|Tj ≥ −y, j ≤ n) > 0. (3.3)

In the rest of the paper, H is a fixed constant, large enough such that (3.3) holds for the random
walk followed by the spine of the branching random walk.

We now study the probability for a random walk to stay above a given boundary (fn), that is
O(n1/2−ε). This result is often called in the literature the ballot theorem (see e.g. [1] for a review
on this type of results). The upper bound we use here can be found in [21, Lemma 3.6],

sup
n∈N,y≥0

n1/2

1 + y
P (Tj ≥ fj − y, j ≤ n) < +∞. (3.4)

The lower bound is a result of Kozlov [17],

inf
n∈N,y∈[0,n1/2]

n1/2

1 + y
P (Tj ≥ −y, j ≤ n) < +∞. (3.5)

Using these results, we are able to compute the probability for a random walk to make an
excursion above a given curve. The proofs of the following results are very similar to the proofs of
[5, Lemmas 4.1 and 4.3], and are postponed to the Appendix A.1.

Lemma 3.1. Let A > 0 and α < 1/2, for any n ≥ 1 we consider a function k 7→ fn(k) such that

fn(0) = 0 and sup
j≤n

max

(
|fn(j)|

jα
,

|fn(n) − fn(j)|

(n − j)α

)
≤ A.

There exists C > 0 such that for all y, z, h > 0,

P (Tn − fn(n) + y ∈ [z − h, z], Tj ≥ fn(j) − y, j ≤ n)

≤ C
(1 + y ∧ n1/2)(1 + h ∧ n1/2)(1 + z ∧ n1/2)

n3/2
.

Similarly, we obtain a lower bound for this quantity.

Lemma 3.2. Let λ > 0, for any 0 ≤ k ≤ n we write fn(k) = λ log n−k+1
n+1 . There exists c > 0 such

that for any y ∈ [0, n1/2],

P (Tn ≤ fn(n) − y + H, Tj ≤ fn(j) − y, j ≤ n) ≥ c
1 + y

n3/2
.
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Finally, we are able to bound the probability for the random walk to make an excursion, while
the additional random variables remain small. This proof, very similar to [4, Lemma B.2] is also
postponed to Appendix A.2.

Lemma 3.3. With the same notation as in the previous lemma, we set

τ = inf{k ≤ n : Tk ≤ fn(k) − y + ξk+1}.

There exists C > 0 such that for all y ≥ 0,

P (Tn ≤ fn(n) − y + H, τ < n, Tj ≥ fn(j) − y, j ≤ n)

≤ C
1 + y

n3/2

(
P(ξ1 ≥ 0) + E

(
(ξ1)2

+

))

4 Bounding the tail of the maximal displacement

Let (T, V ) be a branching random walk satisfying (1.1), (1.2) and (1.3), and Mn its maximal
displacement at time n. We write mn = − 3

2 log n. The main result of the section is the following
estimate on the left tail of Mn.

Theorem 4.1. Assuming (1.1), (1.2) and (1.3), there exist c, C > 0 such that for any n ≥ 1 and
y ∈ [0, n1/2], c(1 + y)e−y ≤ P (Mn ≥ mn + y) ≤ C(1 + y)e−y.

A natural way to compute an upper bound for P(Mn ≥ mn + y) would be a direct application
of the Markov inequality. We have

P(Mn ≥ mn + y) ≤ E


∑

|u|=n

1{V (u)≥mn+y}


 ≤ E

(
eSn1{Sn≥mn+y}

)
,

by Lemma 2.4. Therefore, as Sn is a centrer random walk, we have

P(Mn ≥ mn + y) ≤ e−mn−y
+∞∑

h=0

e−h
P(Sn − mn − y ∈ [h, h + 1]) ≤ C

n3/2e−y

n1/2
,

by (3.2). But this computation is not precise enough to yield Theorem 4.1.
To obtain a more precise upper bound, instead of computing the number of individuals that are

at time n greater than mn, we compute for any generation k ≤ n the number of individuals alive at
generation k such that the probability that one of their children is greater than mn is larger than
a given threshold. If we assume Theorem 4.1 to be true, for an individual u alive at generation
k, the median of the position of its largest descendant is close to V (u) + mn−k. Therefore, we
compute (see Figure 6) the number of individuals that cross for the first time at time k ≤ n the
boundary k 7→ fn(k) := 3

2 log n−k+1
n+1 ≈ mn − mn−k.

Lemma 4.2. Assuming (1.1) and (1.2), there exists C > 0 such that for any y ≥ 0,

P (∃|u| ≤ n : V (u) ≥ fn(|u|) + y) ≤ C(1 + y)e−y.

Proof. For all k ≤ n, we write Z
(n)
k (y) =

∑
|u|=k 1{V (u)≥fn(k)+y}1{V (uj )<fn(j)+y,j<k} the number

of individuals crossing for the first time the curve j 7→ f
(n)
j at time k. By Lemma 2.4, we have

E

(
Z

(n)
k (y)

)
= E

[
e−Sk1{Sk≥fn(k)+y}1{Sj≤fn(j)+y,j<k}

]

≤ e−fn(k)−y
P (Sk ≥ fn(k) + y, Sj ≤ fn(j) + y, j < k) .

We condition this probability with respect to the last step Sk − Sk−1 to obtain

P (Sk ≥ fn(k) + y, Sj ≤ fn(j) + y, j < k) = E(φk−1(Sk − Sk−1)).

8
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Figure 5: The boundary of the branching random walk

where φk(x) = P (Sk ≥ fn(k) + y − x, Sj ≤ fn(j) + y, j ≤ k). Applying Lemma 3.1, there exists
C > 0 such that for all k ≤ n and x ∈ R, φk(x) ≤ C1{x≥0}(1 + y)(1 + x)2(k + 1)−3/2. Thus,

P (∃|u| ≤ n : V (u) ≥ fn(|u|) + y) ≤
n∑

k=0

P(Z
(n)
k (y) ≥ 1) ≤

n∑

k=0

E(Z
(n)
k (y))

≤ C(1 + y)e−y
n∑

k=0

(n+1)3/2

(k+1)3/2(n−k+1)3/2 E
(
(Sk − Sk−1)2

+ + 1
)

.

As a consequence, we obtain

P(∃|u| ≤ n : V (u) ≥ fn(|u|) + y) ≤ C(1 + y)e−y




n/2∑

k=0

23/2k−3/2 +

n∑

k=n/2

23/2(n − k + 1)−3/2




≤ C(1 + y)e−y.

This lemma directly implies the upper bound in Theorem 4.1.

Proof of the upper bound in Theorem 4.1. As fn(n) = − 3
2 log(n + 1) ≥ − 3

2 log n − 2, we observe
that

P (Mn ≥ mn + y) ≤ P (∃|u| ≤ n : V (u) ≥ fn(|u|) + y − 2) .

We apply Lemma 4.2 to conclude the proof.

To obtain a lower bound for P(Mn ≥ mn + y), we apply the Cauchy-Schwarz inequality: if X

is an integer-valued non-negative random variable, we have P(X ≥ 1) ≥ E(X)2

E(X2) .

A good control on the second moment of the number of individuals staying below fn until
time n is obtained by considering only the individuals that do not make “too many children too
high”. To quantify this property, we set ξ(u) = log

∑
v∈Ω(u) (1 + (V (u) − V (v))+) eV (u)−V (v) for

any u ∈ T. For n ∈ N and y, z ≥ 0, we define the sets

An(y) = {|u| ≤ n : V (uj) ≤ fn(j) + y, j ≤ |u|} ,

An(y) = {|u| = n : u ∈ An(y), V (u) ≥ fn(n) + y − H}

Bn(y, z) = {|u| ≤ n : ξ(uj) ≤ z + (fn(j) + y − V (uj))/2, j ≤ |u|} .

We write Yn(y, z) = An(y) ∩ Bn(y, z), and take interest in Yn(y, z) = #Yn(y, z), the number of
individuals that made an excursion below fn, while making not too many children. We also set

Y
(2)

n,k (y, z) =
∑

|u|=|v|=n

1{|u∧v|=k}1{u∈Yn(y,z)}1{v∈∈Yn(y,z)},

and we compute the mean of this quantity

9



Lemma 4.3. Assuming (1.1) and (1.2), there exists C > 0 such that for y, z ≥ 0 and 0 ≤ k ≤ n,

E(Yn(y, z)) ≤ C(1 + y)e−y and E

(
Y

(2)
n,k (y, z)

)
≤ C

(n + 1)3/2

(k + 1)3/2(n − k + 1)3/2
(1 + y)ez−y.

In particular, E
(
Yn(y, z)2

)
≤ C(1 + y)ez−y.

Proof. We first apply Lemma 2.3, we have

E (Yn(y, z)) = Ê

(
e−V (wn)1{wn∈Yn(y,z)}

)
≤ Ê

(
e−V (wn)1{wn∈An(y)}

)

≤ (n + 1)3/2eH−y
P̂ (V (wn) ≥ fn(n) + y − H, V (wj) ≤ fn(j) + y, j ≤ n)

≤ C(1 + y)e−y by Lemma 3.1.

To bound the mean of Y
(2)

n,k , applying Lemma 2.5 we can write

E

(
Y

(2)
n,k (y, z)

)
= Ê

(
e−V (wn)1{wn∈Yn(y,z)}Zk,n

)
, (4.1)

where Zk,n =
∑

u∈Ωk
Ê

(∑
|v|=n,v≥u 1{v∈Yn(y,z)}

∣∣∣Gn

)
. We observe that by definition of P̂, for any

k < n and u ∈ Ωk, the subtree (Tu, V u) is a branching random walk independent of Gn. Therefore,
applying Lemma 2.3, we have

Ê




∑

|v|=n,v≥u

1{v∈Yn(y,z)}

∣∣∣∣∣∣
Gn




≤EV (u)




∑

|v|=n−k−1

1{V (v)≥fn(n)+y−H,V (vj)≤fn(j+k+1)+y,j≤n−k−1}




≤eV (u)
ÊV (u)

(
e−V (wn−k−1)1{V (wn−k−1)≥fn(n)+y−H,V (wj)≤fn(j+k+1)+y,j≤n−k−1}

)

≤(n + 1)3/2eV (u)−y
P̂V (u)

(
V (wn−k−1) ≥ fn(n) + y − H,
V (wk) ≤ fn(j + k + 1) + y, j ≤ n − k − 1

)

≤C
(n + 1)3/2

(n − k + 1)3/2
(1 + (fn(k + 1) + y − V (u))+)eV (u)−y,

by Lemma 3.1 again. As x 7→ x+ is 1-Lipschitz, we obtain

Zk,n ≤ C
(n + 1)3/2

(n − k + 1)3/2
(1 + (fn(k) + y − V (wk))+)eV (wk)−yeξ(wk)

≤ Ceξ(wk)φ(fn(k) + y − V (wk)),

where φ : x 7→ (1 + x+)e−x. For k < n, (4.1) becomes

E

(
Y

(2)
n,k (y, z)

)
≤CÊ

(
eξ(wk)−V (wn)φ(fn(k) + y − V (wk))1{wn∈Yn(y,z)}

)

≤C(n + 1)3/2ez−y
Ê

(
φ((fn(k) + y − V (wk))/2)1{wn∈An(y)}

)
,

as wn ∈ Bn(y, z). Conditioning on the value taken at time j by V (wj) − fn(j) − y, we have

Ê

(
φ((fn(k) + y − V (wk))/2)1{wn∈An(y)}

)

≤C
+∞∑

h=0

φ((h + 1)/2)P̂
(
wn ∈ An(y), fn(k) + y − V (wk) ∈ [h, h + 1]

)

≤C

+∞∑

h=0

(h + 2)e−h/2C
(1 + y)(1 + h)

(k + 1)3/2

(1 + h)

(n − k + 1)3/2

≤C
1 + y

(k + 1)3/2(n − k + 1)3/2
,

10



applying Lemma 3.1 on the intervals [0, j] and [j, n]. We conclude that

E

(
Y

(2)
n,k (y, z)

)
≤ C

(n + 1)3/2

(k + 1)3/2(n − k + 1)3/2
(1 + y)ez−y.

Moreover, using again Lemma 2.5, we have

E
(
Yn(y, z)2

)
= E(Yn(y, z)) +

n−1∑

k=0

E

(
Y

(2)
n,k (y, z)

)
≤ C(1 + y)ez−y

We now bound from below the mean of Yn(y, z).

Lemma 4.4. Assuming (1.1), (1.2) and (1.3), there exist c > 0 and Z ≥ 1 such that for all
y ∈ [0, n1/2], z ≥ Z, and n ∈ N, E(Yn(y, z)) ≥ c(1 + y)e−y.

Proof. Let n ∈ N, y ∈ [0, n1/2] and z ≥ 1. By Lemma 2.3, we have

E(Yn(y, z)) ≥ Ê

[
e−V (wn)1{wn∈Yn(y,z)}

]
≥ n3/2e−y

P̂(wn ∈ Yn(y, z)).

To bound this probability, we observe first that

P̂(wn ∈ An(y) ∩ Bn(y, z)) = P̂(wn ∈ An(y)) − P̂(wn ∈ An(y) ∩ Bn(y, z)c),

and P̂(wn ∈ An(y)) ≥ c(1 + y)n−3/2 by Lemma 3.2. Moreover, by Lemma 3.3, there exists C > 0
such that

P̂(wn ∈ An(y) ∩ Bn(y, z)c) ≤ C
1 + y

n3/2

(
P(ξ(w0) ≥ z) + Ê((ξ(w0) − z)+)2

)
.

By (1.3), we have Ê((ξ(w0))2
+) < +∞, therefore by dominated convergence, we have

lim
z→+∞

sup
n∈N,y≥0

n3/2

1 + y
P̂(wn ∈ An(y) ∩ Bn(z)c) = 0,

thus for all z ≥ 1 large enough we have P̂(wn ∈ An(y) ∩ Bn(z)) ≥ c(1 + y)n−3/2, which ends the
proof.

These two lemmas are used to complete the proof of Theorem 4.1.

Lower bound in Theorem 4.1. By the Cauchy-Schwarz inequality, we have

P(Yn(y, z) ≥ 1) ≥
E(Yn(y, z))2

E(Yn(y, z)2)
.

Using Lemmas 4.3 and 4.4, there exists z ≥ 1 such that

P(Yn(y, z) ≥ 1) ≥
(c(1 + y)e−y)

2

C(1 + y)ez−y
≥ c(1 + y)e−y.

As a consequence, we conclude P(Mn ≥ mn + y) ≥ P(Gn(y, z) 6= ∅) ≥ c(1 + y)e−y.

Lemma 4.3 can also be used to prove that with high probability, individuals in the branching
random walk above mn are either close relatives or their most recent common ancestor is not far
from the root of the process.

Theorem 4.5. Under the assumptions (1.1), (1.2) and (1.3), we have

lim
R→+∞

lim sup
n→+∞

P (∃|u|, |v| = n : V (u), V (v) ≥ mn, |u ∧ v| ∈ [R, n − R]) = 0.

11



Proof. Let n ≥ 1. We introduce for any y, z ≥ 0 the random variable

Xn(y, z) =
∑

|u|=n

1{V (u)≥mn}1{u∈An(y)∩Bn(y,z)c}.

By Lemma 2.3, we have

E(Xn(y, z)) = Ê

(
e−V (wn)1{V (wn)≥mn}1{wn∈An(y)∩Bn(y,z)c}

)

≤ (n + 1)3/2
P̂ (V (wn) ≥ mn, wn ∈ An(y) ∩ Bn(y, z)c)

≤ C(1 + y)3
(
P̂(ξ(w0) ≥ z) + Ê

(
(ξ(w0) − z)2

+

))

using Lemma 3.3. We observe that for any y, z, R ≥ 0:

P (∃|u|, |v| = n : V (u), V (v) ≥ mn, |u ∧ v| ∈ [R, n − R])

≤P(∃|u| < n : V (u) ≥ fn(|u|) + y) + P(Xn(y, z) 6= 0) + P

(
∃k ∈ [R, n − R] : Y

(2)
n,k (y, z) 6= 0

)

≤C(1 + y)e−y + E(Xn(y, z)) +

n−R∑

k=R

E

(
Y

(2)
n,k (y, z)

)
,

using Lemma 4.2. We apply Lemma 4.3, we obtain

lim sup
n→+∞

P (∃|u|, |v| = n : V (u), V (v) ≥ mn, |u ∧ v| ∈ [R, n − R])

≤ C

(
(1 + y)e−y + (1 + y)3χ(z) +

(1 + y)ez−y

R1/2

)

where χ(z) = P̂(ξ(w0) ≥ z) + Ê
(
(ξ(w0) − z)2

+

)
satisfies limz→+∞ χ(z) = 0 by (1.3). We set

z = log log R and y = − log χ(z), letting R → +∞ concludes the proof.

5 Concentration estimates for the maximal displacement

We prove in this section that Theorem 4.1 implies Theorem 1.1. To do so, we use the fact that
on the survival event S, the size of the population in the process grows at exponential rate, as in
a Galton-Watson process. More precisely, we use the following result, which is a straightforward
consequence of [20][Lemma 2.9].

Lemma 5.1. Let (T, V ) be a branching random walk satisfying (1.1) and (1.3). There exists a > 0
and ̺ > 1 such that a.s. on S, for all n ≥ 1 large enough, # {|u| = n : V (u) ≥ −na} ≥ ̺n.

Proof of Theorem 1.1. We recall that mn = 3
2 log n, we prove that

lim
y→+∞

lim sup
n→+∞

P(|Mn − mn| ≥ y, S) = 0.

Using the upper bound of Theorem 4.1, we have

lim sup
n→+∞

P(Mn ≥ mn + y) ≤ C(1 + y)e−y −→
y→+∞

0.

To complete the proof, we have to strengthen the lower bound of Theorem 4.1, which states

∃c > 0, ∀n ∈ N, ∀y ∈ [0, n1/2],P(Mn ≥ mn + y) ≥ c(1 + y)e−y.

To do so, we observe that by Lemma 5.1, there exists a > 0 and ̺ > 1 such that a.s. for any k
large enough, there are at least ̺k individuals above −ka. On this event, each individual starts an
independent branching random walk, and the largest of their maximal displacement at time n − k
is smaller than Mn. Therefore for any y ≥ 0 and k ≥ 1, we have

P(Mn ≤ mn − y) ≤ P
(
#{|u| = k : V (u) ≥ −ka} < ̺k

)
+ (1 − P(Mn−k ≥ mn − y + ka))

̺k

,

thus lim supn→+∞ P(Mn ≤ mn −y) ≤ P
(
#{|u| = k : V (u) ≥ −ka} < ̺k

)
+(1−c(ka−y)+e−ka)̺k

.
We conclude the proof choosing y = ka − 1 and letting k → +∞.
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A Proof of the random walk estimates

A.1 Proof of Lemmas 3.1 and 3.2

The proofs of these two lemmas are based on a simple observation: an excursion of a random walk
above a curve can be divided into three parts. The first third of the curve is a random walk staying
above the line. The last third is the same process, but reversed in time. Finally, the middle curve
has to connect the two extremities. Therefore, we expect

P(Tn ∈ [z−y, z+h−y], Tj ≥ −y, j ≤ n) ≈ P(Tj ≥ −y, j ≤ n/3)P(Tn/3 ∈ [0, h])P(Tj ≥ −z, j ≤ n/3)

time

space

Figure 6: A random walk excursion above k 7→ fn(k)

Proof of Lemma 3.1. We denote by p = ⌊n/3⌋. Applying the Markov property at time p, we have

Py (Tn − fn(n) ∈ [z − h, z], Tj ≥ fn(j), j ≤ n)

≤ Py (Tj ≥ −Ajα, j ≤ p) sup
x≥−fn(p)

Px (Tn − fn(n) ∈ [z − h, z], Tj ≥ fn(p + j), j ≤ n − p) .

We set T̂k = Tn−p − Tn−p−k, which is a random walk with the same law as T . Note that for any
x ∈ R;

Px (Tn−p − fn(n) ∈ [z − h, z], Tj ≤ fn(p + j), j ≤ n − p)

≤ P

(
T̂n−p − fn(n) ∈ [x + z − h, x + z], T̂j ≤ z + fn(n) − fn(n − j), j ≤ n − p

)

≤ P−z (Tn−p − fn(n) ∈ [x − h, x], Tj ≤ Ajα, j ≤ n − p) . (A.1)

We apply again the Markov property at time p, we have

P−z (Tn−p − fn(n) ∈ [x − h, x], Tj ≤ Ajα, j ≤ n − p)

≤ P−z (Tj ≤ Ajα, j ≤ p) sup
x∈R

P (Tn−2p ∈ [x, x + h]) .

Consequently, using (3.2) and (3.4), we obtain

Py (Tn − fn(n) ∈ [z, z + h], Tj ≥ fn(j), j ≤ n) ≤
(1 + y ∧ n1/2)(1 + h ∧ n1/2)(1 + z ∧ n1/2)

n3/2
.

13



Proof of Lemma 3.2. The proof is very similar to the previous one. Let p = ⌊n/3⌋, we apply the
Markov property at time p, to obtain, for any ε > 0 and n ≥ 1 large enough,

Py (Tn ≤ fn(n) + H, Tj ≥ fn(j), j ≤ n)

≥ Py

(
Tp ∈ [p1/2, 2p1/2], Tj ≥ ε, j ≤ p

)

× inf
x∈[p1/2,2p1/2]

Px (Tn ≤ fn(n) + H, Tj ≥ fn(p + j), j ≤ n − p) .

Setting again T̂k = Tn−p − Tn−p−k, for any x ∈ R we have

Px (Tn−p ≥ fn(n) + H, Tj ≤ fn(p + j), j ≤ n − p)

≥ P

(
T̂n−p − fn(n) ∈ [x, x + H ], T̂j ≤ fn(n) − fn(n − j), j ≤ n − p

)

≥ P (Tn−p − fn(n) ∈ [x − h, x], Tj ≤ fn(n) − fn(n − j), j ≤ n − p) .

We apply again the Markov property at time p, for x ∈ [p1/2, 2p1/2] we have

P (Tn−p − fn(n) ∈ [x − h, x], Tj ≤ Ajα, j ≤ n − p)

≥ P

(
Tp ∈ [p1/2, 2p1/2], Tj ≤ fn(n) − fn(n − j), j ≤ p

)

× inf
z∈[p1/2,2p1/2]

P (Tj ≥ 0, Tp − fn(n) ∈ [x − H, x]) .

Thus, we apply (3.3) and (3.5) to conclude the proof.

A.2 Proof of Lemma 3.3

We now extend Lemma 3.1 to random walks enriched by additional random variables. The idea be-
hind the proof is that a random walk excursion is typically at distance O(n1/2) from the boundary.
Therefore, as soon as E(ξ2

+) is finite, we expect similar upper bounds for the branching random
walk. To prove Lemma 3.3, we first prove the following result, that is a direct consequence of [4,
Lemma C.1]

Lemma A.1. With the notation of Lemma 3.1, there exists C > 0 such that for any y ≥ 0,

P (∃k ≤ n : Tk ≤ fn(k) − y + ξk, Tj ≥ fn(j) − y, j ≤ n) ≤ C
1 + y

n1/2

(
P(ξ1 ≥ 0) + E

(
(ξ1)2

+

))

Proof. Let n ∈ N and y ≥ 0. For k < n we denote by

πk = Py (Tk ≤ fn(k) + ξk, Tj ≥ fn(j), j ≤ n)

= Ey

(
1{Tk≤fn(k)+ξk,Tj≥fn(j),j≤k+1}PTk+1

(Tj ≥ fn(k + 1 + j), j ≤ n − k − 1)
)

≤ C Ey

(
1{Tk≤fn(k)+ξk,Tj≥fn(j),j≤k}

1 + (Tk − fn(k))

(n − k + 1)1/2

)
,

by Markov property and (3.4). Then, conditioning on (Xk, ξk) and applying Lemma 3.1, we have

πk ≤
C

(n − k + 1)1/2
E

(
1{ξk≥0}(1 + (ξk)+)

(
(1 + y)(1 + (ξk − Xk)2

+ ∧ k)

(k + 1)3/2

))
.

We denote by (X, ξ) a random vector with the same law as (Xk, ξk). We have

P (∃k ≤ n : Tk ≤ fn(k) − y + ξk, Tj ≥ fn(j) − y, j ≤ n) ≤
n−1∑

k=0

πk

≤ C(1 + y)E

(
1{ξ≥0}(1 + (ξ)+)

n−1∑

k=0

1 + (ξ − X)2
+ ∧ k

k3/2(n − k + 1)1/2

)
.
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Observing that
∑n/2

k=0

1+(ξ−X)2
+∧k

k3/2 ≤ C(1 + (ξ − X)+), we conclude that

P (∃k ≤ n : Tk ≤ fn(k) − y + ξk, Tj ≥ fn(j) − y, j ≤ n) ≤ C
1 + y

n1/2

(
P(ξ1 ≥ 0) + E

(
(ξ1)2

+

))
.

Proof of Lemma 3.3. We use Lemma A.1 to prove this result. Recalling that

τ = inf{k < n : Tk ≤ fn(k) + ξk+1} = inf{k < n : Tk+1 ≤ fn(k) + (ξk+1 + Xk+1)},

we have

Py (Tn ≤ fn(n) + H, τ < n, Tj ≥ fn(j), j ≤ n)

≤ Py (Tn ≤ fn(n) + H, τ ≤ n/2, Tj ≥ fn(j), j ≤ n)

+ Py (Tn ≤ fn(n) + H, τ ∈ (n/2, n], Tj ≥ fn(j), j ≤ n) .

To bound the first term, we apply the Markov property at time n/2, we have

Py (Tn ≤ fn(n) + H, τ ≤ n/2, Tj ≥ fn(j), j ≤ n)

≤Py (τ < n/2, Tj ≥ fn(j), j ≤ n/2) sup
z∈R

Pz (Tn ≤ fn(n) + H, Tj ≥ fn(n/2 + j), j ≤ n/2)

≤C
1 + y

n1/2

(
P(ξ1 + X1 − 1 ≥ 0) + E

(
(ξ1 + X − 1)2

+

))
×

1

n
,

by Lemma A.1 and (A.1).

We denote by T̂j = Tn − Tn−j and ξ̂j = ξn−j . To bound the second term, we observe that

Py (Tn ≤ fn(n) + H, τ ∈ (n/2, n], Tj ≥ fn(j), j ≤ n)

≤P

(
T̂n − fn(n) + y ∈ [0, H ], T̂j ≤ fn(n) − fn(n − j), j ≤ n,

∃k < n/2 : T̂k ≥ fn(n) − fn(n − k) − ξ̂k−1

)

≤P (Tn − fn(n) + y ∈ [0, H ], Tj ≤ fn(n) − fn(n − j), ∃k < n/2 : Tk ≥ fn(n) − fn(n − k) − ξk−1)

≤C
1 + y

n3/2

(
P(ξ1 + X1 − 1 ≥ 0) + E

(
(ξ1 + X1 − 1)2

+

))
,

using the previous inequalities, which concludes the proof.
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