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Brownian motion and Random Walk above Quenched Random Wall

We study the persistence exponent for the first passage time of a random walk below the trajectory of another random walk. More precisely, let {Bn} and {Wn} be two centered, weakly dependent random walks. We establish that P(∀ n≤N Bn ≥ Wn|W ) = N -γ+o(1) for a non-random γ ≥ 1/2. In the classical setting, Wn ≡ 0, it is well-known that γ = 1/2. We prove that for any non-trivial W one has γ > 1/2 and the exponent γ depends only on Var(B1)/Var(W1).

Our result holds also in the continuous setting, when B and W are independent and possibly perturbed Brownian motions or Ornstein-Uhlenbeck processes. In the latter case the probability decays at exponential rate.

Introduction and main results

Let {X t } t≥0 be a stochastic process. In many cases of interest there exists γ > 0 such that P(∀ s≤t X s ≥ -1) = t -γ+o (1) .

The exponent γ is often called the persistence exponent associated to the process X. The persistence exponent of stochastic processes have received a substantial research attention. We refer to [START_REF] Aurzada | Lévy Matters V: Functionals of Lévy Processes, chapter Persistence Probabilities and Exponents[END_REF] for a review on this subject.

In this paper we are interested in the rate of decay of

p(t) := P(∀ s≤t B s ≥ f (t)),
where B is a standard Brownian motion starting from 0 and f is a continuous function. The case when f (t) = -1 is particularly easy following by the reflection principle. More broadly, if f is negative near 0 and f (t) = o(t 1/2-) for some > 0 then p(t) = t -1/2+o (1) . The situation changes for f (t) = -1+λt 1/2 with λ ≥ 0. It turns out that p(t) = t -θ(λ)+o (1) for a function θ, which is strictly increasing in λ.

It seems interesting to consider the case when f is a trajectory of a stochastic process. A Brownian motion, considered in this paper, is particularly intriguing as it is of order t 1/2 . Formally, we consider the wall f to be sampled as a Brownian curve W independent of B and kept frozen. We prove there exists a function γ such that for any β ∈ R we have lim t→+∞ log P (∀ s≤t B s ≥ βW s |W ) log t = -γ(β) a.s. and in L 1 .

One important result is that γ(β) > 1/2 for all β = 0. This means that the conditioning has an strong impact on the asymptotic of this probability, i.e. lim t→+∞ P (∀ s≤t B s ≥ βW s |W ) E (P (∀ s≤t B s ≥ βW s |W )) = 0 a.s.

The function γ is universal. An analogous result holds for the decay of the probability of a random walk staying above the path of another independent random walk. Further, the assumption of independence can be weakened or, even more generally, we can admit random walks in a time-changing random environment.

Finally, we study an example of strongly ergodic diffusions namely a Ornstein-Uhlenbeck process. We obtain that the probability for an Ornstein-Uhlenbeck process to stay above the path of another Ornstein-Uhlenbeck process decays exponentially fast. The decay is strictly faster than the exponential decay of the expectation of this conditional probability. Our results are presented below in separate subsections further in Section 1.4 we present related results and motivations.

Brownian motion over Brownian motion

Theorem 1.1. Let B, W be two independent standard Brownian motions. There exists a function γ : R → R such that for any β ∈ R, 0 ≤ a < b ≤ +∞ and x > 0, lim t→+∞ log P ∀ s≤t x + B s ≥ βW s , B t -βW t ∈ (at 1/2 , bt 1/2 )|W log t = -γ(β) a.s. and in L p , p ≥ 1.

Moreover, the function γ is symmetric, convex and for any β = 0,

γ(β) > γ(0) = 1/2. (1.1)
Consequently, γ is strictly increasing and lim β→+∞ γ(β) = +∞.

Remark 1.2. We conjecture that β → γ(β) is strictly convex and grows at quadratic rate. We contrast this result with the case a random wall with fast decay of correlations. For simplicity we choose an i.i.d. sequence but the result is still valid for other processes such as Ornstein-Uhlenbeck. In this case, the disorder is not relevant, the wall has no impact on the asymptotic behavior of the probability.

Fact 1.4. Let {X i } i∈N be an i.i.d. sequence of random variables such that EX i = 0 and EX 2 i < +∞ and B an independent Brownian motion. We have

lim N →+∞ log P ∀ n∈{1,...,N } x + B n ≥ X n | {X i } i∈N log N = - 1 2 a.s.
The result of Theorem 1.1 is stable under perturbing the starting condition and the wall.

Theorem 1.5. Let B, W be two independent Brownian motions, f : R + → R and g : R + → R + functions such that there exists > 0 verifying f (0) = 0, lim t→+∞ |f (t)| t 1/2-= 0, inf t≥0 g(t) > 0 and lim t→+∞ log g(t) log t = 0.

For any β ∈ R and 0 ≤ a < b ≤ +∞ we have lim t→+∞ log P ∀ s≤t g(t) + B s ≥ βW s + f (s), B t -βW t ∈ (at 1/2 , bt 1/2 )|W log t = -γ(β), a.s. and L p , p ≥ 1.

Ornstein-Uhlenbeck process over Ornstein-Uhlenbeck process

We recall that an Ornstein-Uhlenbeck process {X t } t≥0 with parameters (µ, σ) is a diffusion fulfilling the stochastic differential equation dX t = σdW t -µX t dt.

The main result of this section is following. In Remark 1.7 we will explain how this result extends the one of Theorem 1.1.

Theorem 1.6. Let X, Y be two independent Ornstein-Uhlenbeck processes with the parameters (µ 1 , 1) and (µ 2 , 1) respectively, where µ 1 , µ 2 > 0. There exists two functions γ µ1,µ2 and δ µ1,µ2 such that for any β ∈ R, 0 ≤ a < b ≤ +∞, if X 0 > βY 0 then (1.

lim t→+∞ log P (∀ s≤t X s ≥ βY s , X t -βY t ∈ (a, b)|Y ) t = -γ µ1,
3)

The functions γ µ1,µ2 , δ µ1,µ2 are symmetric convex and for any β = 0 we have γ µ1,µ2 (β) > δ µ1,µ2 (β) > 0.

(1.4)

Observe that the assumption σ 1 = σ 2 = 1 is non-restrictive. Given an Ornstein-Uhlenbeck process X with parameters (µ 1 , 1) the process σX has parameters (µ 1 , σ). Setting

g(β; σ 1 , σ 2 , µ 1 , µ 2 ) := lim t→+∞ -log P (∀ s≤t X s ≥ βY s , X t -βY t ∈ (a, b)|Y ) t
where X, Y are two independent Ornstein-Uhlenbeck processes with parameters (µ 1 , σ 2 1 ) and (µ 2 , σ 2 2 ) respectively, we have g(β; σ 1 , σ 2 , µ 1 , µ 2 ) = γ µ1,µ2 β σ 2 σ 1 .

Furthermore, using the scaling property of the Brownian motion we obtain γ µ1,µ2 = µ 2 γ µ1/µ2,1 .

The same relations hold for δ µ1,µ2 .

Remark 1.7. It is well-known that if W is a standard Wiener process then

X t := xe -µt + σ √ 2µ e -µt W e 2µt -1
is an Ornstein-Uhlenbeck process with parameters (µ, σ) starting from X 0 = x. Using this relation one can see that Theorem 1.6 with µ = µ 1 = µ 2 is equivalent to Theorem 1.1. One also checks that

γ µ,µ (β) = 2µγ(β), δ µ,µ (β) = µ.
We stress however that the case of different µ's cannot be expressed in the terms of Theorem 1.1. Moreover, we suspect that max(µ 1 , µ 2 ) > δ µ1,µ2 (β) > min(µ 1 , µ 2 ).

Random walk in random environment

Results analogous to Theorem 1.1 hold for random walks. Let {B n } n∈N , {W n } n∈N be two independent random walks. There may exist n such that P (x + B n ≥ W n ) = 0. To resolve this issue we introduce

A x := N ≥0 {P (∀ n≤N x + B n ≥ W n |W ) > 0} . (1.5)
We briefly study these events.

Fact 1.8. For any x ≤ x we have A x ⊂ A x and lim x→+∞ P (A x ) = 1. Moreover, the following conditions are equivalent:

• For any x > 0, P (A x ) = 1.

• sup S B ≥ sup S W , where S B , S W are respectively the supports of the measures describing B 1 and W 1 (we allow both the sides to be infinite).

Now we present an analogue of Theorem 1.1 in the random walk settings.

Theorem 1.9. Let B, W be two independent random walks such that EB 1 = EW 1 = 0 and suppose that there exists b > 0 such that Ee b|B1| < +∞ and Ee b|W1| < +∞. Then for any x > 0 and 0 ≤ a < b ≤ +∞ we have

lim N →+∞ -log P ∀ n≤N x + B n ≥ W n , B N -W N ∈ (aN 1/2 , bN 1/2 )|W log N = γ Var(W1) Var(B1) on A x , +∞ on A c x .
, a.s.

We stress that the function γ is the same as in theorems in Section 1.1. Theorem 1.9 can be extended to a more general model of a random walk in random environment that we define now. Let µ = {µ n } n∈N be an i.i.d. sequence with values in the space of probability laws on R. Conditionally on µ we sample {X n } n∈N a sequence of independent random variables such that X n has law µ n . Moreover, we set

S n := n j=1 X j , W n := - n j=1 E(X j |µ) and B n := S n + W n .
Note that W is a random walk and conditionally on µ the process B is the sum of independent centred random variables. We make the following standing assumptions:

(A1) We have EW 1 = 0, Var(W 1 ) ∈ [0, +∞) and Var(B 1 ) = EB 2 1 ∈ (0, +∞).

(A2) There exist C 1 , C 2 > 0 such that E(e C1|B1| |µ) ≤ C 2 a.s.
(A3) There exists C > 0 such that Ee C|W1| < +∞.

We introduce a function f : N → N and we extend definition (1.5) as follows

A x := N ≥0 {P (∀ n≤N x + B n ≥ W n + f (n)|W ) > 0} . (1.6)
Theorem 1.10. Let S be a random walk in random environment and B, W as described above. Let

f : N → N such that |f (n)| = o(n 1/2-
) for some > 0. For any x > 0 and 0 ≤ a < b ≤ +∞ the following limit exists

lim N →+∞ -log P ∀ n≤N x + S n ≥ f (n), S N ∈ (aN 1/2 , bN 1/2 )|µ log N = γ Var(W1) Var(B1) on A x , +∞ on A c x . , a.s. (1.7)
The previous result holds with some uniformity on the starting position. It is somewhat cumbersome to define an analogue of A x in this case. For this reason we state an example with the starting position x N +∞, such that the event becomes trivial by Fact 1.8.

Theorem 1.11. Let S, B and W be as above. Let f :

N → N such that |f (n)| = o(n 1/2-
) for some > 0 and {x n } n ≥ 0 be such that x n +∞ and x n = e o(log n) . Then for any 0 ≤ a < b ≤ +∞ the following limit exists

lim N →+∞ log P ∀ n≤N x N + S n ≥ f (n), S N ∈ (aN 1/2 , bN 1/2 )|W log N = -γ Var(W1) Var(B1)
a.s.

Related works and motivations

Our result can be understood from various perspectives. One of them is the so-called entropic repulsion. This question was asked in [START_REF] Bertacchi | Enhanced interface repulsion from quenched hardwall randomness[END_REF] in the context of the Gaussian free field for d ≥ 3. Namely, the authors studied the repulsive effect on the interface of the wall which is a fixed realization of an i.i.d. field {φ x } x∈Z d . They observe that the tail of φ x plays a fundamental role. When it is subgaussian the effect of the wall is essentially equivalent to the wall given by 0, while when the tail is heavier than Gaussian the interface is pushed much more upwards. It would be interesting to ask an analogous question in our case. By Fact 1.4 we know already that the disorder has a negligible effect when EX 2+ i < +∞, for > 0. We expect that when EX 2 i = ∞ the repulsion becomes much stronger. The paper [START_REF] Bertacchi | Enhanced interface repulsion from quenched hardwall randomness[END_REF] was followed by [START_REF] Bertacchi | On the repulsion of an interface above a correlated substrate[END_REF] which could be seen as an analogue of our work. Namely, the topic of this paper is a Gaussian free field interface conditioned to be above the fixed realization of another Gaussian free field. The authors obtain the precise estimates for the probability of this event and the entropic repulsion induced by the conditioning.

Theorems 1.1 and 1.6 can be seen as a first step in the study of persistence exponents in random environment. These results give examples of a one-parameter family of persistence exponents.

Similarly, a natural question arising in random walk theory is to study the probability for a random walk to stay non-negative during n units of time. Typically this probability decays as n -1/2 , which is known as the ballot theorem. Our result stated in Theorem 1.10 provides a version of this result for random walks in random environment. The decay is n -γ for γ ≥ 1/2. Moreover, γ > 1/2 whenever the quenched random walk is not centered.

This perspective was the initial motivation for analyzing the problems in this paper (more precisely the result given in Theorem 1.10). Such a question arises from studies of extremal particles of a branching random walk in a time-inhomogeneous random environment. In the companion paper [START_REF] Mallein | Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment[END_REF] we show that the randomness of the environment has a slowing effect on the position of the maximal particle. Namely, the logarithmic correction to the speed is bigger than in the standard (time-homogenous) case, which is a consequence of (1.1).

Organization of the paper

The next section is a collection of preliminary results on the FKG inequality, Ornstein-Uhlenbeck processes and some technical results. In Section 3 we use Kingman's theorem to show the convergence (1.2). We prove (1.4) in Section 4 by inferring that the disorder of the wall has an effect on the behaviour of the probability. Section 5 is devoted to obtaining Theorem 1.1 from Theorem 1.6 and generalize it to obtain Theorem 1.5. This last theorem is used in Section 6 to study the analogue problem for random walks in random environment. The concluding Section 7 contains further discussion and open questions.

Preliminaries and Technical Results

In this section we list a collection of results that are useful in the rest of the article. We first introduce the so-called FKG inequality for a Brownian motion and an Ornstein-Uhlenbeck process, that states that increasing events are positively correlated. We then list some integrability facts concerning Ornstein-Uhlenbeck and derive technical consequences.

The FKG inequality for Brownian motion and Ornstein-Uhlenbeck processes

In the proofs we often use the so-called FKG inequality, that we now introduce. For T ≥ 0, we denote by C := C([0, T ], R), the space of continuous functions, endowed with the uniform norm topology. We introduce a partial ordering ≺ on this space: For two f, g ∈ C, we set

f ≺ g if and only if ∀ t∈[0,T ] f (t) ≤ g(t). (2.1)
The FKG inequality is the following estimate, that follows from [2, Theorem 4 and Remark 2.1].

Fact 2.1. (The FKG inequality) Let X be a Brownian motion or an Ornstein-Uhlenbeck process and F, G : C → R be bounded measurable functions, which are non-decreasing with respect to ≺ then

E [F (X)G(X)] ≥ E [F (X)] E [G(X)] . (2.
2)

The result of [START_REF] Barbato | FKG inequality for Brownian motion and stochastic differential equations[END_REF] is stated for the Brownian motion only. However, this result is easily transferred to the Ornstein-Uhlenbeck process, as (1.7) preserves the order ≺ defined in (2.1). The same reasoning of transferring estimates on the Brownian motion to the Ornstein-Uhlenbeck process holds for the other proofs of the section. Thus to shorten and simplify proofs, we only work with Brownian motion in the rest of the section.

We often use the following corollary of Fact 2.1, stating that increasing events (for the order ≺) are positively correlated.

Corollary 2.2. Let X be a Brownian motion or an Ornstein-Uhlenbeck process and A,B be increasing events (i.e. such that the functions 1 A and 1 B are non-decreasing for ≺), then

P (A ∩ B) ≥ P (A) P (B) .
(

We also use the following property, sometimes called the strong FKG inequality. 

P ∀ t∈[0,T ] X t ≥ h(t)|∀ t∈[0,T ] X t ≥ f (t) ≥ P ∀ t∈[0,T ] X t ≥ h(t)|∀ t∈[0,T ] X t ≥ g(t) .
Proof. Let X be a Brownian motion, constructed on the canonical Wiener space (C, P). We assume without loss of generality that P (X 0 = f (0)) = P (X 0 = g(0)) = 0. Using the Girsanov theorem we observe that

P ∀ t∈[0,T ] X t ≥ f (t) = P ∀ t∈[0,T ] X t > f (t) .
Therefore we can freely exchange the symbols ≥ and > whenever convenient. As X is continuous, note that

∀ t∈[0,T ] X t ≥ f (t) = ∀ t∈[0,T ] X t ≥ f (t) , where f : [0, T ] → R is given by f (x) := inf ω∈F ω(x), where F := ω ∈ C : ∀ t∈[0,T ] ω(t) > f (t) .
As the infimum of continuous function, we observe that f is upper semicontinuous. Thus without loss of generality we assume in the rest of the proof that both f and g are upper semicontinuous. By Baire's theorem there exists a sequence {f n } n such that f n ∈ C and f n (t) f (t) pointwise. This implies that A n := ∀ t∈[0,T ] X t > f n (t) is an increasing sequence of events and the limiting event

is n A n = ∀ t∈[0,T ] X t > f (t) .
We have an analogous sequence {g n } converging pointwise tor g. Up to replacing g n by min(f n , g n ) we may assume that g n ≺ f n for any n ∈ N.

For any continuous function f n and > 0, there exists a finite set 0

≤ t 1 < t 2 . . . < t k ≤ T such that P ∀ i∈{1,...,n} X ti ≥ f (t i ) \ ∀ t∈[0,T ] X t ≥ f (t) ≤ , by continuity of X.
We now assume that the statement of the fact is false. In this case there exists a measurable, bounded non-decreasing function F : C → R and > 0 such that

E F (X)|∀ t∈[0,T ] X t ≥ f (t) + < E F (X)|∀ s∈[0,T ] X t ≥ g(t) .
(2.4)

Using the previous arguments, there exists find n and 0 ≤ t 1 < . . . < t k ≤ T such that As a consequence, we can construct two processes X f and X g such that X f has the law of X conditionally on ∀ i∈{1,...,k} X ti ≥ f n (t i ) and X g the law of X conditionally on ∀ i∈{1,...,k} X ti ≥ g n (t i ) such that X g ≺ X f . Indeed, we construct (X f tj ) and (X g tj ) on the same probability space such that X f dominates X g . We then link X f ti with X f ti+1 and X g ti with X g ti+1 using the same bridge

E F |∀ i∈{1,...,k} X ti ≥ f n (t i ) < E F |∀ i∈{1,...,k} X ti ≥ g n (t i ) . ( 2 
β i of length t i+1 -t i , setting ∀s ∈ [t i , t i+1 ], X f s = X f (t i ) ti+1-s ti+1-ti + X f (t i ) s-ti ti+1-ti + β i s-ti X g s = X g (t i ) ti+1-s ti+1-ti + X g (t i ) s-ti ti+1-ti + β i s-ti .
With this construction, we have ∀t ≤ T, X g t ≤ X f t , which contradicts (2.5), thus (2.4).

Integrability estimates for Ornstein-Uhlenbeck processes

We first list a collection of classical estimates for an Ornstein-Uhlenbeck process, Fact 2.4. Let X be an Ornstein-Uhlenbeck process with parameters σ, µ > 0 starting from X 0 = x.

1. The process X is a strong Markov process with an invariant measure N 0, σ 2 /(2µ) . For any

t > 0 the random variable X t is distributed as N xe -µt , σ 2 2µ (1 -e -2µt
) .

2. For any y ∈ R the right tail of T y := inf {t ≥ 0 : X t = y} decays exponentially fast.

3. The process Xt t≥0 given by Xt := X t -e -µt X 0 is an Ornstein-Uhlenbeck process with parameters σ, µ > 0 starting from X0 = 0.

4. The random variable M := sup t≤1 X t has Gaussian concentration i.e. there exist C, c > 0 such that

P (M > y) ≤ C exp(-cy 2 ), ∀y ≥ 0.
The first and third claims follow directly from (1.7). The fourth claim is a consequence of this fact as well, as max t≤1 X t ≤ x + σ √ 2µ max t≤e 2µ -1 W s , where W a Brownian motion. The random variable max t≤e 2µ -1 W s has Gaussian concentration by the reflection principle, proving this claim. Finally, the second claim was proved in [START_REF] Nobile | Exponential trends of Ornstein-Uhlenbeck firstpassage-time densities[END_REF].

We recall a classical bound on the tail estimate of Gaussian random variables.

Fact 2.5. Let Z be a standard Gaussian random variable and x > 0. We have

1 √ 2π x 1 + x 2 e -x 2 /2 ≤ P (Z ≥ x) ≤ 1 √ 2π 1 x e -x 2 /2 . (2.6)
We now present a convex analysis result, stating that the probability for a Brownian motion to stay above a curve f is log-convex as a function of f . Lemma 2.6. Let X be a Brownian motion or Ornstein-Uhlenbeck process and h 1 , h 2 : R → R ∪ {-∞} be càdlàg functions such that

P (∀ s≥0 X s ≥ h 1 (s)) > 0, P (∀ s≥0 X s ≥ h 2 (s)) > 0.
Then the function

[0, 1] -→ R + λ -→ -log P (∀ s≥0 X s ≥ λh 1 (s) + (1 -λ)h 2 (s))
is convex.

Proof. By standard limit arguments it is enough to show that for any n, N ∈ N the function

[0, 1] -→ R + λ -→ -log P ∀ k≤N X k/n ≥ λh 1 (k/n) + (1 -λ)h 2 (k/n) (2.7)
is convex. We use the Prekopa-Leindler inequality along the lines of the proof below [START_REF] Gardner | The Brunn-Minkowski inequality[END_REF]Theorem 7.1].

For x ∈ R N , set H λ (x) = d(x)1 {x k ≥λh1(k/n)+(1-λ)h2(k/n),∀k≤N } (x)
, where we denote by d the joint density of (X 1/n , X 2/n , . . . , X N/n ). The density d is log-concave i.e for any λ ∈ (0, 1) and x, y ∈ R N we have d(λx (1-λ) . Similarly

+ (1 -λ)y) ≥ d(x) λ d(y)
1 ∀ k λx k +(1-λ)y k ≥λh1(k/n)+(1-λ)h2(k/n) ≥ 1 ∀ k x k ≥h1(k/n) λ 1 ∀ k y k ≥h2(k/n) 1-λ .
Thus the assumption of the Prekopa-Leindler inequality is fulfilled i.e.

H λ (λx + (1 -λ)y) ≥ H 1 (x) λ H 0 (y) 1-λ .
Now [5, Theorem 7.1] implies (2.7).

We now give some estimates on the random variablelog P (∀ s≤1 X s ≥ Y s |Y ), where X and Y are two independent Ornstein-Uhlenbeck processes. Lemma 2.7. Let X, Y be Ornstein-Uhlenbeck processes.

1. Let C, c > 0 and x ≥ 0. Then there exists C > 0 such that for any

X 0 ∼ N (x, c 2 1 ) with c 1 ≥ c and Y 0 ∼ N (0, C 2 1 ) with C 1 ∈ [0, C] we have that E [-log P (∀ s≤1 X s ≥ Y s |Y )] ≤ C. (2.8) 2. Let X 0 = x > 0 and Y 0 = 0, we set ρ = inf {t ≥ 0 : Y t = 0, ∃s < t : |Y s | = 1}. Then E [-log P (∀ s≤ρ X s ≥ Y s |Y )] < +∞.
(2.9)

3. Let X 0 = 0, Y 0 = 0 and a, b > 0 then the random variable

-log P (∀ s≤1 X s ≥ Y s -a, X 1 ≥ Y 1 + b|Y ) has exponential moments.
Proof. Let X, Y be two independent Ornstein-Uhlenbeck processes of parameters (µ 1 , σ 1 ), (µ 2 , σ 2 ). We first prove the third point. By the FKG property (2.3) we have

-log P (∀ s≤1 X s ≥ Y s -a, X 1 ≥ Y 1 + b|Y ) ≤ -log P (∀ s≤1 X s ≥ Y s -a|Y ) -log P (X 1 ≥ Y 1 + b|Y ) .
As X 1 , Y 1 are two independent Gaussian random variables, the second term in the upper bound has exponential moments by Fact 2.5. We set H = -log P (∀ s≤1 X s ≥ Y s -a|Y ). Applying (1.7), we have

H ≤ -log P ∀ s≤1 B t1(s) ≥ β|W t2(s) | -a |W .
where B, W are Brownian motions, β = σ2 σ1 , t 1 (s) = e µ1s -1 and t 2 (s) = e µ2s -1 ((µ 1 , µ 2 are parameters of the Ornstein-Uhlenbeck processes X and Y ). The constants a , β > 0 can be calculated explicitly but do not matter for the calculations. We denote by

A 1 := ∀ i∈N ∀ s∈[ 3 4 2 -i ,2 -i ] B t1(s) ≥ β|W t2(s) | -a , A 2 := ∀ i∈N\{0} ∀ s∈[2 -i , 3 2 2 -i ] B t1(s) ≥ β|W t2(s) | -a .
Using the FKG property (2.3) again we have

H ≤ -log P (A 1 ∩ A 2 |W ) ≤ -log P (A 1 |W ) -log P (A 2 |W ) .
For i ∈ {1, 2} we write H i = -log P (A i |W ). We prove that H 1 is exponentially integrable. The same arguments will directly apply to prove that H 2 is exponentially integrable. We observe that

B := ∀ i∈N ∀ s∈[ 3 4 2 -i ,2 -i ] B t1(s) -B t1(2 -i /2) ≥ β|W t2(s) -W t2(2 -i /2) | -2 -i/4 a /8 ⊂ A 1 .
Let θ > 0, using the fact that the increments of a Brownian motion are independent we obtain

L(θ) := E e θH1 ≤ E P (B|W ) -θ = i∈N L i (θ),
where

L i (θ) := E P ∀ s∈[ 3 2 2 -i ,2 -i ] B t1(s)-t1(2 -i /2) ≥ β|W t2(s)-t2(2 -i /2) | -2 -i/4 a |W -θ
, and a := a /8. By the Brownian scaling we get

L i (θ) = E P ∀ s∈[ 3 2 2 -i ,2 -i ] B 2 i [t1(s)-t1(2 -i /2)] ≥ β|W 2 i [t2(s)-t2(2 -i /2)] | -2 i/4 a |W -θ
.

There exist 0 < c 1 < C 1 such that for any i ∈ N we have

c 1 ≥ 2 i [t 1 ( 3 4 2 -i ) -t 1 (2 -i /2)] and C 1 ≤ 2 i [t 1 (2 -i ) -t 1 (2 -i /2)].
We define analogously 0 < c 2 < C 2 associated to t 2 . We set

M := sup s∈[c2,C2] βW s , m := inf s∈[c1,C1] B s .
With this notation, the estimate becomes

L i (θ) ≤ E P m ≥ M -2 i/4 a |M -θ =: Li (θ).
We have

0 ≤ Li (θ) -1 = E 1 -P m ≥ M -2 i/4 a |M θ P m ≥ M -2 i/4 a |M θ .
It is well-known that for x ≥ 0 we have q(x) := P (M > x) ≤ C 3 e -c3x 2 for some c 3 , C 3 > 0. We also prove a bound from below for the tail of m. Namely, we have

P (m > x) ≥ P {B c1 ≥ x + 5} ∩ sup s∈[c1,C1] |B s -B c1 | ≤ 5 ≥ P (B c1 ≥ x + 5) P sup s∈[c1,C1] |B s -B c1 | ≤ 5 ≥ C 4 e -c4x 2 ,
for some c 4 , C 4 ≥ 0. We combine the estimates to get

Li (θ) -1 ≤ 2θP M ≤ 2 i/4 a /2 P m ≤ -2 i/4 a /2 + P M ≥ 2 i/4 a /2 P (m ≥ 0) -θ + ˆ+∞ 0 P (m ≥ y) -θ P M ≥ y + 2 i/4 a dy.
There exists c 5 , C 5 > 0 such that the first two terms can be bounded from above by C 5 e -c5i for any i ∈ N. The last term is bounded in the following way:

ˆ+∞ 0 P (m ≥ y) -θ P M ≥ y + 2 i/4 a dy ≤ C -θ 4 C 3 ˆ+∞ 0 e θc4y 2 e -c3(y+2 i/4 ) 2 dy ≤ C 6 e -c6i ,
for c 6 , C 6 > 0, with the last estimate holding under assumption that θ is small enough (i.e. θ < c3 c4 ). We conclude that 0

≤ Li (θ) -1 ≤ C 5 e -c5i + C 6 e -c6i .
This is enough to claim that i∈N Li (θ) < +∞, thus i∈N L i (θ) < +∞. We conclude that H 1 admits exponential moments. Similar, but simpler, calculations prove that

E [-log P (∀ s≤1 X s ≥ Y s |Y, X 0 = x, Y 0 = 0)] < +∞. (2.10)
We now prove (2.9). By the FKG inequality (2.3) we have

E [-log P (∀ s≤ρ X s ≥ Y s |Y )] ≤E [-log P (∀ s≤1 X s ≥ Y s |Y )] + E   ρ i=1 -log P ∀ s∈[i,i+1] X s ≥ sup s∈[0,ρ] Y s |Y   .
The first term is finite by (2.10). To treat the second one we study

p i (m) := -log P ∀ s∈[i,i+1] X s ≥ m .
By point 3 of Fact 2.4 the process Xt := X i+t -X i e -µt is an Ornstein-Uhlenbeck process starting from X0 = 0. Therefore we have

p i (m) ≤ -log P (X i ≥ me µ + 1) -log P ∀ s∈[0,1] Xs ≥ -1 .
Clearlylog P ∀ s∈[0,1] Xs ≥ -1 > -∞, using point 1 of Fact 2.4 and (2.6) one easily checks that

p i (m) ≤ C 9 (m 2 + 1), for C 9 > 0. Recalling that M = sup s∈[0,ρ] Y s and Fact 3.3 we conclude E   ρ i=1 p i (M )   ≤ E ρ C 9 (M 2 + 1) ≤ E ρ 2 E C 9 (M 2 + 1) 2 1/2 < +∞.
The estimate (2.8) follows by similar calculations and Fact 2.4.

Existence and properties of the function γ

In this section, we denote by X, Y two independent Ornstein-Uhlenbeck processes with parameters (µ 1 , σ 1 ) and (µ 2 , σ 2 ) respectively. The main result of the section is the existence of γ µ1,µ2

(σ 2 /σ 1 ) > 0 such that lim t→+∞ -log P (∀ s≤t X s ≥ Y s , X t -Y t ∈ (a, b)|Y ) t = γ µ1,µ2 (σ 2 /σ 1 ) a.s.
To make notation lighter, we write γ instead of γ µ1,µ2 (σ 2 /σ 1 ), as well as δ instead of δ µ1,µ2 (σ 2 /σ 1 ) in the rest of the section. We start proving the annealed part of Theorem 1.6.

Lemma 3.1.

There exists δ > 0 such that for any 0 ≤ a < b ≤ +∞,

lim t→+∞ -log P (∀ s≤t X s ≥ Y s , X t -Y t ∈ (a, b)) t = δ.
Proof. This result is a standard application from spectral theory, thus we only present a sketch of the proof. For any t ≥ 0 and x, y ∈ R, we set

u t (x, y) = P (∀ s≤t X s ≥ Y s , X t -Y t ∈ (a, b)) .
We introduce the space D = {(x, y) ∈ R 2 : x > y} and the operator

L = σ 2 1 2 ∂ x,x + σ 2 2 2 ∂ y,y -µ 1 x∂ x -µ 2 y∂ y .
Note that the operator L is an Ornstein-Uhlenbeck operator, which has been the subject of studies in the recent years, we refer to [START_REF] Metafune | The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure[END_REF] and the references therein. By the Feynman-Kac formula we have

     ∂ t u t (x, y) = Lu t (x, y) if (x, y) ∈ D u t (x, y) = 0 if (x, y) ∈ D u 0 (x, y) = 1 x-y∈[a,b] .
Further, let ν be the measure with density exp

-µ1x 2 σ 2 1 -µ2y 2 σ 2 2
. We define the scalar product on

L 2 (D, ν) by f, g ν = ˆD f (x, y)g(x,

y)ν(dxdy).

By integration by parts, for any u, v ∈ C ∞ (D) with compact support, we have

u, Lv ν = - σ 2 1 2 ∂ x u, ∂ x v ν - σ 2 2 2 ∂ y u, ∂ y v ν = v, Lu ν .
As a consequence, L can be extended into a negative self-adjoint operator on H 1 0 (ν). Moreover, this operator is compact, as a consequence, there exists an orthonormal basis {h n } n∈N of L 2 (D, ν) and a decreasing negative sequence {λ n } n∈N such that Lh n = λ n h n for any n ∈ N, and h 1 (x, y) > 0 for any (x, y) ∈ D.

Decomposing f (x, y) = 1 x-y∈ [a,b] on the basis h n , we obtain

u t (x, y) = n∈N e tλn h n (x, y) h n , f ν , for all t ≥ 0.
In particular, this yields lim t→+∞ 1 t log u t (x, y) = λ 1 < 0 uniformly on compact sets, concluding the proof.

Path decomposition

In this section, we present a decomposition of the path Y into large excursions. This decomposition is used both in proofs of (1.2) and (1.4). We define the random variables {τ i } i≥0 , {ρ i } i≥0 such that ρ 0 = 0 and

ρ i+1 := inf t ≥ ρ i : Y t = 0 and ∃ s∈(ρi,t) |Y s | = 1
and

τ i := sup {t < ρ i+1 : Y t = 0} .
We also define r i := ρ i+1 -ρ i and denote 

Y i (t) := Y t+ρi , t ∈ [0, r i ]. ( 3 
ρ 0 ρ 1 τ 0 τ 1 Y 1 Y 0 ρ 2 T 1 ℱ 1 T 2 ℱ 2 r 0 r 1 5 10 15 20 -1.0 -0.5 0.5 1.0 Remark 3.2.
Note that ρ i is a stopping time (contrary to τ i ). The precise definition of ρ i and τ i are not important. What matters for our proofs is that on the interval [τ i , ρ i+1 ] the process performs a "macroscopic" excursion which is symmetric around 0, and that ρ i has a finite mean.

Fact 3.3. The sequence (Y i , r i ) i≥0 is i.i.d. and the random variables r i and M i := sup s≤ri Y i (s) have tails which decay exponentially fast.

Proof. The first statement follows by the fact that Y ρi = 0 and the strong Markov property applied to Y . We define ρ := inf {t ≥ 0 :

|Y t | = 1} then ρ 1 = inf {t ≥ ρ : Y t = 0}.
By point 2 of Fact 2.4 both ρ and ρ 1 -ρ have exponential tails, thus r 1 = ρ 1 has an exponential tail. For x ≥ 0 we have

P M i ≥ x ≤ P sup s≤x Y i (s) ≥ x + P (r i ≥ x) ≤ x k=1 P sup s∈[k-1,k] Y i (s) ≥ x + P (r i ≥ x) .
We deduce that M i has an exponential tail using point 4 of Fact 2.4.

A modified version of Theorem 1.6

In this section, we denote by P x the law of (X, Y ) such that X 0 = x and Y 0 = 0. In a first time, we study the asymptotic behaviour of log P(∀ u∈[0,ρn] X u ≥ Y u |Y ) as n → +∞, using Kingman's subadditive ergodic theorem.

Lemma 3.4. We assume that Y 0 = 0. For any 0 < a < b ≤ +∞, there exists γa,b such that

lim n→+∞ -log inf x∈(a,b) P x (∀ u∈[0,ρn] X u ≥ Y u , X ρn ∈ (a, b)|Y ) log n = γa,b a.s. and in L 1 . Proof. Let 0 < a < b ≤ +∞, we set I = (a, b). For any 0 ≤ m < n, we set p m,n := inf x∈(a,b) P(∀ u∈[ρm,ρn] X u ≥ Y u , X ρn ∈ I|Y, X ρm = x) (3.2)
and q m,n = -log p m,n . By Markov inequality applied to X, we have

p m,n = inf x∈(a,b) P x (∀ u∈[0,ρn-ρm] X u ≥ Y u+ρm , X ρn-ρm ∈ I|Y )
We observe that the process X under P x has the same law as (X t + xe -µt ) under P 0 . Therefore, from the FKG inequality (2.3), if b = +∞ then the minimal value of p m,n is attained at x = a. We prove that {q m,n } n>m≥1 fulfils the assumptions of Kingman's subadditive ergodic theorem as stated in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF]Theorem 9.14]. By the Markov property, as Y ρn = 0 for any 1 ≤ m < n we have

p 0,n = p 0,m P(∀ u∈[ρm,ρn] X u ≥ Y u , X ρn ∈ I|Y, ∀ u∈[0,ρm] X u ≥ Y u , X ρm ∈ I) ≥ p 0,m p m,n ,
thus q 0,n ≤ q 0,m + q m,n , which is the subadditivity condition [7, (9.9)].

We fix k ≥ 1. We recall that Y l l≥0 is i.i.d. Consequently the sequence The constant γa,b is non-random since (3.3) is ergodic. Now we prove that the constant γ does not depend on (a, b).

q lk,(l+1)k l≥0 (3.3) is i.i.d

Lemma 3.5.

There exists γ > 0 such that for any 0 < a < +∞ we have γ = γa,+∞ .

Proof. For any a ≥ 0 and x > 0, we write

p n (x, a) := P x (∀ u∈[0,ρn] X u ≥ Y u , X ρn > a|Y ),
and accordingly q n (x, a) := -log p n (x, a). We prove that lim n→+∞ q n (x, a) n = γ, a.s. and L 1 , (

exists and is independent of x > 0, a ≥ 0. Fix x > 0, by (3.4), we know that lim n→+∞ q n (x, x) n = γx,+∞ , a.s. and L 1 , as the minimum in (3.2) is attained in x = a. We prove that p n (x, 0, +∞) behaves similarly. As p n (x, x) ≤ p n (x, 0, +∞), we have

0 ≤ d n := q n (x, x, +∞) n - q n (x, 0, +∞) n = - 1 n log p n (x, x, +∞) p n (x, 0, +∞) = -n -1 log P x X ρn ≥ x|∀ u∈[ρ0,ρn] X u ≥ Y u , Y ≤ -n -1 log P x [X ρn ≥ x|Y ] ,
by the FKG inequality. We conclude easily that d n → 0 a.s. and in L 1 . By a simple monotonicity argument we conclude that convergence (3.5) holds for any pair (x, a), when x > 0 and a ∈ [0, x] and the limit depends only on x.

We now fix x 1 > x 2 > 0, we have p n (x 1 , 0, +∞) ≤ p n (x 2 , 0, +∞). On the other hand

q n (x 2 , 0, +∞) n ≤ -log P x2 [∀ s≤ρ1 X s ≥ Y s , X ρ1 ≥ x 1 |Y ] n + q n-1 (x 1 , 0, +∞) n . ( 3.6) 
This proves that γ = γx,+∞ does not depend of x.

Lemma 3.6. For any 0 < a < b ≤ +∞, we have γ = γa,b

Proof. Using the previous lemma, we set γ = γ a,+∞ for any a > 0. To show the claim it is enough to prove that for any b < +∞ the limit cannot be smaller. We define n 0 = n -C 1 log n for C 1 > 1 to be fixed later and n 1 = n -1. Using the Markov property we decompose

P x (∀ u≤ρn X u ≥ Y u , X ρn ∈ (a, b)|Y ) ≥ p 1 (n)p 2 (n)p 3 (n),
where

p 1 (n) := inf x∈(a,b) P x (∀ u≤ρn 0 X u ≥ Y u , X ρn 0 ∈ (a, n)|Y ), p 2 (n) := inf x∈[a,n] P(∀ u∈[ρn 0 ,ρn 1 ] X u ≥ Y u , X ρn 1 ∈ (a, log n)|Y, X ρn 0 = x), p 3 (n) := inf x∈[a,log n] P(∀ u∈[ρn 1 ,ρn] X u ≥ Y u , X ρn ∈ (a, b)|Y, X ρn 1 = x).
We prove that

lim n→+∞ -log p 1 (n) n = γ, lim n→+∞ -log p 2 (n) n = 0, lim inf n→+∞ P -log p 3 ≤ n 1/2 > 0, (3.7) 
where the first two convergences hold in probability. This limit and (3.4) imply the claim of the lemma. We first treat the second convergence. We have

p 2 (n) ≥ inf x∈[a,n] P x (∀ u∈[0,ρn 1 -ρn 0 ] X u ≥ Y ρn 0 +u , X ρn 1 -ρn 0 ≥ a|Y ) -sup x∈[a,n] P x (X ρn 1 -ρn 0 ≥ log n|Y ) ≥ P a (∀ u∈[0,ρn 1 -ρn 0 ] X u ≥ Y u+ρn 0 , X ρn 1 -ρn 0 ≥ a|Y ) -P n (X ρn 1 -ρn 0 ≥ log n|Y ),
using the Markov property and the FKG inequality. Using (3.4) we get that the logarithm of the first term is ≈ C 1 γ log n. Now we fix C 1 large enough so that EX ρn 1 -ρn 0 ≤ 1. This can be established using property 3 of Fact 2.4. Further property 1 implies that log P n (X ρn 1 -ρn 0 ≥ log n|Y ) ≤ -c 1 log 2 n, for some c 1 > 0. We conclude that for large n the second term is negligible and thus for some C > 0

lim n→+∞ P -log p 2 (n) log n ≥ C = 0.
This yields the second convergence in (3.7). An analogous proof gives the first one. For the last one we consider an event

A n := {ρ n -ρ n1 ∈ [1, 2], sup s∈[ρn 1 ,ρn] |Y s | ≤ a/2}. Clearly, p 3 (n) ≥ inf x∈[1,log n] P x (X ρn-ρn,1 ∈ (a, b)|Y )P a (∀ u∈[0,ρn-ρn 1 ] X u ≥ Y u+ρn 1 |Y, X ρn-ρn 1 = a).
Conditionally on A n the second term is bounded from below by a constant and the first one by exp(-(log n) 3 ). We conclude that for large n there is P(-log p 3 ≤ n 1/2 ) ≥ P(A n ). This finishes the proof as the right-hand side is non-zero and does not depend on n.

Finally, we prove the limit in Lemma 3.4 holds for any starting position.

Lemma 3.7. For any x > y and 0 ≤ a < b ≤ +∞, we have

lim n→+∞ -log P x (∀ u∈[0,ρn] X u ≥ Y u , X ρn ∈ (a, b)|Y, Y 0 = y) log n = γ a.s and in L 1 ,
Proof. We prove this result assuming Y 0 = 0, the case Y 0 = 0 being treated in a similar way. We write

q n (x, a, b) = -log P x (∀ u∈[0,ρn] X u ≥ Y u , X ρn ∈ (a, b)|Y )
Using the two previous lemmas, we have lim sup

n→∞ q n (x, a, b) n ≤ lim n→+∞ sup x∈(a,b) q n (x, a, b) n = γ,
as sup x∈(a,b) q n (x, a, b) = q 0,n . Similarly, for any x ≥ a, we have

lim inf n→+∞ q n (x, a, b) n ≥ lim inf n→+∞ q n (x, a, +∞) n ≥ lim inf n→+∞ q n (a, a, +∞) n ≥ γ,
by the FKG inequality. Finally, using a reasoning similar to (3.6), a similar inequality holds for x ≤ a. Consequently, the convergence

lim n→+∞ q n (x, a, b) n = γ, a.s. and L 1 , ( 3.8) 
holds for any a, b, x.

Existence and basic properties of γ

We now prove that (1.2) holds. To this end we state an auxiliary fact, whose proof is postponed to the end of the section. 

H t := -log P (∀ s≤t X s ≥ Y s + C, X t -Y t ∈ (a, b)|Y ) t . (3.9)
is L p -uniformly integrable for any p ≥ 1.

Proof. Without loss of generality it is enough to work with integer times and assume that a > C.

Denoting the probability in (3.9) by p t we estimate

-log p n ≤ -log P ∀ s≤n X s ≥ Y s + C, ∀ k∈{1,...,n} X k -Y k ∈ (a, b)|Y ≤ -log P ∀ s∈[0,1] X s ≥ Y s + C, X 1 -Y 1 ∈ (a, b)|Y + k∈{1,...,n-1} q k ,
where

q k := -log inf x∈(a,b) P ∀ s∈[k,k+1] X s ≥ Y s + C, X k+1 -Y k+1 ∈ (a, b)|Y, X k -Y k = x .
By the Markov property the random variables {q k } k≥1 are independent and identically distributed thus, by Lemma 2.7, the sequence 1 n n k=1 q k n is L p -uniformly integrable. Further, the proof follows by standard arguments. Lemma 3.9. For any 0 ≤ a < b ≤ +∞ and X 0 > Y 0 , we have

lim t→+∞ -log P (∀ s≤t X s ≥ Y s , X t -Y t ∈ (a, b)|Y ) t = γ E(r 1 )
a.s. and in L 1 .

Consequence of this lemma, we set γ = γ E(r1) .

Proof. Let m(t) := t/Eρ 1 -t 2/3 and M (t) := t/Eρ 1 + t 2/3 and

A t := t ∈ [ρ m(t) , ρ M (t) ] .
Clearly, The bound from above is slightly more involved

ρ n = n-1 k=0 r k ,
1 At H t ≤ 1 At -log P ∀ s≤ρ m(t) X s ≥ Y s , ∀ s∈[ρ m(t) ,ρ M (t) ] X s -Y s ∈ (a, b)|Y M (t) M (t) t .
Let us denote the probability in the expression above by p. We fix a , b such that a < a < b < b and use the Markov property

log p ≥ log P ∀ s≤ρ m(t) X s ≥ Y s , X ρ m(t) -Y ρ m(t) ∈ (a , b )|Y + log inf x∈[a ,b ] log P ∀ s∈[ρ m(t),ρ M (t) ] X s -Y s ∈ (a, b)|Y, X ρ m(t) = x .
It is easy to check that the second term divided by t converges to 0 (which essentially follows by the fact that M (t) -m(t) = o(t)). This together with (3.11) concludes the proof of (1.2).

We study the properties of the exponent γ as a function of a constant β by which the path Y is multiplied. More precisely, with a slight abuse of notation, we set for β ∈ R

γ(β) = lim t→+∞ 1 t log P (X s ≥ βY s , s ≤ t|Y ) ,
again without denoting the dependence in µ 1 , µ 2 , σ 1 , σ 2 , to avoid cumbersome notation.

Lemma 3.10. The function γ is symmetric and convex.

Proof. As the law of Y is symmetric, γ is symmetric. In effect, for any t ≥ 0 we have

P (X s ≥ βY s , s ≤ t|Y ) (d) = P (X s ≥ -βY s , s ≤ t|Y ) , therefore lim t→+∞ 1 t log P (X s ≥ βY s , s ≤ t|Y ) (d) = lim t→+∞ 1 t log P (X s ≥ -βY s , s ≤ t|Y ). We conclude that γ(β) = γ(-β).
To prove convexity we use Lemma 2.6. To this end we fix t > 0 and λ ∈ (0, 1). Applied conditionally on Y the lemma implies that for any t ≥ 0, almost surely

- log P(∀ s≤t X s ≥ (λa + (1 -λ)b)Y s |Y ) t ≤ -λ log P(∀ s≤t X s ≥ aY s |Y ) t -(1 -λ) log P(∀ s≤t X s ≥ bY s |Y ) t .
Taking t → +∞ we obtain γ(λa

+ (1 -λ)b) ≤ λγ(a) + (1 -λ)γ(b).
Using the same arguments, one obtains easily the following result.

Lemma 3.11. For β ∈ R, we set

δ(β) = lim t→+∞ 1 t log P (∀ s≤t X s ≥ βY s ) ,
the function δ is symmetric and convex.

Proof. We recall that by Lemma 2.6, the function

β → -log P(∀ s≤t , X s ≥ βY s |Y )
is a.s. a convex function. Thus, for any λ ∈ [0, 1] and β, β we have

P(∀ s≤t , X s ≥ (λβ + (1 -λ)β )Y s |Y ) ≤ P(∀ s≤t , X s ≥ βY s |Y ) λ P(∀ s≤t , X s ≥ β Y s |Y ) 1-λ .
Consequently, using Holder inequality, we obtain

E(P(∀ s≤t , X s ≥ (λβ + (1 -λ)β )Y s |Y )) ≤ P(∀ s≤t , X s ≥ βY s ) λ P(∀ s≤t , X s ≥ β Y s ) 1-λ ,
concluding the proof.

Relevance of the disorder

By Lemmas 3.1, 3.9, 3.10 and 3.11, there exist two convex symmetric functions γ µ1,µ2 and δ µ1,µ2 such that (1.2) and (1.3) both hold. Therefore, the only thing left to prove Theorem 1.6 is the strict inequality (1.4).

Observe that for any fixed t > 0, by Jensen's inequality we have

E [-log P (∀ s≤t X s ≥ βY s |Y )] > -log P (∀ s≤t X s ≥ βY s ) ,
which implies γ µ1,µ2 (β) ≥ δ µ1,µ2 (β) for any β ∈ R. Obtaining the strict inequality is a much harder result. We recall the path decomposition from Section 3.1. The key observation, on which the proof strategy hinges on, is that Jensen's inequality applied on each interval [ρ i , ρ i+1 ] allows to prove there exists a "gap" between the two quantities. The main technical difficulty will be to control this "gap" uniformly in i. This control is established in Proposition 4.5.

In this section, unless specified otherwise, we assume that X and Y are two independent Ornstein-Uhlenbeck processes, with parameters (µ 1 , σ 1 ) and (µ 2 , σ 2 ) respectively, such that Y 0 = 0 and X 0 = 1. Before the main proof we present three technical lemmas. The first one is a concentration inequality for a conditioned Ornstein-Uhlenbeck process. Lemma 4.1. Let X be an Ornstein-Uhlenbeck process. For any C 1 > 0 there exist C 2 , C 3 > 0 such that for any f : R + → R + being a C 1 -Lipschitz function we have

P (X t ≥ x + f (t)|∀ s≤t X s ≥ f (s)) ≤ exp -C 2 x 2 , x ≥ C 3 f (t), (4.1)
as soon as

X 0 ∈ [f (0) + 2, (C 1 + 1)f (0)).
Proof. To avoid cumbersome notation we assume that t ∈ N. The proof for general t follows similar lines. Further we assume that

∀ s≤t f (s) ≥ min (s + 1) 1/3 , (t -s + 1) 1/3 , (4.2)
If it is not the case, by Lemma 2.3 we can freely change f by s → f (s)+min (s + 1) 1/3 , (t -s + 1) 1/3 which is (C 1 + 1)-Lipschitz. We shorten x t := x + f (t) and let c 1 > 1. Using Lemma 2.3 we estimate

P (X t ≥ x t |∀ s≤t X s ≥ f (s)) ≤ P X t ≥ x t ∀ s≤t X s ≥ f (s), ∀ n∈{1,...,t} X n ≥ c 1 f (n) (4.3) = P X t ≥ x t , ∀ s≤t X s ≥ f (s) ∀ n∈{1,...,t} X n ≥ c 1 f (n) P ∀ s≤t X s ≥ f (s) ∀ n∈{1,...,t} X n ≥ c 1 f (n) ≤ P X t ≥ x t ∀ n∈{1,...,t} X n ≥ c 1 f (n) P ∀ s≤t X s ≥ f (s) ∀ n∈{1,...,t} X n ≥ c 1 f (n) .
Let us first treat the denominator denoted by I d . We use (4.2) and choose c 1 sufficiently large so that I d is bounded from below by a constant independent on t and f . Using Lemma 2.3 we obtain

I d = P ∀ s∈[0,1] X s ≥ f (s) ∀ n∈{1,...,t} X n ≥ c 1 f (n) × P ∀ s∈[1,t] X s ≥ f (s) ∀ n∈{1,...,t} X n ≥ c 1 f (n), ∀ s∈[0,1] X s ≥ f (s) ≥ P ∀ s∈[0,1] X s ≥ f (s) |X 1 ≥ c 1 f (1) P ∀ s∈[1,t] X s ≥ f (s) ∀ n∈{1,...,t} X n ≥ c 1 f (n) .
Continuing in a same manner we obtain that

I d ≥ P ∀ s∈[0,1] X s ≥ f (s)|X 1 ≥ c 1 f (1) × n∈{1,...,t} P ∀ s∈[n-1,n] X s ≥ f (s) |X n-1 = c 1 f (n -1) . (4.4) By point 3 of Fact 2.4 conditionally on X n-1 = c 1 f (n -1) the process Xt t∈[0,1] defined by Xt := X n-1+t -c 1 e -µt f (n -1
) is an Ornstein-Uhlenbeck process starting from X0 = 0. Thus

P ∀ s∈[n-1,n] X s ≥ f (s) |X n-1 = c 1 f (n -1) ≥ P ∀ s∈[0,1] Xs ≥ sup s∈[n-1,n] f (s) -c 1 e -µ f (n -1) ≥ P ∀ s∈[0,1] Xs ≥ -c 1 e -µ f (n)/2 .
We used inequality sup s∈[n-1,n] f (s) -c 1 e -µ f (n -1) ≤ -c 1 e -µ f (x)/2 which can be easily verified by (4.2) and Lipschitz property as soon as c 1 is large enough. By point 4 of Fact 2.4 we conclude that

P ∀ s∈[n-1,n] X s ≥ f (s) |X n-1 = c 1 f (n -1) ≥ 1 -C exp -c c 1 e -µ f (n)/2 2 .
By this estimate, (4.4), (4.2) and increasing c 1 if necessary we obtain

P (∀ s≤t X s ≥ f (s) |∀ n≤t X n-1 ≥ c 1 f (n) ) ≥ p,
for some p > 0 which does not depend on n. From now on c 1 is fixed. Now in order to show (4.1) it is enough to prove that the numerator in (4.3) decays in a Gaussian fashion. This is the aim for the rest of the proof. We define a sequence {G n } n≥0 by putting G 0 = X 0 > 0 and

G n := X n -c n X n-1 , n ≥ 1 (4.5)
where c n := Cov(Xn,Xn-1) Cov(Xn,Xn) . It is easy to check that in fact c n = c ∈ (0, 1) and moreover the random variables {G n } n≥0 are independent, distributed according to N (0, b 2 ) where b is a function of the parameters of the process X. We will prove that there exist c 2 , C 2 > 0 such that for any x > C 2 f (t) and t ∈ N we have

P X t ≥ x + f (t) ∀ n∈{1,...,t} X n ≥ c 1 f (n) ≤ e -c2x 2 . ( 4.6) 
We start by choosing constants B, c 2 > 0 satisfying

B ∈ (c, 1), c 2 < (1 -B) 2 2b 2 . (4.7)
Let L ≥ 0, without loss of generality we assume that f (t) ≥ L. This assumption with the Lipschitz property yields that

A -1 L ≤ f (t + 1) f (t) ≤ A L . ( 4.8) 
for A L such that A L L 1. We fix L such that B/(cA L ) > 1. We proceed inductively. The constants L and C 2 potentially may be increased during the further proof (the other constants stay fixed). We stress that this increase happens once and later the constants are valid for all steps of the induction. Checking the base case is an easy exercise. Let us assume that (4.6) holds for t ≥ 0. Let x be such that x + f (t + 1) ≥ c 1 f (t + 1), we have

P X t+1 ≥ x + f (t + 1) ∀ n∈{1,...,t+1} X n ≥ c 1 f (n) = P X t+1 ≥ x + f (t + 1), ∀ n∈{1,...,t} X n ≥ c 1 f (n) P ∀ n∈{1,...,t+1} X n ≥ c 1 f (n) = P X t+1 ≥ x + f (t + 1) ∀ n∈{1,...,t} X n ≥ c 1 f (n) P X t+1 ≥ c 1 f (t + 1) ∀ n∈{1,...,t} X n ≥ c 1 f (n) .
We denote the denominator by I D . By (4.5) and (4.8) we have

I D ≥ P (G t+1 ≥ c 1 f (t + 1) -cc 1 f (t)) ≥ P (G t+1 ≥ c 1 (A L -c)f (t)) . ( 4.9) 
By (4.5) and the union bound we conclude that the numerator is smaller than I 1 n + I 2 n , where

I 1 n := P X t ≥ B c (x + f (t + 1)) ∀ n∈{1,...,t} X n ≥ c 1 f (n) , I 2 n := P (G t+1 ≥ (1 -B) (x + f (t + 1))) . Let x > C 2 f (t + 1) then B c (x + f (t + 1)) -c 1 f (t) ≥ B c (C 2 + 1)f (t + 1) -c 1 f (t) ≥ f (t) B cA L (C 2 + 1) -c 1 ≥ C 2 f (t).
We assumed that B/(cA L ) > 1 thus the last inequality holds if we choose C 2 large enough. We can thus use the induction hypothesis (4.6) for t. We have

I 1 n ≤ exp -c 2 B c x + B c f (t + 1) -f (t) 2 ≤ exp -c 2 B c x + [B/(cA L ) -1]f (t) 2 .
Recalling (4.9) and increasing L so that c 1 (A L -c)f (t) ≥ c 1 (A L -c)L ≥ 2 holds we can use the Gaussian tail estimate (2.6) as follows

I 1 n I D ≤ 5c 1 (A L -c)f (t) b exp c 2 1 (A L -c) 2 f (t) 2 2b 2 exp -c 2 B c x + [B/(cA L ) -1]f (t) 2 ≤ 5c 1 (A L -c)f (t) b exp c 2 1 (A L -c) 2 2b 2 f (t) 2 - 2c 2 B[B/(cA L ) -1] c xf (t) exp - c 2 B 2 c 2 x 2 .
We increase C 2 (we recall that x ≥ C 2 f (t + 1)) so that

c 2 1 (A L -c) 2 2b 2 < C 2 2c2B[B/(cA L )-1] cA L
. Then we increase L if necessary so that the first two factors are bounded by 1/2. Finally

I 1 n I D ≤ 1 2 exp - c 2 B 2 c 2 x 2 ,
which by (4.7) implies I 1 n /I D ≤ exp -c 2 x 2 /2. We perform similar calculations for I 2 n :

I 2 n I D ≤ 5c 1 (A L -c)f (t) b exp c 2 1 (A L -c) 2 f (t) 2 2b 2 exp - (1 -B) 2 2b 2 (x + f (t)/A L ) 2 ≤ 5c 1 (A L -c)f (t) b exp c 2 1 (A L -c) 2 2b 2 f (t) 2 - (1 -B) 2 b 2 A L xf (t) exp - (1 -B) 2 2b 2 x 2 ≤ 1 2 exp - (1 -B) 2 2b 2 x 2 ,
where the last estimates follows by increasing C 2 and L if necessary (analogously to the previous case). Now, by (4.7) follows I 2 n /I D ≤ exp(-c 2 x 2 )/2. Recalling the previous step we obtain (I 1 n + I 2 n )/I D ≤ exp(-c 2 x 2 ) which establish (4.6) for t + 1.

A similar property holds for conditioning in future. Lemma 4.2. Let X be an Ornstein-Uhlenbeck process and u ∈ [c, C], for C > c > 0. Then there exist C 1 , c 1 > 0 such that for any t > 1 we have

P X u ≥ x|∀ s∈[u,u+t] X s ≥ (1 + s -u) 1/3 ≤ C 1 e -c1x 2 .
Proof. We set f (s) := (1 + s ) 1/3 , by Lemma 2.3 it is enough show the claim with f (s) instead of (1 + s) 1/3 . Using the Markov property we write

P X u ≥ x|∀ s∈[u,u+t] X s > f (s -u) = P {X u ≥ x} ∩ ∀ s∈[u,u+t] X s > f (s -u) P ∀ s∈[u,u+t] X s > f (s -u) = ´+∞ x w(y, t)P (X u ∈ dy) ´+∞ 0 w(y, t)P (X u ∈ dy) , where w(y, t) = P (∀ s≤t X s ≥ f (s)|X 0 = y) .
The function is increasing with respect to y, thus the denominator can be estimated as

ˆ4 3 w(y, t)P (X u ∈ dy) ≥ w(3, t) • P(X u ∈ [3, 4]).
By the Gaussian concentration of X u , one checks that to show the claim it is enough to that w(x, t) w(3, t) ≤ exp C 1 (log x) 5/3 , (4.10)

for C 1 > 0 for x ≥ 3. It will be easier to rewrite w as w(x, t) = P (∀ s≤t X s ≥ f (s) -xe -µs ) with the assumption that X 0 = 0. Let us set t x := C t log x , where C t > 0 will be adjusted later. For x > 3 we have

w(x, t) = P ∀ s∈[tx,t] X s ≥ f (s) -xe -µs |∀ s≤tx X s ≥ f (s) -xe -µs P ∀ s≤tx X s ≥ f (s) -xe -µs ≤ P ∀ s∈[tx,t] X s ≥ f (s) -xe -µs |∀ s≤tx X s ≥ f (s) -xe -µs ≤ P ∀ s∈[tx,t] X s ≥ f (s) -xe -µs |∀ s≤tx X s ≥ f (s) + 1 -3e -µs ,
where in the last line we used Lemma 2.3. Moreover, by convention we assume that the probability above is 1 if t x ≥ t. Similarly we estimate

w(3, t) ≥ P ∀ s≤tx X s ≥ f (s) + 1 -3e -µs , ∀ s∈[tx,t] X s ≥ f (s) ≥ P ∀ s≤tx X s ≥ f (s) + 1 -3e -µs P ∀ s∈[tx,t] X s ≥ f (s)|∀ s≤tx X s ≥ f (s) + 1 -3e -µs .
Using calculations similar to (4.4) and f (t x ) = O((log x) 1/3 ) one can show that

P ∀ s≤tx X s ≥ f (s) + 1 -3e -µs ≥ c 3 e -C3(log x) 2/3 tx ,
for some c 3 , C 3 > 0. Now we will show that for C t large enough (recall that t x := C t log x ) and y ≥ f (t x ) + 1 -3e -µtx there exists a constant c > 0 such that for any t > t x we have

P ∀ s∈[tx,t] X s ≥ f (s)|X tx = y P ∀ s∈[tx,t] X s ≥ f (s) -xe -µs |X tx = y = P ∀ s∈[tx,t] X s ≥ f (s)|∀ s∈[tx,t] X s ≥ f (s) -xe -µs , X tx = y ≥ c.
Integrating one verifies that

P ∀ s∈[tx,t] X s ≥ f (s) -xe -µs |∀ s≤tx X s ≥ f (s) + 1 -3e -µs P ∀ s∈[tx,t] X s ≥ f (s)|∀ s≤tx X s ≥ f (s) + 1 -3e -µs ≤ c -1 ,
which is enough to conclude the proof of (4.10) and consequently the proof of the lemma. Equivalently we will show that

H := P ∃ s∈[tx,t] X s ≤ f (s)|∀ s∈[tx,t] X s ≥ f (s) -xe -µs , X tx = y ≤ 1 -c. (4.11)
We consider

H ≤ t k=tx P ∃ s∈[k,k+1) X s ≤ f (s)|∀ s≤t X s ≥ f (s) -xe -µs , X tx = y ≤ t k=tx P ∃ s∈[k,k+1) X s ≤ f (k)|∀ s∈[k,k+1] X s ≥ f (k) -xe -µs , X tx = y .
The first inequality follows by the union bound and the second one by the assumption on f and Lemma 2.3. The first term (i.e. k = t x ) can be made arbitrarily small by choosing C t (and thus t x ) large. To estimate the other terms we define a function p k : R + → R by

p k (A) = -log P ∀ s∈[k,k+1] X s ≥ A|X tx = y .
By Lemma 2.6 one deduces that p is convex. Further we notice

P ∀ s∈[k,k+1] X s ≥ A|X tx = y ≥ P (X k ≥ Ae µ |X tx = y) P ∀ s∈[k,k+1] X s ≥ A|X k = e µ A .
The second factor can be easily bounded from below by a strictly positive constant uniform in A, k. Thus for some C 4 > 0 we have p k (A) ≤ C 4 (A + 1) 2 . Using the convexity of p k it is easy to deduce that for some C 5 > 0 we have p k (A) ≤ C 5 (A + 1), where p k denotes the left derivative of p k . Thus

log P ∀ s∈[k,k+1] X t ≥ f (k)|∀ s∈[k,k+1] X t ≥ f (k) -xe -µk = p k (f (k) -xe -µk ) -p k (f (k)) ≥ -C 5 xe -µk f (k).
Now we can make the final estimate. We write

t k=tx+1 1 -exp(-C 5 xe -µk f (k)) ≤ C 6 t k= tx f (k)e -µ(k-log k/µ ) .
for some C 6 > 0. Increasing C t (recall that t x := C t log x ) if necessary, we can make the sum arbitrarily small, proving (4.11) and concluding the proof.

We introduce b t : [0, t] → R + by b t (s) := min (s + 1) 1/3 , (t -s + 1) 1/3 . (4.12)

Let us recall the notation of Section 3.1. We have Lemma 4.3. There exist C, c > 0 such that for any n, k ∈ N we have

P (∀ s≤ρ k Y s ≤ Cb ρ k (s)) > c, P ({P (B n,k | {r i }) ≥ 1/10}) > c, (4.13) where B n,k := ∀ ρ k+1 ≤s≤ρn Y s ≤ C(s -ρ k+1 + 1) 1/3 .
Proof. The proof of this result is rather standard, thus we only present a sketch of it. We observe that for any k ∈ N, we have 

P (∀ s≤ρ k Y s ≤ Cb ρ k (s)) ≤ 1 -P ∃ s≥0 : Y s ≥ C(1 + s) 1/3 -P ∃ s∈[0,ρ k ] : Y s ≥ C(1 + (ρ k -s))
Y s (1 + s) 1/3 < +∞ a.s.
thus the first term in (4.14) can be made as small as wished by choosing C large enough. To treat the second term, we use the decomposition in excursions of the Ornstein-Uhlenbeck process and observe that (Y ρ k -s ) has the same law as the concatenation of an excursion conditioned to be larger than 1 and an independent Ornstein-Uhlenbeck process. Thus, using William's decomposition and the law of iterated logarithm again, for a given > 0 we can choose C > 0 large enough such that

P ∃ s∈[0,ρ k ] : Y s ≥ C(1 + (ρ k -s)) 1/3 < .
We now prove the second inequality. By the Markov inequality, we have

P P B c n,k |{r i } > 9/10 ≤ 10 9 P B c n,k .
Using now the Markov property at time ρ k , we have

P B c n,k ≤ P ∃ s≥0 : Y s ≥ C(1 -s) 1/3 ) ,
therefore choosing C large enough, we can make this probability as small as wished.

Proof. The proof is rather standard therefore we present only a sketch. We denote f (s) := C(s + 1) 1/3 . We consider

P (∀ s≤ρ k Y s ≤ Cb ρ k (s)) = 1 -P (∃ s≤ρ k Y s ≥ Cb ρ k (s)) (4.15) ≥ 1 -P (∃ s≤ρ k Y s ≥ Cf (s)) -P (∃ s≤ρ k Y s ≥ Cf (ρ k -s)) .
Let us treat the second term. Let l ∈ N, we have

P (∃ s≤ρ k Y s ≥ Cf (s)) ≤ P (∃ s≥0 Y s ≥ Cf (s)) ≤ P ∃ s∈[0,ρ l ] Y s ≥ Cf (s) + +∞ i=l P ∃ s∈[ρi,ρi+1] Y s ≥ Cf (s) .
(4.16) We recall Fact 3.3 and the notation there. For large enough i and some c > 0 we have

P ∃ s∈[ρi,ρi+1] Y s ≥ Cf (s) ≤P M i ≥ Cf (ρ i ) ∩ {ρ i ≥ ci} + P (ρ i < ci) ≤P M i ≥ Cf (ci) + P (ρ i < ci) ≤e -C1Cf (ci) + e -C2i ,
where C 1 , C 2 > 0. Increasing l and C one can make (4.16) as small as we want. Treating the third term of (4.15) similarly we obtain the first statement of (4.13). We set A n,k := {P (B n,k | {r i }) ≥ 1/10} and p := P (A n,k ) . We have

P (B n,k ) = EE[1 B n,k | {r i }] = E 1 A n,k E[1 B n,k | {r i }] + E 1 A c n,k E[1 B n,k | {r i }] ≤ p + (1 -p)/10 = 1 10 + 9 10 p.
By the first argument we choose C such that P (B n,k ) > 1/10 which implies p > 0 (uniformly in n and k).

Reformulation of the problem

We introduce necessary notions and reformulate the problem. Let M be the space of finite measures on R + . Given m ∈ M we denote m := ´R+ m(dx). Let P be the functional space

P := {f : f is a continuous function from an interval [0, t] to R such that f (0) = f (t) = 0} . (4.17)
Let us define an operator T : M × P → M. Given a measure m ∈ M and f ∈ P such that f :

[0, t] → R we set T (m, f ) := m defined by m(dx) := m P m/ m (∀ s≤t X s ≥ f (s), X t ∈ dx) ,
where under P m/ m the process X is an Ornstein-Uhlenbeck process such that X 0 = d m/ m .

For n ∈ N we define iteratively M-valued random variables T n by

T n := δ 1 n = 0 T (T n-1 , Y n-1 ) n > 0 , (4.18)
where Y n is given by (3.1). Using the Markov property one proves by induction that

T n = P (∀ s≤ρn X s ≥ Y s , X ρn ∈ dx|Y ) . (4.19)
Let us denote F := σ(ρ i , i ∈ N). The following lemma relates T n to our original problem.

Lemma 4.4. Let γ µ1,µ2 and δ µ1,µ2 be the same as in Theorem 1.6. Then

γ µ1,µ2 = lim n→+∞ E [-log T n ] nEr 1 , δ µ1,µ2 ≤ lim inf n→+∞ E [-log E ( T n |F)] nEr 1 . (4.20)
The following proposition is the main technical result of this proof Proposition 4.5. There exist c > 0 and n 0 ∈ N such that

E log T n -E log E( T n |F) ≤ -nc, (4.21) 
for any n ≥ n 0 .

We observe that this proposition together with Lemma 4.4 imply (1.4).

Proof of Lemma 4.4. The first convergence in (4.20) holds by (3.8) (recall also relation between γ and γ µ1,µ2 given in (3.11)). We observe that (4.19) yields E (

T n |F) = P (∀ s≤ρn X s ≥ Y s |F).
We note that methods of Section 3 imply that

-log P (∀ s≤ρn X s ≥ Y s |F) n (4.22)
converges a.s. and in L 1 for the sake of brevity we skip details. We define r(n) := Eρ n -n 2/3 = nEr 1 -n 2/3 and a sequence of events

A n := {ρ n ≥ r(n)}. Using Fact 3.3 one proves 1 A c n → 0 a.s. Consequently the convergence of (4.22) implies lim n→+∞ E1 A c n log P ∀ s≤r(n) X s ≥ Y s |F n = 0. Using E ( T n |F) ≤ 1 we estimate E log E ( T n |F) ≤ E1 An log E ( T n |F) ≤ E1 An log P ∀ s≤r(n) X s ≥ Y s |F = E log P ∀ s≤r(n) X s ≥ Y s |F -E1 A c n log P ∀ s≤r(n) X s ≥ Y s |F . (4.23)
We denote the first term of the right-hand side of (4.23) by J n . Applying Jensen's inequality we get

J n ≤ log P ∀ s≤r(n) X s ≥ Y s .
By (1.3) and the definition of r(n) we have lim sup n J n /(nEr 1 ) ≤ -δ µ1,µ2 and the second term (4.23) can be shown to converge to 0. We conclude that the second claim of (4.20) holds.

Proof of Proposition 4.5

Proof of Proposition 4.5. We recall F = σ(ρ i , i ∈ N) and define a filtration {F k } k≥0 by putting F 0 := {∅, Ω} and

F k := σ Y i : i < k , k > 0,
(see also Figure 3.1). We recall (4.18) and for k ∈ {0, 1, . . . , n} define M-valued random variables

T k n by T k n := E(T n |F k , F).

This definition and (4.19) imply that

T k n = P ∀ s≤ρn X s ≥ Y s , X ρn ∈ dx| Y i i<k , F , T n n = T n . (4.24)
By the Markov property of X we have

log T k+1 n = log T k + log P T k / T k ∀ ρ k ≤s≤ρn X s ≥ Y s |Y k , F . (4.25)
This expression requires some comment. We recall that T k is a random measure, conditionally on m = T k / T k we understand X to be an Ornstein-Uhlenbeck process starting from m at time ρ k . Let us now denote

G n,k := E log P T k / T k ∀ ρ k ≤s≤ρn X s ≥ Y s |Y k , F |F k , F -log P T k / T k (∀ ρ k ≤s≤ρn X s ≥ Y s |F) .
We notice that G n,k is a random variable, which by Jensen's inequality fulfills G n,k ≤ 0 (we will prove strict inequality later). In this notation (4.25) yields

E log T k+1 n |F k , F = log T k + log P T k / T k (∀ ρ k ≤s≤ρn X s ≥ Y s |F) + G n,k = log T k n + G n,k .
We apply this relation iteratively

E [log T n |F] = E [log T n n |F] = E [E [log T n n |F n-1 , F] |F] = E log T n-1 n |F + E[G n,n-1 |F] = E E log T n-1 n |F n-2 , F + E[G n,n-1 |F] = E log T n-2 n |F + E[G n,n-2 |F] + E[G n,n-1 |F] = . . . = E log T 0 n |F + n-1 k=0 E[G n,k |F].
We notice that

T 0 n = P (∀ s≤ρn X s ≥ Y s |F) = E [ T n |F]. Thus E [log T n ] = E log E [ T n |F] + n-1 k=0
EG n,k .

One easily sees that an inequality EG n,k ≤ c, (

for some c < 0, is sufficient to conclude the proof of the proposition. Proving (4.26) is our aim now.

To avoid heavy notation we denote Ẽ(•) := E(•|F) and Ẽk (•) := Ẽ(•|F k ). Further, we introduce additional randomization: a probability measure P ± and the random variable

η such that P ± (η = 1) = P ± (η = -1) = 1/2. For k ∈ N we define Ỹ k s (η) s≥0 by Ỹ k s (η) := η|Y s | if s ∈ [τ k , ρ k+1 ] Y s otherwise. .
There are two easy but crucial observations to be made at this point. Firstly,

∀ s≥0 Ỹ k s (1) ≥ Ỹ k s (-1) and ∀ s∈(τ k ,ρ k+1 ) Ỹ k s (1) > Ỹ k s (-1). (4.27)
Secondly, the excursions of an Ornstein-Uhlenbeck process are symmetric around 0. Formally, under E ± ⊗ Ẽk the process Ỹ k (η) has the same law as Y under Ẽk . Let us shorten m := T k / T k and denote "the gap"

∆ n,k := E ± Ẽk log Pm ∀ ρ k ≤s≤ρn X s ≥ Ỹ k s (η)|Y k -Ẽk log E ± Pm ∀ ρ k ≤s≤ρn X s ≥ Ỹ k s (η)|Y k . (4.28)
By Jensen's inequality we have G n,k ≤ ∆ n,k ≤ 0. In order to show (4.26) we will obtain a bound from above on ∆ n,k which is strictly negative and uniform in n, k. We define

g n,k := Pm ∀ ρ k ≤s≤ρn X s ≥ Ỹ k s (1)|Y k Pm ∀ ρ k ≤s≤ρn X s ≥ Ỹ k s (-1)|Y k , (4.29) and z n,k := Pm ∀ ρ k ≤s≤ρn X s ≥ Ỹ k s (-1)|Y k .
In this notation (4.28) writes as

∆ n,k = Ẽk 1 2 (log(g n,k z n,k ) + log z n,k ) -log g n,k z n,k + z n,k 2 = Ẽk 1 2 log g n,k -log g n,k + 1 2 (4.30) ≤ - 1 8 Ẽk (g n,k -1) 2 .
To explain the last inequality we observe that (4.27) yields g n,k ≤ 1 and that for x ∈ (0, 1] we have and elementary inequality

1 2 log x -log x+1 2 ≤ -1 8 (x -1)
2 . Now we concentrate on proving that in fact, uniformly in n, k we have g n,k < 1. Let us analyze the expressions appearing in (4.29). We denote

Q m,k (•) := P(•|Y k ), A i := ∀ ρ k ≤s≤ρ k+1 X s ≥ Ỹ k s (i) and B := ∀ ρ k+1 ≤s≤ρn X s ≥ Y s .
We fix x ∈ R + and we want to find a formula for p i := Q δx,k (A i ∩ B). By the Markov property we get

p i = Q δx,k Q δx,k (1 Ai |X ρ k+1 )Q δx,k (1 B |X ρ k+1 ) . We denote L k (x, y; i) := Q δx,k (1 Ai |X ρ k+1 = y), which expresses more explicitly as L k (x, y; i) = P ∀ ρ k ≤s≤ρ k+1 X s ≥ Ỹ k s (i)|Y k , X ρ k = x, X ρ k+1 = y . ( 4.31) 
We write

p i = Q δx,k L(x, X ρ k+1 ; i) Q δx,k (1 B |X ρ k+1 ) Q δx,k (1 B ) × Q δx,k (B).
Let us now consider a measure defined by

µ x,n,k (X ρ k+1 ∈ D) := Q δx,k 1 Xρ k+1 ∈D Q δx,k (1 B |X ρ k+1 ) Q δx,k (1 B ) ,
where D ⊂ R is a Borel set. One easily verifies that it is a probability measure. Removing the conditional expectation we get

µ x,n,k (X ρ k+1 ∈ D) = Q δx,k Q δx,k (1 Xρ k+1 ∈D 1 B |X ρ k+1 ) Q δx,k (1 B ) = Q δx,k (1 Xρ k+1 ∈D 1 B ) Q δx,k (1 B ) = Q δx,k X ρ k+1 ∈ D|B .
Again, writing more explicitly we have

µ x,n,k (dy) = P X ρ k+1 ∈ dy|∀ ρ k+1 ≤s≤ρn X s ≥ Y s , X ρ k = x . (4.32)
Finally, concluding the above calculations we obtain that for i ∈ {-1, 1} we have

Pm ∀ ρ k ≤s≤ρn X s ≥ Ỹ k s (i)|Y k = ˆR+ ˆR+ L k (x, y; i)µ x,n,k (dy)m(dx) (4.33) × Pm ∀ ρ k+1 ≤s≤ρn X s ≥ Y s .
Before going further let us comment on the further strategy. It is easy to see that for any fixed x, y ∈ R + we have L k (x, y; 1) < L k (x, y; -1). The gap vanished however smaller when x, y → +∞.

The uniform inequality g n,k < 1 can be obtained by showing that with positive probability the measure µ x,n,k (dy)m(dx) is uniformly concentrated in a box.

Let C 1 > 0 be a constant as in Fact 4.3. We denote sequences of events we have

A n,k := A 1 k ∩ {r k ∈ [1, 10]} ∩ A 2 n,k , A 1 k := {ρ k ≥ 1} ∩ {∀ s≤ρ k Y s ≤ C 1 b ρ k (s)} , A 2 n,k := P (B n,k |F) ≥ 1/10 , where B n,k := ∀ ρ k+1 ≤s≤ρn Y s ≤ C 1 (s -ρ k+1 + 1)
(T k / T k ) ([R -1 , R]) = P (X ρ k ∈ [0, R]|∀ s≤ρ k X s ≥ Y s , Y ) -P X ρ k ≤ R -1 |∀ s≤ρ k X s ≥ Y s , Y ≥ P X ρ k ∈ [R -1 , R]|∀ s≤ρ k X s ≥ C 1 b ρ k (s) -P X ρ k ≤ R -1 |X ρ k ≥ 0 .
Using Lemma 4.1 we can choose R > 0 such that the first term is arbitrarily close to 1. By easy calculations the second term can be made arbitrarily close to 0. We fix R such that

(T k / T k ) ([R -1 , R]) ≥ 1 A 1 k (1/2). (4.34)
Our next aim is to study concentration of (4.32). To this end we denote

p(x) := P X ρ k+1 ∈ [0, C e ]|∀ ρ k+1 ≤s≤ρn X s ≥ Y s , X ρ k = x ,
where C e > 0 is to be fixed later. Using Fact 2.4 we estimate We are now ready to come back to (4.29). We recall (4.31) and denote 

p(x) ≥ P X ρ k+1 ∈ [0, C e ] ∩ B n,k |∀ ρ k+1 ≤s≤ρn X s ≥ Y s , X ρ k = x = P X ρ k+1 ∈ [0, C e ]|B n,k ∩ ∀ ρ k+1 ≤s≤ρn X s ≥ Y s , X ρ k = x × P B n,k |∀ ρ k+1 ≤s≤ρn X s ≥ Y s , X ρ k = x ≥ P X ρ k+1 ∈ [0, C e ]|∀ ρ k+1 ≤s≤ρn X s ≥ C 1 (s -ρ k+1 + 1) 1/3 , X ρ k = x P (B n,k ) . Assuming that r k = ρ k+1 -ρ k ∈ [1,
r k := sup x∈[R -1 ,R],y∈[ce,Ce] L k (x, y; 1) L k (x, y; -1) , L k := inf x∈[R -1 ,R],
g n,k ≤ r k L k ´R R -1 µ x,n,k ([c e , C e ])m(dx) + 1 L k ´R R -1 µ x,n,k ([c e , C e ])m(dx) + 1 ≤ r k L k C/2 + 1 L k C/2 + 1 ≤ 1 + CL k (r k -1) 4 ,
where the last estimate follows by (ab + 1)/(a + 1) ≤ 1 + a(b -1)/2 valid for a, b ∈ [0, 1]. Combining the last inequality with (4.30) we arrive at

G n,k ≤ -C 3 Ẽk 1 A n,k L 2 k (r k -1) 2 . (4.37)
for a constant C 3 > 0.

We are now ready to show (4.26) (which concludes the proof of the proposition). By the strong Markov property we have

EG n,k ≤ -C 3 E 1 A n,k L 2 k (r k -1) 2 ≤ -C 3 P A 1 k E L 2 k (r k -1) 2 1 r k ∈[1,10] P A 2 n,k .
We notice that the law of L 2 k (r k -1) 2 1 r k ∈ [START_REF] Aurzada | Lévy Matters V: Functionals of Lévy Processes, chapter Persistence Probabilities and Exponents[END_REF][START_REF] Metafune | The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure[END_REF] does not depend on k and it is not concentrated on 0,

thus P A 1 k E L 2 k (r k -1) 2 1 r k ∈[1,10] > 0.
The other two terms are uniformly bounded away from 0 by Fact 4.3.

Proof of Theorem 1.6. As observed at the beginning of the section, Lemmas 3.9 and 3.10, as well as Lemmas 3.1 and 3.11 respectively prove there exist two convex symmetric functions γ, δ such that for all β ∈ R,

lim t→+∞ log P (∀ s≤t X s ≥ βY s , X t -βY t ∈ (a, b)|Y ) t = -γ(β) lim t→+∞ log P (∀ s≤t X s ≥ βY s , X t -βY t ∈ (a, b)) t = -δ(β).
Moreover, by Lemma 4.4 and Proposition 4.5, for any β = 0, there exists c > 0 such that

γ(β) ≥ δ(β) + c,
proving that γ(β) > δ(β) for any β = 0.

Proof of Theorems 1.1 and 1.5

As observed in Remark 1.7, Theorem 1.1 is a direct consequence of Theorem 1.6. We now extend this result to prove Theorem 1.5.

Proof of Theorem 1.5. For simplicity, we assume here that a = 0 and b = +∞, therefore we ignore the condition B t -βW t ∈ (at 1/2 , bt 1/2 ). The proof in the general case is obtained in the same fashion, but with heavier notation. Denoting x := inf t≥0 g(t), one can find A > 0 and > 0 such that

-x/2 -Aj(t) ≤ f (t) ≤ x/2 + Aj(t), t ≥ 0,
where j(t) := min(t, t 1/2-). We have

P (∀ s≤t x/2 + B s ≥ W s + Aj(s)|W ) ≤ P (∀ s≤t x + B s ≥ W s + f (s)|W ) ≤ P (∀ s≤t g(t) + B s ≥ W s + f (s)|W ) ≤ P (∀ s≤t g(t) + B s ≥ W s -Aj(s)|W ) ≤ P ∀ h(t)≤s≤t g(t) + x/2 + B s ≥ W s -Aj(s)|W , (5.1)
where h(t) is any function such that (h(t)) 1/2-≥ g(t) + x + 1 and h(t) = e o(log t) . The right-hand side of the last expression is bounded from above by P ∀ h(t)≤s≤t 1 + B s ≥ W s -(A + 1)j(s)|W . We will show that the event

A := lim t→+∞ - log P ∀ h(t)≤s≤t 1 + B s ≥ W s -Aj(s)|W log t = γ(β) , ( 5.2) 
fulfills P (A) = 1. The same method can be used to show the almost sure convergence of the left-hand side of (5.1) (we skip the details). These will conclude the proof. We define a stochastic process {Z t } t≥0 by

Z t := exp ˆt 0 Aj (s)dW s - 1 2 ˆt 0 [Aj (s)] 2 ds .
This process is an uniformly integrable martingale (since ´+∞ 0 [j (s)] 2 ds ≤ +∞). We denote its limit by Z ∞ , that is P-a.s. positive, and define the measure (on the Wiener space) dQ = Z ∞ dP. By the Girsanov theorem under this measure {W s -Aj(s)} s≥0 is a standard Wiener process. We prove that

Q(A) = 1, (5.3) 
which is enough to conclude the proof. Indeed, as P (Z ∞ > 0) = 1 and We have

E1 A Z ∞ = Q(A) = 1,
δ t = - log P ∀ s≤h(t) 1 + B s ≥ W s |∀ h(t)≤s≤t 1 + B s ≥ W s , W log t ≤ - log P ∀ s≤h(t) 1 + B s ≥ W s |W log t ,
where the last inequality holds by Lemma 2.3. Now the proof is straightforward, indeed

- log ∀ 0≤s≤h(t) 1 + B s ≥ W s , W log t = - log P ∀ 0≤s≤h(t) 1 + B s ≥ W s , W log h(t)
log h(t) log t → 0, P -a.s.

Theorem 1.1 and log h(t)/ log t → 0. In order to prove the L p convergence it is enough to show that the family

{-log P (∀ s≤t x/2 + B s ≥ W s + Aj(s)|W ) /t} t≥0 ,
is L p -uniformly integrable. This follows by easy calculations from Fact 3.8 using relation (1.7).

We end this section with a proof of Fact 1.4.

Proof of Fact 1.4. Let (X k ) k≥0 be a sequence of i.i.d. random variables such that E(X 2+ k ) < +∞. By Borel-Cantelli lemma, we have

L := max n ∈ N : |X n | ≥ n 1/(2+ ) < +∞ a.s.
Therefore, we have lim sup

N →+∞ log P (∀ n≤N B n ≥ X n |X) log n ≤ lim sup N →+∞ log P ∀ L<n≤N B n ≥ n 1/(2+ ) |L log n ≤ -1 2 a.s.
Similarly, setting M = max n≤L X n , we have lim inf

N →+∞ log P (∀ n≤N B n ≥ X n |X) log n ≥ lim inf N →+∞ log P ∀ n≤N B n ≥ -M -n 1/(2+ ) |L, M log n ≥ -1 2 a.s.

Proof of the facts for random walks

We now use definitions of Section 1.3. We write S a random walk in random environment µ, and set

W n = -E(S n |µ) and B n = S n + W n .
To make the notation more clear in this section we assume that we have two probability spaces (Ω, F, P), ( Ω, G, Q) which supports B and µ respectively. The measure P depends on the realization of µ, which is made implicit in the notation. Thus we are going to prove lim

N →+∞ log P ∀ n≤N x + B n ≥ W n + f (n), B N -W N ∈ (aN 1/2 , bN 1/2 ) log N = -γ Var(W1) Var(B1) on A x , -∞ on A c x .
, Q-a.s. (6.1)

Further to simplify the notation we put γ := γ Var(W1) Var(B1) and

p N := P ∀ n≤N x + B n ≥ W n + f (n), B N -W N ∈ (aN 1/2 , bN 1/2 ) . (6.2)
We need a bound that the inhomogeneous random walk B grows fast. This will be contained in the first two lemmas of this section. We will use tilting of measure. Let us denote the increments of B by

X n := B n -B n-1 .
Let us recall C 1 from the assumption (A2). For any θ ∈ [0, C 1 ] and n ∈ N we define a probability measure H n,θ by dH n,θ dP := e θXn ψ -1 n (θ), ψ n (θ) = Ee θXn . (6.

3)

The tilting is supposed to "increase" X n s. The following lemma quantifies this Lemma 6.1. There exist θ 0 ∈ (0, C 1 ) and 0 < c ≤ c such that for any θ ≤ θ 0 and n ∈ N we have

H n,θ (X n ) ∈ [cθEX 2 n , cθEX 2 n ].
We define events B N := ∀ n≤N | Bn | ≤ C 2 a n , for some C 2 > 0. We have an elementary estimation

|b n -b n+1 | ≤ C 3 n -3/2 log log n, C 3 > 0.
Putting things together we obtain

q N ≥ N -C1(log log N ) 2 P N 1 A N ∩B N exp -| BN b N | -C 3 N -1 n=1 |n -3/2 log log n)|| Bn | ≥ N -C1(log log N ) 2 P N 1 A N ∩B N exp -BN b N -C 4 N -1 n=1 n -1 (log log n) 2 ≥ N -C5(log log N ) 2 P N (A N ∩ B N ) ,
where we introduced C 4 , C 5 > 0. We notice that

A N ⊇ BN ≥ a N - N n=1 E N X i ⊇ BN ≥ -a N /2 .
Finally, we leave to the reader proving that lim inf N →∞ P N (A N ∩ B N ) > 0, which concludes the proof.

Let us recall the event A x defined in (1.6). Let us denote by pN the version of p N from (6.2)

without condition B N -W N ∈ (aN 1/2 , bN 1/2 ) i.e. pN := P (∀ n≤N x + B n ≥ W n + f (n)) . ( 6.6) 
In the following lemma we prove a crude bound corresponding to the bound from above in Theorem 1.10. Namely Lemma 6.3. We have

lim inf N →+∞ log pN N 2 ≥ 0 on A x , -∞ on A c x .
Q -a.s.

Proof. The proof will follow again by the change of measure techniques. Due to a very big normalization the proof can be somewhat brutal. We fix b N = b ∈ (0, C 1 ) (C 1 as in (A2)) and use Λ N and P N as in (6.5). We denote

B N := {∀ n≤N x + B n ≥ W n + f (n)} and calculate pN = P N (1 B N Λ -1 N ) ≥ P N 1 B N exp - N n=1 bX n .
We introduce also B

1 N := ∀ n∈{1,...,N } X n ≤ N 1/2 . Trivially we have pN ≥ P N 1 B N ∩B 1 N exp - N n=1 bX n ≥ e -bN 3/2 P N (B N ∩ B 1 N ) (6.7) ≥ e -bN 3/2 P N (B N ) -P N ((B 1 N ) c ) ≥ e -bN 3/2 P N (B N ) -N e -cN 1/2 ,
where the last inequality follows by the union bound and the fact that exponential moments of X n are uniformly bounded, see (A2). Let us concentrate on P N (B N ). We denote v = Q E(X 2 i ) and define

L := inf n ≥ 0 : ∀ k≥n k i=0 E(X 2 i ) ≥ kv/2 .
Clearly Q(L < +∞) = 1. Fix K > 0 and denote the following events in G (i.e. describing conditions on W )

A K := A 1 K ∩ A 2 K , A 1 K := {L < K} , A 2 K := ∀ k≥K W k ≤ k 2/3 -f (k) .
Using the Markov property we get

P N (B N ) ≥ P N ∀ n∈{1,...,K} x + B n ≥ W n + f (n), B K ≥ Kv/2 (6.8) × P N ∀ n∈{K,...,N } B n ≥ W n + f (n)|B K = Kv/2 .
We denote the first term by pK . It is easy to check that the law of B n under P N stochastically dominates the one under P thus {p K = 0} ⊂ A c x . Conditionally on A 2 K we have

P N ∀ n∈{K,...,N } B n ≥ W n + f (n)|B K = Kv/2 ≥ 1 - +∞ n=K P N (B n ≤ nv/4|B K = Kv/2) .
We denote Bn := B n -E N B n . By Lemma 6.1, conditionally on A 1 K , we have

E N B k ≥ ckv/2, thus P N ∀ n∈{K,...,N } B n ≥ W n + f (n)|B K = Kv/2 ≥ 1 - +∞ n=0 P N Bn ≤ -cnv/4|B 0 = Kv/2 .
Observing that the random variables X n are uniformly exponentially integrable we get a constant c 1 > 0 such that

P N ∀ n∈{K,...,N } B n ≥ W n + f (n)|B K = Kv/2 ≥ 1 - +∞ n=K e -c1n > 0,
for K large enough. Putting the above estimates to (6.8) we obtain that for some C > 0

1 A K P N (B N ) ≥ 1 A K C pK .
Using this in (6.7) we have lim inf

N →+∞ log pN N 2 ≥ 0 on A K ∩ A x , -∞ on A c K ∪ A c x . Q -a.s.
The proof is concluded passing K +∞ and by observing that 1 A K → 1, Q-a.s.

We finally pass to the proof of Theorem 1.10. We notice that by the very definition of A x (see 1.6) it is obvious that the convergence holds on A c

x . Thus in the proofs below we concentrate on proving the convergence on the event A x . The instrumental tool of this proof will be the so-called KMT coupling. We choose the measure Q to be a special one. By [START_REF] Lifshits | Lecture notes on strong approximation[END_REF]Corollary 2.3] we can find a probability space ( Ω, G, Q) with processes {W k } k≥0 and Ŵk k≥0 , which is a random walk with the increments distributed according to N (0, σ 2 W ), where σ 2 W = Var(W 1 ) and

lim sup k→+∞ | Ŵk -W k | (log k) 2 = 0, Q -a.s. ( 6.9) 
Further we can extend the measure Q so that Ŵ is a marginal of a Brownian motion, also denoted by Ŵ . Slightly abusing notation we keep Q to denote the extended measure and Ŵ for the Brownian motion.

First we prove (6.1) for this special measure. At the end of the proof we argue how this statement implies the thesis of Theorem 1.10. We start with the bound from above. We recall p N defined in (6.2). One finds A and > 0 such that for any n ∈ N we have f (n) ≥ -An 1/2-. Further we set pN of (6.6) with this function, i.e.

pN := log

P ∀ n≤N x + B n ≥ W n -An 1/2-.
In this part we will show lim sup

N →+∞ log p N log N ≤ lim sup N →+∞ log pN log N ≤ -γ, Q-a.s. (6.10)
We define a function f : .11) We recall that the measure P depends on realization of W and that Z i := EX 2 i i≥0 is a sequence of i.i.d variables with respect to Q. It is easy to check, using the exponential Chebyshev inequality, that (A2) implies existence of C1 > 0 such that Z i ≤ C1 . We define a sequence of events belonging to G given by

N × M(R) N → R by f (n, µ) := n i=1 EX 2 i . ( 6 
A N := ∀ k≤N | Ŵk -W k | ≤ (log N ) 2 ∩ ∀ k≤N sup t∈[k,k+1] | Ŵt -Ŵk | ≤ (log N ) 2 (6.12) ∩ ∀ k≥log N max l∈{-k 2/3 ,...,k 2/3 } | Ŵk -Ŵk+l | ≤ k 4/9 ∩ ∀ k≥log N |f (k, µ) -kQ(E(X 2 1 ))| ≤ k 1/2 log k .
We have 1 A N → 1 Q-a.s. The convergence of the first term follows by (6.9). The proof of the others are rather standard (we note that exponents 2/3 and 4/9 can be made smaller but this is not relevant for our proof). As an example we treat the last but one term. We set By simple scaling arguments we notice that (6.17 We notice that by assumption (A2) for large N we have P B K N ≥ N 1/3 ≤ exp(-N 1/4 ). Thus this term is negligible in (6.16) and we get lim inf

N →+∞ log q N log N ≥ 0 on A x -∞ on A c x .
This together with (6.17) implies (6.15). For (6.17) we will apply coupling arguments similar to the ones in the previous proof. We keep the notation (W, Ŵ ) and (B, B). We will also use the events of (6.12). Finally, we know that for some > 0 we have f (n) ≤ n 1/2-/2 for n large enough. We set a , b such that a < a < b < b. Conditionally on A N for N large enough

pN ≥ P ∀ K N ≤n≤N A N + B K N n ≥ Ŵn + n 1/2-/2, B K N N -ŴN ∈ (a N 1/2 , b N 1/2 ) .
Further, recalling (6.11) and (6.14) for a < a < b < b we have

pN ≥ P ∀ K N ≤n≤N A N /2 + Bf(n,µ)-f(K N ,µ) ≥ Ŵn + n 1/2- Bf(N,µ)-f(K N ,µ) -ŴN ∈ (a N 1/2 , b N 1/2 ) -P (B c N ) .
Similarly as in the previous case the second term will be negligible. Let f N (•, µ) be the piece-wise linearization of {K N , . . . , N } n → f (n, µ) -f (K N , µ). It is non-decreasing thus we may define its inverse by g N (t, µ) := inf {s ≥ 0 : f N (s, µ) ≥ t}. We set v = Q(E(X Using the third condition of (6.12) and performing simple calculations we have 

A N ∩ C N ⊂ ∀
P D N | BM N -ŴM N /v = x .
It is easy to check that with high probability (with respect to Q) the last term is bigger than 1/2. Recalling that P (B c N ) is negligible and utilizing Theorem 1.5 we obtain (6.17). This together with (6.10) implies (6.1) for the special choice of the realization of W (i.e. we worked with the measure Q on which we had the coupling (W, Ŵ )). To remove this assumption let us consider l be the space with R-valued sequences with the product topology. Given any other probability measure P supporting W and B we have P (W ∈ A) = Q(W ∈ A) for any A in the Borel σ-field of l. One checks that A 0 := g ∈ l : lim N →+∞ log P (∀ n≤N x + B n ≥ g n + f (n)) , B N -W N ∈ (aN 1/2 , bN 1/2 ) log N = -γ belongs to this σ-field. Now we have

P (A 0 ) = Q(A 0 ) = 1.
This concludes the proof of Theorem 1.10. We skip the proof of Theorem 1.11, it follows by rather simple modifications of the above proof. We are still left with Proof of Fact 1.8. The first part of the fact is easy e.g. by the Hsu-Robbins theorem. For the second part let us consider first that sup S B = +∞. Then every step of B can be bigger than the one of W thus clearly for any N we have P (∀ n≤N x + B n ≥ W n |W ) > 0. Now, we assume S := sup S B < +∞.

For any fixed N we have P (B 1 ≥ S -x/(2N )) > 0. Further, one verifies that

{∀ n≤N : B n -B n-1 ≥ S -x/(2N )} ⊂ {P (∀ n≤N x + B n ≥ W n |W ) > 0} .
Therefore, one obtains P (A x ) = 1. The second part of the proof goes easily by contradiction. If the condition does not hold then there exists S and > 0 such that P (W 1 ≥ S + ) > 0 and P (B 1 ≥ S -) = 0. From this we see that P W 2x/ ≥ 2x/ S + 2x > 0 while P B 2x/ ≥ 2x/ S = 0.

Discussion and Open Questions

In the concluding section we discuss some open questions and further areas of research.

• The function γ introduced in Theorem 1.1 calls for better understanding. We are convinced that it is strictly convex. It should be possible to obtain its asymptotics when β → +∞, we expect that γ(β)/β 2 → C, for C > 0.

• The qualitative results of our paper should hold in a much greater generality. Let us illustrate that on an example. We expect that the convergence in Theorem 1.9 stays valid for any processes {W n } n∈N , {B n } n∈N whose increments are weakly correlated (for example with the exponential decay of correlations like Cov(W n+1 -W n , W k+1 -W k ) ∼ exp(-c|n -k|)). Similarly the qualitative statement of Theorem 1.1 should be valid if processes {B t } t≥0 , {W t } t≥0 are diffusions without strong drift (possibly the proper condition to assume is that the spectral gap is 0).

• The case β = 0 in Theorem 1.1 is well-studied, in particular it is known that conditioning a Brownian motion to stay above the line has a repelling effect and such a process escapes to infinity as t 1/2 as t → +∞. Our result γ(β) > γ(0) for β = 0 suggests that the repelling effect is stronger when the disorder is present. Quantifying this effect would be an interesting research question.

Remark 1 . 3 .

 13 Adhering to the parlance of disordered systems one can interpret (1.1) as the relevance of the disorder. Namely, for any β > 0 we have lim t→+∞ E [-log P (∀ s≤t x + B s ≥ βW s |W )] log t > lim t→+∞ -log P (∀ s≤t x + B s ≥ βW s ) log t
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 38 For any C ≥ 0, a ≥ C and b ∈ (a, +∞] the family of random variables {H t } t≥0 defined by

q

  k := P max l∈{-k 2/3 ,...,k 2/3 } | Ŵk -Ŵk+l | ≤ k 4/9 .By the properties of a Wiener process we know that max l∈{-k 2/3 ,...,k 2/3 } | Ŵk -Ŵk+l | has the tails decaying faster than exp -t 2 /(4k 2/3 ) , for t large enough. Thus1 -q k ≤ P max l∈{-k 2/3 ,...,k 2/3 } | Ŵk -Ŵk+l | ≥ k 4/9 ≤ exp -k 2/9 /4 .This quantity is summable thus the proof follows by the standard application of the Borel-Cantelli lemma. From now on, we will work conditionally on A N . Using its first condition we have pN≤ log P ∀ log N ≤n≤N 2(log N ) 2 + B n ≥ Ŵn -An 1/2-. (6.13)We use the coupling techniques also for P. Namely, by [8, Theorem 3.1] on a common probability space (denoted still by P), we have processes {B k } k≥0 , distributed as the random walk from our theorem and Bt t≥0 a Brownian motion which approximates B. Recalling (6.11) we defineB N := ∀ k≤N |B k -Bf(k,µ) | ≤ (log N ) 2 ∩ ∀ k≤N sup t∈[k,k+1] ( Bt -Bk ) ≤ (log N ) 2 . (6.14)Applying[START_REF] Lifshits | Lecture notes on strong approximation[END_REF] Theorem 3.1] to the first term and standard considerations to the second one we obtain log P (B c N ) / log N → N →+∞ -∞. We continue estimations of (6.13) as follows pN ≤ P ∀ log N ≤n≤N 4(log N ) 2 + Bf(n,µ) ≥ Ŵn -An 1/2-, B N + P (B c N ) .

  log P (B K N ≥ A N )log N = 0, Q -a.s.(6.18) 

  ) and (6.18) imply lim infN →+∞ log p(a N , k N , K N )log N ≥ 0, and lim infN →+∞ log P (B k N ≥ a N ) log N = 0, Q -a.s.

2 1 )

 1 ) (we recall that X 1 = B 1 )C N := ∀ t≥0 |g N (t, µ) -t/v| ≤ [(log N ) 3 ∨ t 2/3 ] .We leave to the reader verifying that 1C N → 1 Q-a.s. Now conditionally on C N we have pN ≥ P ∀ vK N /2≤t≤M N A N /2 + Bt ≥ Ŵg N (t,µ) + (g N (t, µ)) 1/2-, D N -P (B c N ) ,where M N = vN -N 3/4 andD N := ∀ M N <t<vN +N 3/4 Bt -Ŵg N (t,µ) ∈ (a N 1/2 , b N 1/2 ) .

3 .

 3 t≥log N Ŵg N (t,µ) ≤ Ŵt/v + t 4/9 + (log N ) Therefore on A N ∩ C N , for N large enough, we get pN ≥ P ∀ vK N /2≤t≤M N A N /4 + Bt ≥ Ŵt/v + t 4/9 , D N -P (B c N ) .We choose a , b such that a < a < b < b and apply the Markov propertyP ∀ vK N /2≤t≤M N A N /4 + Bt ≥ Ŵt/v + t 4/9 , D N ≥ P ∀ K N /2≤t≤M N A N /4 + Bt ≥ Ŵt/v + t 4/9 , BM N -ŴM N /v ∈ (a N 1/2 , b N 1/2 ) × inf x∈(a N 1/2 ,b N 1/2 )

  .5) Using the same techniques as[6, B.6] one shows that P (X t1 , . . . ,X t k ) ∈ •|∀ i∈{1,...,k} X ti ≥ f n (t i ) stochastically dominates P (X t1 , . . . , X t k ) ∈ •|∀ i∈{1,...,k} X ti ≥ g n (t i ) . We notice that conditionally on X ti = x and X ti+1 = y the process {X t -[(t i+1 -t)x + (t -t)y] /(t i+1 -t i )} t∈[ti,ti+1] is a Brownian bridge. Moreover if we condition on the whole vector (X t1 , X t2 , . . . , X t k ), by the Markov property the brides on the different intervals are independent.

  1/3 . We first prove concentration of m = T k / T k (recall (4.19)). Let R > 0, by the FKG property stated in Lemma 2.3, conditionally on the event A 1

	k

  10], we can set C e such that Lemma 4.2 implies that the first term is bounded away from 0 uniformly in n, k and x ∈ [R -1 , R].

			Together with (4.34) this implies
	ˆR R -1	µ x,n,k ([0, C e ])m(dx) ≥ C1 A n,k ,
	for some C > 0. One further finds c e > 0 (we skip details) such that
	ˆR R -1	µ x,n,k ([c e , C e ])m(dx) ≥ (C/2)1 A n,k .	(4.35)
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Proof. By (6.3) we have

EX n e θXn . The proof will be finished once we show that for any n and small enough θ we have EX n e θXn = (EX 2 n )θ + o(θ), ψ n (θ) = 1 + O(θ 2 ). (6.4) By the assumption of the uniform exponential integrability in (A2) and Cauchy's estimate [START_REF] Rudin | Real and complex analysis[END_REF]Theorem 10.26] for any n and 0 ≤ θ ≤ C 1 /2 we get

for some C > 0. By the assumptions ψ n (0) = 1 and ψ n (0) = EX n = 0, thus the second statement of (6.4) follows by the Taylor formula (with the Lagrange reminder). For the first one we notice that EX n e θXn = ψ n (θ), ψ n (0) = EX 2 n and again apply the Taylor expansion.

We present now the aforementioned bound.

Lemma 6.2.

There exist c, C > 0 such that for large enough N on the event

we have

Proof. We define a n := 1 4 θ 0 cn 1/2 log log n, where θ 0 , c are given by Lemma 6.1 and consider the events A N := {S N ≥ a N } . We denote also b n := (θ 0 n -1/2 log log n) ∨ 0 and let us define the tilted measure

Further, we write q N := P (A N ) = P N 1 A N Λ -1

N

. We have to estimate

We introduce Xn := X n -E N X n and accordingly Bn := n i=1 Xi . In our notation

Now, by Lemma 6.1 and the assumption (A2) we obtain

for C 1 > 0. Next, we apply the Abel transform

We extend, in the piece-wise linear fashion, the function f to the whole line with respect to its first argument. This function is non-decreasing and we denote its generalized inverse by g(t, µ) := inf {s ≥ 0 : f (s, µ) ≥ t}. We change to the continuous time (writing t instead of n). By the second and last condition of (6.12) for some C > 0 we have

Using two last conditions of (6.12) one checks that

)) -t 4/9 and thus conditionally on A N we have

)) -t 4/9 -2At 1/2-=: pN . Utilizing Theorem 1.5 one gets lim

.

We recall that in our notation Q(E(X 2 i )) is the same as E E B 2 1 |µ = EB 2 1 in the standard notation. Recalling that P (B c N ) is negligible we obtain (6.10). Before passing further let us state a simple conditioning fact. Lemma 6.4. Let {T n } n≥0 be a random walk and {a n } n≥0 be a sequence. Then for any N the law

Its proof following by inductive application of the Markov property is easy and thus skipped. We pass to the bound from below. We recall (6.2). Our aim is to prove lim inf

x .

(6.15)

We denote K N := (log N ) 6 and A N := cK 1/2 N log log K N (c is as in Lemma 6.2 ). Utilizing the Markov property we obtain log p N ≥ log q N + log pN , where

where for l we denote

For q N we utilize Lemma 6.4 as follows