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Convergence of the consistent maximal displacement of the branching random walk

We consider a supercritical branching random walk on R. The consistent maximal displacement is the smallest of the distances between the trajectories of individuals at the nth generation and the boundary of the process. It has been proved by Fang and Zeitouni [7] and by Faraud, Hu and Shi [8] that the consistent maximal displacement grows almost surely at rate λ * n 1/3 for an explicit λ * . We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold.

Introduction

A branching random walk on R is a process defined as follows. It starts with one individual located at 0 at time 0. Its children are positioned on R according to the law L of a point process, and form the first generation of the process. Then for any n ∈ N, each individual in the n-th generation makes children around its current position according to an independent point process with law L. We write T for the genealogical tree of the population. For any u ∈ T we denote by V (u) the position of the individual u and by |u| the generation to which u belongs. The random marked tree (T, V ) is the branching random walk with reproduction law L. We assume the Galton-Watson tree T is supercritical:

E   |u|=1 1   > 1, (1.1) 
and we write S = {#T = +∞} the survival event. We also assume the branching random walk (T, V ) is in the boundary case (in the sense of [START_REF] Biggins | Fixed points of the smoothing transform: the boundary case[END_REF])

E   |u|=1 e -V (u)   = 1 and E   |u|=1 V (u)e -V (u)   = 0. (1.2)
Under these assumptions, Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype agedependent branching process[END_REF] proved that 1 n max |u|=n V (u) converges to 0 almost surely on S. Any branching random walk with mild integrability assumption can be normalized to be in the boundary case, see e.g. Bérard and Gouéré [START_REF] Bérard | Survival probability of the branching random walk killed below a linear boundary[END_REF]. We also assume that

σ 2 := E   |u|=1 V (u) 2 e -V (u)   < +∞.
(1.3)

Let n ≥ 0. For any u ∈ T such that |u| = n and k ≤ n we denote by u k the ancestor of u alive at generation k. The consistent maximal displacement of the branching random walk is the quantity defined as

L n := min |u|=n max k≤n V (u k ).
It correspond to the distance between the boundary of the branching random walk and the individual that stayed as close as possible to it. The asymptotic behaviour of L n has been studied by Fang and Zeitouni [START_REF] Fang | Consistent minimal displacement of branching random walks[END_REF] and by Fauraud, Hu and Shi [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF]. Under stronger integrability assumptions, they proved that L n behaves as λ * n 1/3 almost surely for some explicit λ * . The main result of this article is a necessary and sufficient condition for this asymptotic behaviour to hold. Roberts [START_REF] Roberts | Fine asymptotics for the consistent maximal displacement of branching Brownian motion[END_REF] computed the second order of the asymptotic behaviour of L n for the branching Brownian motion.

We now introduce the integrability assumption

lim x→+∞ x 2 E   |u|=1 e -V (u) 1 log |v|=1 e -V (v) ≥x   = 0. (1.4) 
Observe that (1.4) is strictly weaker than the classical integrability assumption that is [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]Assumption (1.4)]. This stronger assumption is necessary and sufficient to obtain the asymptotic behaviour of many quantities associated to the branching random walk, such as the minimal displacement, or the derivative martingale (see [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF][START_REF] Chen | A necessary and sufficient condition for the non-trivial limit of the derivative martingale in a branching random walk[END_REF]).

Theorem 1.1. We assume (1.1), (1.2) and (1.3) hold. Then (1.4) is a necessary and sufficient condition for

lim n→+∞ L n n 1/3 = 3π 2 σ 2 2 1/3
a.s. on S.

If (1.4) is changed into lim x→+∞ x 2 E   |u|=1 e -V (u) 1 log |v|=1 e -V (v) ≥x   = ρ ∈ (0, +∞),
we were not able to compute the precise asymptotic behaviour of Ln n 1/3 . Using the methods developed in this article, it can be proved that a.s. on S, for n large enough we have

3 π 2 σ 2 2 + 3ρ 1/3 ≤ L n n 1/3 ≤ 3 π 2 σ 2 2 1/3 + (3ρ) 1/3 .
The rest of the article is organised as follows. In Section 2 we introduce the spinal decomposition of the branching random walk and the Mogul'skiȋ's small deviations estimate. These results are used to bound the left tail of L n in Section 3, yielding to its a.s. asymptotic behaviour.

Preliminary results

Spinal decomposition of the branching random walk

For n ∈ N, we write W n = |u|=n e -V (u) and F n = σ (u, V (u), |u| ≤ n). Under assumption (1.2), (W n ) is a non-negative (F n )-martingale. We introduce the probability P such that for any n ∈ N, P |Fn = W n • P |Fn .

The spinal decomposition consists in an alternative description of P as a branching random walk with a distinguished individual with a different reproduction law. It generalizes a similar construction for Galton-Watson processes, that can be found in [START_REF] Lyons | Conceptual proofs of L log L criteria for mean behavior of branching processes[END_REF]. This result has been proved by Lyons in [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF]. Let T be a tree, a spine of T is a sequence w = (w n ) ∈ T N such that |w n | = n and for any k ≤ n, (w n ) k = w k . We write L for the law of the point process (V (u), |u| = 1) under the law P.

We now define the law P of a branching random walk with spine (T, V, w). It starts with a unique individual w 0 located at 0 at time 0. Its children are positioned according to a point process of law L. The individual w 1 is then chosen at random among these children u with probability proportional to e -V (u) . Similarly at each generation n, every individual u makes children independently, according to law L if u = w n and L otherwise; and w n+1 is chosen at random among the children v of w n with probability proportional to e -V (v) . Proposition 2.1 (Spinal decomposition, Lyons [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF]). Assuming (1.2) and (1.3), for any n ∈ N, we have P |Fn = P |Fn , and for any |u| = n,

P (w n = u |F n ) = e -V (u) /W n ,
and (V (w n ), n ≥ 0) is a centred random walk with variance σ 2 .

Small deviations estimate for enriched random walk

Let (X n , ξ n ) n∈N be a sequence of i.i.d. vectors in R 2 such that E(X n ) = 0 and E(X 2 n ) = σ 2 ∈ (0, +∞). ( 2.1) 
We set ρ + = lim sup

x→+∞ x 2 P(ξ 1 ≥ x) and ρ -= lim inf x→+∞ x 2 P(ξ 1 ≥ x).
We write

T n = T 0 + X 1 + • • • + X n and we call ((T n , ξ n ), n ≥ 0)
an enriched random walk. For any z ∈ R, P z is the probability such that P z (T 0 = z) = 1. We simply write P for P 0 . We study in this section the probability that an enriched random walk stays during n unites of time in an interval of width o(n 1/2 ), generalizing the Mogul'skiȋ small deviations estimate [START_REF] Mogul | Small deviations in the space of trajectories[END_REF].

Theorem 2.2. Let (a n ) be a sequence of real non-negative numbers such that lim n→+∞ a n = +∞ and lim n→+∞ a 2 n n = 0. Assuming (2.1), for any continuous functions f < g and h > 0, for any x, x ′ such that f (0

) < x ≤ 0 ≤ x ′ < g(0), we have lim sup n→+∞ a 2 n n log sup z∈[x,x ′ ] P zan Tj an ∈ [f (j/n), g(j/n)], ξj an ≤ h(j/n), j ≤ n = - 1 0 π 2 σ 2 2(g(s) -f (s)) 2 + ρ - h(s) 2 ds, (2.2) lim inf n→+∞ a 2 n n log inf z∈[x,x ′ ] P zan Tj an ∈ [f (j/n), g(j/n)], ξj an ≤ h(j/n), j ≤ n = - 1 0 π 2 σ 2 2(g(s) -f (s)) 2 + ρ + h(s) 2 ds. (2.3)
We prove this result using the same techniques as in [START_REF] Mallein | N -branching random walk with α-stable spine[END_REF]Lemma 2.6]. We prove in a first time the following result.

Lemma 2.3. Under the assumptions of Theorem 2.2, if ρ

+ = ρ -=: ρ ∈ [0, +∞] then for any a < 0 < b, λ > 0 and a ≤ c < d ≤ b, we have lim n→+∞ a 2 n n log P Tn an ∈ [c, d], Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ λ 2 .
Proof. Note that

P (|T j | < ha n , ξ j ≤ λa n , j ≤ n) ≤ P(ξ 1 ≤ λa n ) n ≤ exp(-nP(ξ 1 > λa n )).
Consequently, if ρ = +∞, the proof is immediate. We assume in the rest of the proof that ρ < +∞.

Let B be a Brownian motion and P an independent Poisson process with intensity 1. For any n ∈ N and k ≤ n, we denote by Consequently, letting n → +∞ and using (2.4), we obtain:

P (n) k = k j=1 1 {ξj ≥λan} . By [16, Theorem 5.1], for any T > 0 we have lim n→+∞ T ta 2 n an , P (n) ta 2 n , t ≤ T = B σ 2 t , P ρt/λ 2 , t ≤ T (2.
lim inf n→+∞ a 2 n n log P Tn an ∈ [c, d], Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n ≥ 1 T log inf h≤b-a-4ǫ |x|≤ǫ P x |B σ 2 T -h| ≤ ǫ, P ρT /λ 2 = 0, B σ 2 s ∈ [a, b], s ≤ T ≥ - ρ λ 2 + 1 T log inf h≤b-a-4ǫ |x|≤ǫ P x (|B σ 2 T -h| ≤ ǫ, B σ 2 s ∈ [a, b], s ≤ T ) , lim sup n→+∞ a 2 n n log P Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n ≤ 1 T log sup x∈[a,b] P P ρT /λ 2 = 0, B σ 2 s ∈ [a, b], s ≤ T ≤ - ρ λ 2 + 1 T log sup x∈[a,b] P (B σ 2 s ∈ [a, b], s ≤ T ) .
Letting T → +∞, using e.g. [ 

ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ λ 2 .
ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ - λ 2 , lim inf n→+∞ a 2 n n log P Tn an ∈ [c, d], Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ + λ 2 .
Proof. The two equations being proved the same way, we only prove the first one. As

P (|T j | < ha n , ξ j ≤ n, j ≤ n) ≤ P(ξ 1 ≤ n) n ≤ exp(-nP(ξ 1 > n)), we only consider the case ρ -< +∞.
There exists a subsequence (n k ) such that a 2 n k P(ξ 1 > λa n k ) converges to ρ -/λ 2 , therefore by Lemma 2. 

ξj an ≤ λ, j ≤ n ≥ lim k→+∞ a 2 n k n k log P Tj an k ∈ [a, b], ξj an k ≤ λ, j ≤ n k = - π 2 σ 2 2(b -a) 2 - ρ - λ 2 .
Moreover, we may couple the random variable ξ j with a random variable ξ j such that ξ j ≤ ξ j and lim n→+∞ x 2 P(

ξ 1 ≥ x) = ρ -. By Lemma 2.3 again, lim sup n→+∞ a 2 n n log P Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n ≤ lim sup n→+∞ a 2 n n log P Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ - λ 2 , concluding the proof.
Proof of Theorem 2.2. We first prove that for any a < b and λ > 0, lim sup We apply Corollary 2.4 and let δ → 0 to obtain (2.5). Then we approach functions f , g and h by staircase functions, using (2.5) we obtain (2.2). For any a < 0 < b, λ > 0, y ∈ [a, b] and ǫ > 0 small enough, we prove in a second time that lim inf 

ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ - λ 2 . ( 2 
ξj an ≤ λ, j ≤ n = - π 2 σ 2 2(b -a) 2 - ρ + λ 2 . (2.6) Let ǫ > 0 small enough such that [-2ǫ, 2ǫ] ⊂ [a, b], let 0 < δ < ǫ, we set M = 2δ
ǫ . We have again .

Applying again Corollary 2.4, (2.6) holds. We finally approach functions f , g and h by staircase functions and use the Markov property, to obtain the lower bound (2.3).

Tail of the consistent maximal displacement

For any u ∈ T, we write πu for the parent of u, Ω(u) for the set of children of u,

ξ(u) = log v∈Ω(u) e V (u)-V (v) and ξ(u) = ξ(πu).
Note that by (1.2), we have P( ξ(u) ≥ x) ≤ e -x for any x ≥ 0. We introduce

ρ + = lim sup x→+∞ x 2 P ξ(w 0 ) ≥ x and ρ -= lim inf x→+∞ x 2 P ξ(w 0 ) ≥ x (3.1) λ * + = 3π 2 σ 2 2 + 3ρ + 1/3 , λ * -= 3π 2 σ 2 2 + 3ρ - 1/3 and λ * = 3π 2 σ 2 2 1/3 . (3.2)
We use here the results of the previous section to obtain upper and lower bounds for the left tail of L n . We first provide an upper bound. Lemma 3.1. We assume (1.1), (1.2) and (1.3). For any λ ∈ (0, λ * -), we have

lim sup n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 ≤ λ -λ * -, (3.3)
and for any λ ∈ (0, λ * + ), we have

lim inf n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 ≤ λ -λ * + . (3.4)
Proof. Let λ > 0, f be a continuous increasing function such that f (0) < 0 and f (1) = λ, and h = λ -f . We set

I (n) k = f (k/n)n 1/3
, λn 1/3 for k ≤ n and we denote by

G n = u ∈ T : |u| ≤ n, V (u j ) ∈ I (n) j , ξ(u j ) ≤ h(j/n)n 1/3 , j ≤ |u| .
We introduce the quantities

X (n) k = |u|=k 1 {V (u)<f (k/n)n 1/3 } 1 {πu∈Gn} and Y (n) k = |u|=k-1 1 ξ(u)>h(k/n)n 1/3 1 {u∈Gn} .
We observe that

P L n ≤ λn 1/3 =P ∃|u| = n : V (u j ) ≤ λn 1/3 , j ≤ n ≤P n j=1 X (n) j + Y (n) j ≥ 1 ≤ n j=1 E X (n) j + Y (n) j . (3.5)
For any k ≤ n, using the spinal decomposition we have

E X (n) k = E |u|=k e -V (u) W k e V (u) 1 {V (u)<f (k/n)n 1/3 } 1 {πu∈Gn} = E e V (w k ) 1 {V (w k )<f (k/n)n 1/3 } 1 {w k-1 ∈Gn} ≤e f (k/n)n 1/3 P (w k-1 ∈ G n ) .
Moreover, as ξ(u) is independent of F |u| , we also note that

E Y (n) k = E |u|=k-1 1 {u∈Gn} P ξ(u) > h(k/n)n 1/3 ≤ e -h(k/n)n 1/3 E e V (w k-1 ) 1 {w k-1 ∈Gn} ≤ e f (k/n)n 1/3 P (w k-1 ∈ G n ) .
Consequently, (3.5) becomes

P L n ≤ λn 1/3 ≤ 2 n k=1 e f (k/n)n 1/3 P (w k-1 ∈ G n ) .
We set A > 0, for any a ≤ A, we write m a = ⌊na/A⌋. As f is increasing, for any k ∈ (m a , m a+1 ], we have

e f (k/n)n 1/3 P (w k-1 ∈ G n ) ≤ e f ((a+1)/A)n 1/3 P (w ma ∈ G n ) .
Moreover, by the spinal decomposition, (V (w j ), ξ(w j )) is an enriched random walk under law P. We apply Theorem 2.2 to obtain for any a ≤ A,

lim sup n→+∞ 1 n 1/3 log P (w ma ∈ G n ) = - a/A 0 3(λ * -) 3 (λ -f (s)) 2 ds, lim inf n→+∞ 1 n 1/3 log P (w ma ∈ G n ) = - a/A 0 3(λ * + ) 3 (λ -f (s)) 2 ds.
We conclude that, letting n → +∞ then A → +∞ we have lim sup

n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 ≤ sup t∈[0,1] f (t) - t 0 3(λ * -) 3 (λ -f (s)) 2 ds, (3.6) lim inf n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 ≤ sup t∈[0,1] f (t) - t 0 3(λ * + ) 3 (λ -f (s)) 2 ds. ( 3.7) 
Optimizing these equations in f concludes the proof. Indeed, to prove (3.3), we consider the following two cases. If ρ -= +∞ then λ * -= +∞. Choosing a sequence of functions f M such that f M (0) < -M , and letting M → +∞, (3.6) yields lim sup

n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 = -∞. If ρ -< +∞, then setting f (t) = λ -λ * -(1 -t) 1/3 we have lim sup n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 ≤ sup t∈[0,1] f (t) - t 0 3(λ * -) 3 (λ -f (s)) 2 ds ≤ sup t∈[0,1] f (t) - t 0 3λ * - (1 -s) 2/3 ds = λ -λ * -.
A similar reasoning leads to (3.4) In a second time, to bound from above the consistent maximal displacement, we prove that with high probability there exists an individual staying below λn 1/3 for n units of time, as soon as λ is large enough. To do so, we compute the first two moments of the number of individuals staying in two well-chosen lines, while making "not too many children". Lemma 3.3. Assuming (1.1), (1.2), (1.3) and (1.4) (i.e. ρ + = ρ -= 0), for any 0 < λ < λ * , we have lim inf

n→+∞ 1 n 1/3 log P L n ≤ λn 1/3 ≥ λ -λ * . Proof. Let λ ∈ (0, λ * ), δ > 0, and f : t ∈ [0, 1] → λ -λ * (1 + δ -t) 1/3 . We denote by I (n) j = f (j/n)n 1/3 , λn 1/3 for j ≤ n. We set Z n = |u|=n 1 V (uj )∈I (n) j ,ξ(uj )≤δn 1/3 ,j≤n .
We compute the first two moments of Z n to bound from below P(Z n > 0).

By spinal decomposition, we have

E(Z n ) = E e V (wn) 1 V (wj )∈I (n) j ,ξ(wj )≤δn 1/3 ,j≤n ≥ e f (1)n 1/3 P V (w j ) ∈ I (n) j , ξ(w j ) ≤ δn 1/3 , j ≤ n .
As lim n→+∞ n 2/3 P(ξ(w 1 ) ≥ δn 1/3 ) = 0 by (1.4), Theorem 2.2 yields lim inf

n→+∞ 1 n 1/3 log E(Z n ) ≥ f (1) - π 2 σ 2 2 1 0 ds (λ -f (s)) 2 ≥ λ -λ * (1 + δ) 1/3 .
Similarly, to compute the second moment we observe that

E(Z 2 n ) = E Z n |u|=n e -V (u) W n e V (u) 1 V (uj )∈I (n) j ,ξ(uj )≤δn 1/3 ,j≤n = E Z n e V (wn) 1 V (wj )∈I (n) j ,ξ(wj )≤δn 1/3 ,j≤n ≤ e λn 1/3 E Z n 1 V (wj )∈I (n) j
,ξ(wj )≤δn 1/3 ,j≤n .

Under the law P, Z n can be decomposed as follows

Z n = 1 V (wj )∈I (n) j ,ξ(wj )≤δn 1/3 ,j≤n + n-1 k=0 u∈Ω(w k ) u =w k+1 Z n (u), where Z n (u) = |v|=n,v>u 1 V (uj )∈I (n) j
,ξ(uj )≤δn 1/3 ,j≤n . We denote by

G = σ (w n , Ω(w n ), V (u), u ∈ Ω(w n ), n ≥ 0) .
Observe that conditionally on G, for any u ∈ Ω(w k ) such that u = w k+1 , the subtree of the descendants of u has the law of a branching random walk starting from V (u). Therefore, writing P x for the law of (T, V + x), for any k < n and u ∈ Ω(w k ) such that u = w k+1 , we have Letting δ → 0, we conclude the proof.

  4) in the Skorohod sense. Let a < 0 < b, a ≤ c < d ≤ b and T > 0. We set r n = T a 2 n . Applying the Markov property, for any ǫ > 0 small enough, we have   inf h≤b-a-4ǫ |x|≤ǫ P xan | Tr n an -h| ≤ ǫ, Tj an ∈ [a, b], ξj an ≤ λ, j ≤ r n   ⌈n/rn⌉ ≤ P Tn an ∈ [c, d], Tj an ∈ [a, b], ξj an ≤ λ, j ≤ n ≤ sup x∈[a,b] P xan Tj an ∈ [a, b], ξj an ≤ λ, j ≤ r n ⌊n/rn⌋ .

Corollary 2 . 4 .

 24 Under the assumptions of Theorem 2.2, for any a < 0 < b, λ > 0 and a ≤ c < d ≤ b, we have lim sup Tj an ∈ [a, b],

. 5 ).

 5 Let δ > 0, we write M = b-a δ -(m + 1)δ, b -a -mδ], ξj an ≤ λ, j ≤ n .

  an -y ≤ ǫ, Tj an ∈ [a, b],

  Tj an ∈ [a, b], ξ j ≤ n, j ≤ n ≥ min 0≤m<M inf x∈[-ǫ+mδ,-ǫ+(m+1)δ] P xan Tn an -y ≤ ǫ, Tj an ∈ [a, b], ξ j ≤ n, j ≤ n ≥ min 0≤m<M P Tj an ∈ [a + ǫ -mδ, b + ǫ -(m + 1)δ], ξ j ≤ n, j ≤ n Tn an ∈ [y -mδ, y + 2ǫ -(m + 1)δ]

E 1 ≤ 1 . 1 V 2 E(Z 2 n ) , thus lim inf n→+∞ 1 n 1 / 3

 11122113 (Z n (u)|G) ≤ E V (u) |v|=n-k-1 1 V (vj )∈I (n) k+j+1 ,ξ(vj )≤δn 1/3 ,j≤n-k-E V (u) |v|=n-k-1 1 V (vj )∈I (n) k+j+1 ,j≤n-k-Applying spinal decomposition, for any x ∈ R and p ≤ n, (vj )∈I (n) p+j ,j≤n-p = E e V (wn-p+x 1 V (wj )+x∈I (n) p+j ,j≤n-p ≤ e λn 1/3 -x P V (w j ) + x ∈ I (n) p+j , j ≤ n -p . Let A > 0, for any a ≤ A we set m a = ⌊na/A⌋ and Ψ (n) a,A = sup y∈I (n) ma P V (w j ) + y ∈ I (n) ma+j , j ≤ n -m a .Using the previous equation, for any m a ≤ k < m a+1 , we haveu∈Ω(w k ) u =w k+1 E (Z n (u)|G) ≤ e λn 1/3 Ψ (n) a+1,A u∈Ω(w k ) e V (u)≤ e λn 1/3 +V (w k )+ξ(w k+1 ) Ψ(n) a+1,A .As ξ(w k+1 ) ≤ δn 1/3 , we obtainE(Z 2 n ) ≤ e λn 1/3 P V (w j ) ∈ I (n) j , j ≤ n + e (2λ+δ)n 1/3 e -f (a/A)n 1/3 P V (w j ) ∈ I (n) j , j ≤ n .Therefore, applying Theorem 2.2, we have lim supn→+∞ 1 n 1/3 log E(Z 2 n ) ≤ 2λ + δf (s)) 2 .Letting A → +∞, we obtain lim supn→+∞ 1 n 1/3 log E(Z 2 n ) ≤ λ + δ -λ * (1 + δ) 1/3 .By Cauchy-Schwarz inequality, P L n ≤ λn 1/3 ≥ P (Z n > 0) ≥ E(Zn) log P L n ≤ λn 1/3 ≥ λ -λ * (1 + δ) 1/3 -δ.
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	Corollary 3.2. Under assumptions (1.1), (1.2) and (1.3), we have
	lim inf n→+∞	L n n 1/3 ≥ λ * -	and lim sup n→+∞	L n n 1/3 ≥ λ * +	a.s.
	In particular, if ρ + > 0 then lim sup n→+∞	L n n 1/3 > λ * a.s.
	Proof. By Lemma 3.1, for any ǫ > 0, exists an increasing sequence (n k ) such that +∞ +∞ n=1 P( Ln n 1/3 ≥ (λ * -+ǫ)) < +∞, and there k=1 P( Ln k 1/3 ≥ (λ * + + ǫ)) < +∞. n k We conclude the proof by Borel-Cantelli lemma.

Note that Lemmas 3.1 and 3.3 imply that, assuming (1.4) lim n→+∞ 1 n 1/3 log P(L n ≤ λn 1/3 ) = λ -λ * .

(3.8)

We use Lemma 3. 

We work in the rest of the proof conditionally on the survival event S. We write T for the subtree of T consisting of individuals having an infinite line of descent. By [2, Chapter 1, Theorem 12.1], T is a supercritical Galton-Watson process that never dies out. Applying [START_REF] Mallein | Branching random walk with selection at critical rate[END_REF]Lemma 2.4] to the branching random walk ( T, V ), there exists a > 0 and ρ > 1 such that the event

is verified a.s. for p ≥ 1 large enough. Let η > 0, we set p = ηn 1/3 . Applying the Markov property at time p, we have

Therefore by Borel-Cantelli lemma, lim sup n→+∞ Ln n 1/3 ≤ λ * + Aη a.s. on S. We let η → 0 to conclude the proof. Theorem 1.1 is a consequence of Lemma 3.4 and Corollary 3.2: if (1.4) does not hold, then ρ + > 0 and Ln n 1/3 does not converge toward λ * .