
HAL Id: hal-01322467
https://hal.science/hal-01322467

Submitted on 27 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Necessary and sufficient conditions for the convergence
of the consistent maximal displacement of the branching

random walk
Bastien Mallein

To cite this version:
Bastien Mallein. Necessary and sufficient conditions for the convergence of the consistent maximal
displacement of the branching random walk. Brazilian Journal of Probability and Statistics, 2019, 33
(2). �hal-01322467�

https://hal.science/hal-01322467
https://hal.archives-ouvertes.fr


Convergence of the consistent maximal

displacement of the branching random walk

Bastien Mallein∗

May 27, 2016

Abstract

We consider a supercritical branching random walk on R. The con-
sistent maximal displacement is the smallest of the distances between the
trajectories of individuals at the nth generation and the boundary of the
process. It has been proved by Fang and Zeitouni [7] and by Faraud, Hu
and Shi [8] that the consistent maximal displacement grows almost surely
at rate λ

∗

n
1/3 for an explicit λ

∗. We obtain here a necessary and sufficient
condition for this asymptotic behaviour to hold.

1 Introduction

A branching random walk on R is a process defined as follows. It starts with one
individual located at 0 at time 0. Its children are positioned on R according to
the law L of a point process, and form the first generation of the process. Then
for any n ∈ N, each individual in the n-th generation makes children around
its current position according to an independent point process with law L. We
write T for the genealogical tree of the population. For any u ∈ T we denote
by V (u) the position of the individual u and by |u| the generation to which u
belongs. The random marked tree (T, V ) is the branching random walk with
reproduction law L. We assume the Galton-Watson tree T is supercritical:

E



∑

|u|=1

1


 > 1, (1.1)

and we write S = {#T = +∞} the survival event. We also assume the branch-
ing random walk (T, V ) is in the boundary case (in the sense of [5])

E


∑

|u|=1

e−V (u)


 = 1 and E


∑

|u|=1

V (u)e−V (u)


 = 0. (1.2)

Under these assumptions, Biggins [4] proved that 1
n max|u|=n V (u) converges

to 0 almost surely on S. Any branching random walk with mild integrability
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assumption can be normalized to be in the boundary case, see e.g. Bérard and
Gouéré [3]. We also assume that

σ2 := E


∑

|u|=1

V (u)2e−V (u)


 < +∞. (1.3)

Let n ≥ 0. For any u ∈ T such that |u| = n and k ≤ n we denote by uk

the ancestor of u alive at generation k. The consistent maximal displacement
of the branching random walk is the quantity defined as

Ln := min
|u|=n

max
k≤n

V (uk).

It correspond to the distance between the boundary of the branching random
walk and the individual that stayed as close as possible to it. The asymptotic
behaviour of Ln has been studied by Fang and Zeitouni [7] and by Fauraud,
Hu and Shi [8]. Under stronger integrability assumptions, they proved that Ln

behaves as λ∗n1/3 almost surely for some explicit λ∗. The main result of this
article is a necessary and sufficient condition for this asymptotic behaviour to
hold. Roberts [15] computed the second order of the asymptotic behaviour of
Ln for the branching Brownian motion.

We now introduce the integrability assumption

lim
x→+∞

x2
E


∑

|u|=1

e−V (u)1{
log

(∑
|v|=1

e−V (v)

)
≥x

}

 = 0. (1.4)

Observe that (1.4) is strictly weaker than the classical integrability assumption
that is [1, Assumption (1.4)]. This stronger assumption is necessary and suffi-
cient to obtain the asymptotic behaviour of many quantities associated to the
branching random walk, such as the minimal displacement, or the derivative
martingale (see [1, 6]).

Theorem 1.1. We assume (1.1), (1.2) and (1.3) hold. Then (1.4) is a necessary
and sufficient condition for

lim
n→+∞

Ln

n1/3
=

(
3π2σ2

2

)1/3

a.s. on S.

If (1.4) is changed into

lim
x→+∞

x2
E


∑

|u|=1

e−V (u)1{
log

(∑
|v|=1

e−V (v)

)
≥x

}

 = ρ ∈ (0, +∞),

we were not able to compute the precise asymptotic behaviour of Ln

n1/3 . Using
the methods developed in this article, it can be proved that a.s. on S, for n
large enough we have

(
3

π2σ2

2
+ 3ρ

)1/3

≤
Ln

n1/3
≤

(
3

π2σ2

2

)1/3

+ (3ρ)1/3 .

The rest of the article is organised as follows. In Section 2 we introduce
the spinal decomposition of the branching random walk and the Mogul’skĭı’s
small deviations estimate. These results are used to bound the left tail of Ln in
Section 3, yielding to its a.s. asymptotic behaviour.
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2 Preliminary results

2.1 Spinal decomposition of the branching random walk

For n ∈ N, we write Wn =
∑

|u|=n e−V (u) and Fn = σ (u, V (u), |u| ≤ n). Under

assumption (1.2), (Wn) is a non-negative (Fn)-martingale. We introduce the
probability P such that for any n ∈ N, P|Fn

= Wn · P|Fn
.

The spinal decomposition consists in an alternative description of P as a
branching random walk with a distinguished individual with a different repro-
duction law. It generalizes a similar construction for Galton-Watson processes,
that can be found in [11]. This result has been proved by Lyons in [10]. Let
T be a tree, a spine of T is a sequence w = (wn) ∈ TN such that |wn| = n

and for any k ≤ n, (wn)k = wk. We write L̂ for the law of the point process
(V (u), |u| = 1) under the law P.

We now define the law P̂ of a branching random walk with spine (T, V, w).
It starts with a unique individual w0 located at 0 at time 0. Its children are
positioned according to a point process of law L̂. The individual w1 is then cho-
sen at random among these children u with probability proportional to e−V (u).
Similarly at each generation n, every individual u makes children independently,
according to law L if u 6= wn and L̂ otherwise; and wn+1 is chosen at random
among the children v of wn with probability proportional to e−V (v).

Proposition 2.1 (Spinal decomposition, Lyons [10]). Assuming (1.2) and (1.3),

for any n ∈ N, we have P̂|Fn
= P|Fn

, and for any |u| = n,

P̂ (wn = u |Fn ) = e−V (u)/Wn,

and (V (wn), n ≥ 0) is a centred random walk with variance σ2.

2.2 Small deviations estimate for enriched random walk

Let (Xn, ξn)n∈N be a sequence of i.i.d. vectors in R
2 such that

E(Xn) = 0 and E(X2
n) = σ2 ∈ (0, +∞). (2.1)

We set ρ+ = lim sup
x→+∞

x2
P(ξ1 ≥ x) and ρ− = lim inf

x→+∞
x2

P(ξ1 ≥ x).

We write Tn = T0 + X1 + · · · + Xn and we call ((Tn, ξn), n ≥ 0) an enriched
random walk. For any z ∈ R, Pz is the probability such that Pz(T0 = z) = 1.
We simply write P for P0. We study in this section the probability that an
enriched random walk stays during n unites of time in an interval of width
o(n1/2), generalizing the Mogul’skĭı small deviations estimate [14].

Theorem 2.2. Let (an) be a sequence of real non-negative numbers such that

limn→+∞ an = +∞ and limn→+∞
a2

n

n = 0. Assuming (2.1), for any continuous
functions f < g and h > 0, for any x, x′ such that f(0) < x ≤ 0 ≤ x′ < g(0),
we have

lim sup
n→+∞

a2
n

n
log sup

z∈[x,x′]

Pzan

(
Tj

an
∈ [f(j/n), g(j/n)],

ξj

an
≤ h(j/n), j ≤ n

)

= −

∫ 1

0

π2σ2

2(g(s) − f(s))2
+

ρ−

h(s)2
ds, (2.2)
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lim inf
n→+∞

a2
n

n
log inf

z∈[x,x′]
Pzan

(
Tj

an
∈ [f(j/n), g(j/n)],

ξj

an
≤ h(j/n), j ≤ n

)

= −

∫ 1

0

π2σ2

2(g(s) − f(s))2
+

ρ+

h(s)2
ds. (2.3)

We prove this result using the same techniques as in [13, Lemma 2.6]. We
prove in a first time the following result.

Lemma 2.3. Under the assumptions of Theorem 2.2, if ρ+ = ρ− =: ρ ∈ [0, +∞]
then for any a < 0 < b, λ > 0 and a ≤ c < d ≤ b, we have

lim
n→+∞

a2
n

n
logP

(
Tn

an
∈ [c, d],

Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)
= −

π2σ2

2(b − a)2
−

ρ

λ2
.

Proof. Note that

P (|Tj| < han, ξj ≤ λan, j ≤ n) ≤ P(ξ1 ≤ λan)n ≤ exp(−nP(ξ1 > λan)).

Consequently, if ρ = +∞, the proof is immediate. We assume in the rest of the
proof that ρ < +∞.

Let B be a Brownian motion and P an independent Poisson process with

intensity 1. For any n ∈ N and k ≤ n, we denote by P
(n)
k =

∑k
j=1 1{ξj≥λan}.

By [16, Theorem 5.1], for any T > 0 we have

lim
n→+∞

(
Tta2

n

an
, P

(n)
ta2

n
, t ≤ T

)
=
(
Bσ2t, Pρt/λ2 , t ≤ T

)
(2.4)

in the Skorohod sense.
Let a < 0 < b, a ≤ c < d ≤ b and T > 0. We set rn =

⌊
T a2

n

⌋
. Applying the

Markov property, for any ǫ > 0 small enough, we have


 inf

h≤b−a−4ǫ
|x|≤ǫ

Pxan

(
|

Trn

an
− h| ≤ ǫ,

Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ rn

)



⌈n/rn⌉

≤ P

(
Tn

an
∈ [c, d],

Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≤

(
sup

x∈[a,b]

Pxan

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ rn

))⌊n/rn⌋

.

Consequently, letting n → +∞ and using (2.4), we obtain:

lim inf
n→+∞

a2
n

n
logP

(
Tn

an
∈ [c, d],

Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≥
1

T
log inf

h≤b−a−4ǫ
|x|≤ǫ

Px

(
|Bσ2T − h| ≤ ǫ, PρT/λ2 = 0, Bσ2s ∈ [a, b], s ≤ T

)

≥ −
ρ

λ2
+

1

T
log inf

h≤b−a−4ǫ
|x|≤ǫ

Px (|Bσ2T − h| ≤ ǫ, Bσ2s ∈ [a, b], s ≤ T ) ,
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lim sup
n→+∞

a2
n

n
logP

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≤
1

T
log sup

x∈[a,b]

P
(
PρT/λ2 = 0, Bσ2s ∈ [a, b], s ≤ T

)

≤ −
ρ

λ2
+

1

T
log sup

x∈[a,b]

P (Bσ2s ∈ [a, b], s ≤ T ) .

Letting T → +∞, using e.g. [9, Chapter 1.7, Problem 8], we conclude that

lim
n→+∞

a2
n

n
logP

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)
= −

π2σ2

2(b − a)2
−

ρ

λ2
.

Corollary 2.4. Under the assumptions of Theorem 2.2, for any a < 0 < b,
λ > 0 and a ≤ c < d ≤ b, we have

lim sup
n→+∞

a2
n

n
logP

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)
= −

π2σ2

2(b − a)2
−

ρ−

λ2
,

lim inf
n→+∞

a2
n

n
logP

(
Tn

an
∈ [c, d],

Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)
= −

π2σ2

2(b − a)2
−

ρ+

λ2
.

Proof. The two equations being proved the same way, we only prove the first
one. As P (|Tj| < han, ξj ≤ n, j ≤ n) ≤ P(ξ1 ≤ n)n ≤ exp(−nP(ξ1 > n)), we
only consider the case ρ− < +∞.

There exists a subsequence (nk) such that a2
nk
P(ξ1 > λank

) converges to
ρ−/λ2, therefore by Lemma 2.3,

lim sup
n→+∞

a2
n

n
logP

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≥ lim
k→+∞

a2
nk

nk
logP

(
Tj

ank

∈ [a, b],
ξj

ank

≤ λ, j ≤ nk

)
= −

π2σ2

2(b − a)2
−

ρ−

λ2
.

Moreover, we may couple the random variable ξj with a random variable ξ̃j such

that ξ̃j ≤ ξj and limn→+∞ x2
P(ξ̃1 ≥ x) = ρ−. By Lemma 2.3 again,

lim sup
n→+∞

a2
n

n
logP

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≤ lim sup
n→+∞

a2
n

n
logP

(
Tj

an
∈ [a, b],

ξ̃j

an
≤ λ, j ≤ n

)
= −

π2σ2

2(b − a)2
−

ρ−

λ2
,

concluding the proof.

Proof of Theorem 2.2. We first prove that for any a < b and λ > 0,

lim sup
n→+∞

a2
n

n
log sup

x∈[a,b]

Pxan

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)
= −

π2σ2

2(b − a)2
−

ρ−

λ2
.

(2.5)
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Let δ > 0, we write M =
⌈

b−a
δ

⌉
. We observe that

sup
x∈[a,b]

Pxan

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≤ max
0≤m<M

sup
x∈[a+mδ,a+(m+1)δ]

Pxan

(
Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

≤ max
0≤m<M

P

(
Tj

an
∈ [−(m + 1)δ, b − a − mδ],

ξj

an
≤ λ, j ≤ n

)
.

We apply Corollary 2.4 and let δ → 0 to obtain (2.5). Then we approach
functions f , g and h by staircase functions, using (2.5) we obtain (2.2).

For any a < 0 < b, λ > 0, y ∈ [a, b] and ǫ > 0 small enough, we prove in a
second time that

lim inf
n→+∞

a2
n

n
log inf

|x|<ǫ
Pxan

(∣∣∣Tn

an
− y
∣∣∣ ≤ ǫ,

Tj

an
∈ [a, b],

ξj

an
≤ λ, j ≤ n

)

= −
π2σ2

2(b − a)2
−

ρ+

λ2
. (2.6)

Let ǫ > 0 small enough such that [−2ǫ, 2ǫ] ⊂ [a, b], let 0 < δ < ǫ, we set
M =

⌈
2δ
ǫ

⌉
. We have again

inf
|x|≤ǫ

Pxan

(∣∣∣Tn

an
− y
∣∣∣ ≤ ǫ,

Tj

an
∈ [a, b], ξj ≤ n, j ≤ n

)

≥ min
0≤m<M

inf
x∈[−ǫ+mδ,−ǫ+(m+1)δ]

Pxan

(∣∣∣Tn

an
− y
∣∣∣ ≤ ǫ,

Tj

an
∈ [a, b], ξj ≤ n, j ≤ n

)

≥ min
0≤m<M

P

(
Tj

an
∈ [a + ǫ − mδ, b + ǫ − (m + 1)δ], ξj ≤ n, j ≤ n

Tn

an
∈ [y − mδ, y + 2ǫ − (m + 1)δ]

)
.

Applying again Corollary 2.4, (2.6) holds. We finally approach functions f , g
and h by staircase functions and use the Markov property, to obtain the lower
bound (2.3).

3 Tail of the consistent maximal displacement

For any u ∈ T, we write πu for the parent of u, Ω(u) for the set of children of u,

ξ̃(u) = log
∑

v∈Ω(u)

eV (u)−V (v) and ξ(u) = ξ̃(πu).

Note that by (1.2), we have P(ξ̃(u) ≥ x) ≤ e−x for any x ≥ 0. We introduce

ρ+ = lim sup
x→+∞

x2
P̂

(
ξ̃(w0) ≥ x

)
and ρ− = lim inf

x→+∞
x2

P̂

(
ξ̃(w0) ≥ x

)
(3.1)

λ∗
+ =

(
3π2σ2

2 + 3ρ+

)1/3

, λ∗
− =

(
3π2σ2

2 + 3ρ−

)1/3

and λ∗ =
(

3π2σ2

2

)1/3

. (3.2)

We use here the results of the previous section to obtain upper and lower
bounds for the left tail of Ln. We first provide an upper bound.
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Lemma 3.1. We assume (1.1), (1.2) and (1.3). For any λ ∈ (0, λ∗
−), we have

lim sup
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≤ λ − λ∗

−, (3.3)

and for any λ ∈ (0, λ∗
+), we have

lim inf
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≤ λ − λ∗

+. (3.4)

Proof. Let λ > 0, f be a continuous increasing function such that f(0) < 0 and

f(1) = λ, and h = λ − f . We set I
(n)
k =

[
f(k/n)n1/3, λn1/3

]
for k ≤ n and we

denote by

Gn =
{

u ∈ T : |u| ≤ n, V (uj) ∈ I
(n)
j , ξ(uj) ≤ h(j/n)n1/3, j ≤ |u|

}
.

We introduce the quantities

X
(n)
k =

∑

|u|=k

1{V (u)<f(k/n)n1/3}1{πu∈Gn} and

Y
(n)

k =
∑

|u|=k−1

1{
ξ̃(u)>h(k/n)n1/3

}1{u∈Gn}.

We observe that

P

(
Ln ≤ λn1/3

)
=P

(
∃|u| = n : V (uj) ≤ λn1/3, j ≤ n

)

≤P

(
n∑

j=1

X
(n)
j + Y

(n)
j ≥ 1

)
≤

n∑

j=1

E

(
X

(n)
j + Y

(n)
j

)
. (3.5)

For any k ≤ n, using the spinal decomposition we have

E

(
X

(n)
k

)
=Ê

(
∑

|u|=k

e−V (u)

Wk
eV (u)1{V (u)<f(k/n)n1/3}1{πu∈Gn}

)

=Ê

(
eV (wk)1{V (wk)<f(k/n)n1/3}1{wk−1∈Gn}

)

≤ef(k/n)n1/3

P̂ (wk−1 ∈ Gn) .

Moreover, as ξ(u) is independent of F|u|, we also note that

E

(
Y

(n)
k

)
= E

(
∑

|u|=k−1

1{u∈Gn}

)
P

(
ξ̃(u) > h(k/n)n1/3

)

≤ e−h(k/n)n1/3

Ê

(
eV (wk−1)1{wk−1∈Gn}

)
≤ ef(k/n)n1/3

P̂ (wk−1 ∈ Gn) .

Consequently, (3.5) becomes

P

(
Ln ≤ λn1/3

)
≤ 2

n∑

k=1

ef(k/n)n1/3

P̂ (wk−1 ∈ Gn) .
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We set A > 0, for any a ≤ A, we write ma = ⌊na/A⌋. As f is increasing, for
any k ∈ (ma, ma+1], we have

ef(k/n)n1/3

P̂ (wk−1 ∈ Gn) ≤ ef((a+1)/A)n1/3

P̂ (wma ∈ Gn) .

Moreover, by the spinal decomposition, (V (wj), ξ(wj)) is an enriched random

walk under law P̂. We apply Theorem 2.2 to obtain for any a ≤ A,

lim sup
n→+∞

1

n1/3
log P̂ (wma ∈ Gn) = −

∫ a/A

0

3(λ∗
−)3

(λ − f(s))2
ds,

lim inf
n→+∞

1

n1/3
log P̂ (wma ∈ Gn) = −

∫ a/A

0

3(λ∗
+)3

(λ − f(s))2
ds.

We conclude that, letting n → +∞ then A → +∞ we have

lim sup
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≤ sup

t∈[0,1]

f(t) −

∫ t

0

3(λ∗
−)3

(λ − f(s))2
ds, (3.6)

lim inf
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≤ sup

t∈[0,1]

f(t) −

∫ t

0

3(λ∗
+)3

(λ − f(s))2
ds. (3.7)

Optimizing these equations in f concludes the proof.
Indeed, to prove (3.3), we consider the following two cases. If ρ− = +∞

then λ∗
− = +∞. Choosing a sequence of functions fM such that fM (0) < −M ,

and letting M → +∞, (3.6) yields

lim sup
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
= −∞.

If ρ− < +∞, then setting f(t) = λ − λ∗
−(1 − t)1/3 we have

lim sup
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≤ sup

t∈[0,1]

f(t) −

∫ t

0

3(λ∗
−)3

(λ − f(s))2
ds

≤ sup
t∈[0,1]

f(t) −

∫ t

0

3λ∗
−

(1 − s)2/3
ds = λ − λ∗

−.

A similar reasoning leads to (3.4).

Corollary 3.2. Under assumptions (1.1), (1.2) and (1.3), we have

lim inf
n→+∞

Ln

n1/3
≥ λ∗

− and lim sup
n→+∞

Ln

n1/3
≥ λ∗

+ a.s.

In particular, if ρ+ > 0 then lim sup
n→+∞

Ln

n1/3
> λ∗ a.s.

Proof. By Lemma 3.1, for any ǫ > 0,
∑+∞

n=1 P( Ln

n1/3 ≥ (λ∗
− +ǫ)) < +∞, and there

exists an increasing sequence (nk) such that
∑+∞

k=1 P(
Lnk

n
1/3

k

≥ (λ∗
+ + ǫ)) < +∞.

We conclude the proof by Borel-Cantelli lemma.
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In a second time, to bound from above the consistent maximal displacement,
we prove that with high probability there exists an individual staying below
λn1/3 for n units of time, as soon as λ is large enough. To do so, we compute
the first two moments of the number of individuals staying in two well-chosen
lines, while making “not too many children”.

Lemma 3.3. Assuming (1.1), (1.2), (1.3) and (1.4) (i.e. ρ+ = ρ− = 0), for

any 0 < λ < λ∗, we have lim inf
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≥ λ − λ∗.

Proof. Let λ ∈ (0, λ∗), δ > 0, and f : t ∈ [0, 1] 7→ λ − λ∗(1 + δ − t)1/3. We

denote by I
(n)
j =

[
f(j/n)n1/3, λn1/3

]
for j ≤ n. We set

Zn =
∑

|u|=n

1{
V (uj )∈I

(n)
j

,ξ(uj)≤δn1/3,j≤n
}.

We compute the first two moments of Zn to bound from below P(Zn > 0).
By spinal decomposition, we have

E(Zn) = Ê

(
eV (wn)1{

V (wj)∈I
(n)
j

,ξ(wj)≤δn1/3,j≤n
}
)

≥ ef(1)n1/3

P̂

(
V (wj) ∈ I

(n)
j , ξ(wj) ≤ δn1/3, j ≤ n

)
.

As lim
n→+∞

n2/3
P̂(ξ(w1) ≥ δn1/3) = 0 by (1.4), Theorem 2.2 yields

lim inf
n→+∞

1

n1/3
logE(Zn) ≥ f(1) −

π2σ2

2

∫ 1

0

ds

(λ − f(s))2
≥ λ − λ∗(1 + δ)1/3.

Similarly, to compute the second moment we observe that

E(Z2
n) = Ê

(
Zn

∑

|u|=n

e−V (u)

Wn
eV (u)1{

V (uj)∈I
(n)
j

,ξ(uj)≤δn1/3,j≤n
}
)

= Ê

(
ZneV (wn)1{

V (wj)∈I
(n)

j
,ξ(wj)≤δn1/3,j≤n

}
)

≤ eλn1/3

Ê

(
Zn1{

V (wj)∈I
(n)
j

,ξ(wj)≤δn1/3,j≤n
}
)

.

Under the law P̂, Zn can be decomposed as follows

Zn = 1{
V (wj)∈I

(n)

j
,ξ(wj)≤δn1/3,j≤n

} +

n−1∑

k=0

∑

u∈Ω(wk)
u6=wk+1

Zn(u),

where Zn(u) =
∑

|v|=n,v>u 1{
V (uj)∈I

(n)
j

,ξ(uj )≤δn1/3,j≤n
}. We denote by

G = σ (wn, Ω(wn), V (u), u ∈ Ω(wn), n ≥ 0) .

Observe that conditionally on G, for any u ∈ Ω(wk) such that u 6= wk+1, the
subtree of the descendants of u has the law of a branching random walk starting
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from V (u). Therefore, writing Px for the law of (T, V + x), for any k < n and
u ∈ Ω(wk) such that u 6= wk+1, we have

Ê (Zn(u)|G) ≤ EV (u)

(
∑

|v|=n−k−1

1{
V (vj)∈I

(n)

k+j+1
,ξ(vj)≤δn1/3,j≤n−k−1

}
)

≤ EV (u)

(
∑

|v|=n−k−1

1{
V (vj)∈I

(n)

k+j+1
,j≤n−k−1

}
)

.

Applying spinal decomposition, for any x ∈ R and p ≤ n,

Ex

(
∑

|v|=n−p

1{
V (vj)∈I

(n)
p+j

,j≤n−p
}
)

= Ê

(
eV (wn−p+x1{

V (wj)+x∈I
(n)
p+j

,j≤n−p
}
)

≤ eλn1/3−x
P̂

(
V (wj) + x ∈ I

(n)
p+j , j ≤ n − p

)
.

Let A > 0, for any a ≤ A we set ma = ⌊na/A⌋ and

Ψ
(n)
a,A = sup

y∈I
(n)
ma

P̂

(
V (wj) + y ∈ I

(n)
ma+j , j ≤ n − ma

)
.

Using the previous equation, for any ma ≤ k < ma+1, we have
∑

u∈Ω(wk)
u6=wk+1

Ê (Zn(u)|G) ≤ eλn1/3

Ψ
(n)
a+1,A

∑

u∈Ω(wk)

eV (u)

≤ eλn1/3+V (wk)+ξ(wk+1)Ψ
(n)
a+1,A.

As ξ(wk+1) ≤ δn1/3, we obtain

E(Z2
n) ≤ eλn1/3

P̂

(
V (wj) ∈ I

(n)
j , j ≤ n

)

+ e(2λ+δ)n1/3
A−1∑

a=0

nΨ
(n)
a+1,Ae−f(a/A)n1/3

P̂

(
V (wj) ∈ I

(n)
j , j ≤ n

)
.

Therefore, applying Theorem 2.2, we have

lim sup
n→+∞

1

n1/3
logE(Z2

n) ≤ 2λ + δ −
π2σ2

2

∫ 1

0

ds

(λ − f(s))2

− min
a<A

f( a
A ) −

π2σ2

2

∫ 1

(a+1)/A

ds

(λ − f(s))2
.

Letting A → +∞, we obtain

lim sup
n→+∞

1

n1/3
logE(Z2

n) ≤ λ + δ − λ∗(1 + δ)1/3.

By Cauchy-Schwarz inequality, P
(
Ln ≤ λn1/3

)
≥ P (Zn > 0) ≥ E(Zn)2

E(Z2
n) , thus

lim inf
n→+∞

1

n1/3
logP

(
Ln ≤ λn1/3

)
≥ λ − λ∗(1 + δ)1/3 − δ.

Letting δ → 0, we conclude the proof.
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Note that Lemmas 3.1 and 3.3 imply that, assuming (1.4)

lim
n→+∞

1

n1/3
logP(Ln ≤ λn1/3) = λ − λ∗. (3.8)

We use Lemma 3.3 to obtain an a.s. behaviour of Ln.

Lemma 3.4. Assuming (1.1), (1.2), (1.3) and (1.4), we have lim
n→+∞

Ln

n1/3
= λ∗

almost surely on S.

Proof. We have lim infn→+∞
Ln

n1/3 ≥ λ∗ by Corollary 3.2. We now turn to the
upper bound of Ln. By Lemma 3.3, for any δ > 0,

lim inf
n→+∞

1

n1/3
logP(Ln ≤ λ∗n1/3) > −δ.

We work in the rest of the proof conditionally on the survival event S. We
write T̂ for the subtree of T consisting of individuals having an infinite line of
descent. By [2, Chapter 1, Theorem 12.1], T̂ is a supercritical Galton-Watson
process that never dies out. Applying [12, Lemma 2.4] to the branching random

walk (T̂, V ), there exists a > 0 and ρ > 1 such that the event

A(p) = {# {|u| = p : ∀j ≤ p, V (uj) ≥ −pa} ≥ ρp}

is verified a.s. for p ≥ 1 large enough. Let η > 0, we set p =
⌊
ηn1/3

⌋
. Applying

the Markov property at time p, we have

P

(
Ln+p ≥ (λ∗ + Aη)n1/3|A(p)

)
≤
(

1 − P

(
Ln ≤ λ∗n1/3

))ρp

.

Therefore by Borel-Cantelli lemma, lim supn→+∞
Ln

n1/3 ≤ λ∗ + Aη a.s. on S. We
let η → 0 to conclude the proof.

Theorem 1.1 is a consequence of Lemma 3.4 and Corollary 3.2: if (1.4) does
not hold, then ρ+ > 0 and Ln

n1/3 does not converge toward λ∗.
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[1] Elie Aı̈dékon. Convergence in law of the minimum of a branching random
walk. Ann. Probab., 41(3A):1362–1426, 2013.

[2] K. B. Athreya and P. E. Ney. Branching processes. Dover Publications,
Inc., Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York;
MR0373040].
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