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Branching random walk with selection at critical rate

Bastien Mallein∗

May 27, 2016

Abstract

We consider a branching-selection particle system on the real line. In this model the total
size of the population at time n is limited by exp

(
an

1/3
)
. At each step n, every individual

dies while reproducing independently, making children around their current position according
to i.i.d. point processes. Only the exp

(
a(n + 1)1/3

)
rightmost children survive to form the

(n + 1)th generation. This process can be seen as a generalisation of the branching random
walk with selection of the N rightmost individuals, introduced by Brunet and Derrida in [9].
We obtain the asymptotic behaviour of position of the extremal particles alive at time n by
coupling this process with a branching random walk with a killing boundary.

1 Introduction

Let L be the law of a point process on R. A branching random walk on R with reproduction law
L is a particle system defined as follows: it starts at time 0 with a unique individual ∅ positioned
at 0. At time 1, this individual dies giving birth to children which are positioned according to a
point process of law L. Then at each time k ∈ N, every individual in the process dies, giving birth
to children which are positioned according to i.i.d. point processes of law L, shifted by the position
of their parent. We denote by T the genealogical tree of the process, encoded with the Ulam-Harris
notation. Note that T is a Galton-Watson tree. For a given individual u ∈ T, we write V (u) ∈ R

for the position of u, and |u| ∈ Z+ for the generation of u. If u is not the initial individual, we
denote by πu the parent of u. The marked Galton-Watson tree (T, V ) is the branching random
walk on R with reproduction law L.

Let L be a point process with law L. In this article, we assume the Galton-Watson tree T

never gets extinct and is supercritical, i.e.

P (#L = 0) = 0 and E [#L] > 1. (1.1)

We also assume the branching random walk (−V,T) to be in the so-called boundary case, with
the terminology of [6], that can be written:

E

[
∑

ℓ∈L

eℓ

]
= 1, E

[
∑

ℓ∈L

ℓeℓ

]
= 0 and σ2 := E

[
∑

ℓ∈L

ℓ2eℓ

]
< +∞. (1.2)

Under mild assumptions, discussed in [17, Appendix A], there exists an affine transformation
mapping a branching random walk with a branching random walk in the boundary case. We
impose the following integrability condition

E



(
∑

ℓ∈L

eℓ

)[
log

(
∑

ℓ∈L

eℓ

)]2

 < +∞. (1.3)

Aı̈dékon [1] proved that max|u|=n V (u)+ 3
2 logn =⇒

n→+∞
W under slightly stronger assumptions, where

W is a random shift of a Gumbel distribution.
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In [9], Brunet and Derrida described a discrete-time particle system1 on Z in which the total
size of the population remains constant equal to N . At each time k, individuals alive reproduce
in the same way as in a branching random walk, but only the N rightmost individuals are kept
alive to form the (k + 1)th generation. This process is called the N -branching random walk.
They conjectured that the cloud of particles in the process moves at some deterministic speed vN ,
satisfying

vN = − π2σ2

2(logN)2

(
1 +

(6 + o(1)) log logN

logN

)
as N → +∞.

Bérard and Gouéré [4] proved that for a N -branching random walk satisfying some strong
integrability conditions, the cloud of particles moves at linear speed vN on R, i.e. writing mN

n ,M
N
n

respectively the minimal and maximal position at time n, we have

∀N ∈ N, lim
n→+∞

MN
n

n
= lim

n→+∞

mN
n

n
= vN a.s. and vN ∼

N→+∞
− π2σ2

2(logN)2
,

partially proving the Brunet-Derrida conjecture. This result still holds simply assuming (1.1), (1.2)
and a weak version of (1.3), as proved in [22].

We introduce a similar model of branching-selection process. We set φ : N → N, and we
consider a process with selection of the φ(n) rightmost individuals at generation n. More precisely
we define Tφ as a non-empty subtree of T, such that ∅ ∈ Tφ and the generation k ∈ N is composed
of the φ(k) children of {u ∈ Tφ : |u| = k − 1} with largest positions, with ties broken uniformly
at random2. The marked tree (Tφ, V ) is the branching random walk with selection of the φ(n)
rightmost individuals at time n. We write

mφ
n = min

u∈Tφ,|u|=n
V (u) and Mφ

n = max
u∈Tφ,|u|=n

V (u). (1.4)

The main result of the article is the following.

Theorem 1.1. Let a > 0, we set φ(n) =
⌊
exp

(
an1/3

)⌋
. Under assumptions (1.1), (1.2) and (1.3)

we have

Mφ
n ∼
n→+∞

−3π2σ2

2a2
n1/3 a.s. (1.5)

mφ
n ∼
n→+∞

−
(

3π2σ2

2a2
+ a

)
n1/3 a.s. (1.6)

We prove Theorem 1.1 using a coupling between the branching random walk with selection
and a branching random walk with a killing boundary, introduced in [4]. We also provide in this
article the asymptotic behaviour of the extremal positions in a branching random walk with a
killing boundary; and the asymptotic behaviour of the extremal positions in a branching random

walk with selection of the
⌊
ehk/nn

1/3
⌋

at time k ≤ n, where h is a positive continuous function.

We consider in this article populations with eO(n1/3) individuals, evolving for n units of time.
This growth rate is in some sense critical. More precisely in [8], the branching random walk
with selection of the N rightmost individuals is conjectured to typically behave at the time scale
(logN)3. This observation has been confirmed by the results of [4, 5, 21]. By similar methods, we
prove the maximal displacement in a branching random walk with selection of the ean

α

rightmost

individuals at time n behaves as − π2σ2

2(1−2α)a2n
1−2α for α < 1/2. If α > 1/2, we expect the maximal

displacement to be of order logn.
In this article, c, C stand for positive constants, respectively small enough and large enough,

which may change from line to line and depend only on the law of the processes we consider.
Moreover, the set {|u| = n} represents the set of individuals alive at the nth generation in a
generic branching random walk (T, V ) with reproduction law L.

The rest of the article is organised as follows. In Section 2, we introduce the spinal decompo-
sition of the branching random walk, the Mogul’skĭı small deviations estimate and lower bounds
on the total size of the population in a Galton-Watson process. Using these results, we study in
Section 3 the behaviour of a branching random walk with a killing boundary. Section 4 is devoted
to the study of branching random walks with selection, that we use to prove Theorem 1.1.

1Extended in [8] to a particle system on R.
2Or in any other predictable fashion.
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2 Some useful lemmas

2.1 The spinal decomposition of the branching random walk

For any a ∈ R, we write Pa for the probability distribution of (T, V + a) the branching random
walk with initial individual positioned at a, and Ea for the corresponding expectation. To shorten
the notation, we set P = P0 and E = E0. We write Fn = σ(u, V (u), |u| ≤ n) for the natural
filtration on the set of marked trees. Let Wn =

∑
|u|=n e

V (u). By (1.2), we observe that (Wn) is a

non-negative martingale with respect to the filtration (Fn). We define a new probability measure
Pa on F∞ such that for all n ∈ N,

dPa

dPa

∣∣∣∣
Fn

= e−aWn. (2.1)

We write Ea for the corresponding expectation and P = P0, E = E0. The so-called spinal decom-
position, introduced in branching processes by Lyons, Pemantle and Peres in [20], and extended
to branching random walks by Lyons in [19] gives an alternative construction of the measure Pa,
by introducing a special individual with modified reproduction law.

Let L be a point process with law L, we introduce the law L̂ defined by dL̂
dL(L) =

∑
ℓ∈L e

ℓ. We

describe a probability measure P̂a on the set of marked trees with spine (T, V, w), where (T, V ) is
a marked tree, and w = (wn, n ∈ N) is a sequence of individuals such that for any n ∈ N, wn ∈ T,
|wn| = n and πwn = wn−1. The ray w is called the spine of the branching random walk.

Under law P̂a, the process starts at time 0 with a unique individual w0 = ∅ located at position a.
It generates its children according to a point process of law L̂. Individual w1 is chosen at random
among the children u of w0 with probability proportional to eV (u). At each time n ∈ N, every
individual u in the nth generation dies, giving independently birth to children according to the
measure L if u 6= wn and L̂ if u = wn. Finally, wn+1 is chosen at random among the children v of
wn with probability proportional to eV (v).

Proposition 2.1 (Spinal decomposition [19]). Under assumption (1.2), for all n ∈ N, we have

P̂a

∣∣∣
Fn

= Pa

∣∣
Fn

. Moreover, for any u ∈ T such that |u| = n, P̂a (wn = u| Fn) = eV (u)/Wn, and

(V (wn), n ≥ 0) is a centred random walk starting from a with variance σ2

This proposition in particular implies the following result, often called in the literature the
many-to-one lemma, which has been introduced for the first time by Kahane and Peyrière in
[18, 24], and links additive moments of the branching random walks with random walk estimates.

Lemma 2.2 (Many-to-one lemma [18, 24]). There exists a centred random walk (Sn, n ≥ 0) with
variance σ2, verifying Pa(S0 = a) = 1, such that for any n ≥ 1 and any measurable non-negative
function g, we have

Ea


∑

|u|=n

g(V (u1), . . . V (un))


 = Ea

[
ea−Sng(S1, . . . Sn)

]
. (2.2)

Proof. We use Proposition 2.1 to compute

Ea


∑

|u|=n

g(V (u1), · · ·V (un))


 = Ea


 ea

Wn

∑

|u|=n

g(V (u1), · · ·V (un))




= Êa


ea

∑

|u|=n

1{u=wn}e
−V (u)g(V (u1), · · ·V (un))




= Êa

[
ea−V (wn)g(V (w1), · · · , V (wn))

]
.

Therefore we define the random walk S under Pa as a process with the same law as (V (wn), n ≥ 0)

under P̂a, which ends the proof. Note that for any continuous bounded function,

Ea(f(S1 − a)) = E

[
∑

ℓ∈L

eℓf(ℓ)

]
.
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Using the many-to-one lemma, to compute the number of individuals in a branching random
walk who stay in a well-chosen path, we only need to understand the probability for a random
walk to stay in this path. This is what is done in the next section.

2.2 Small deviations estimate and variations

The following theorem gives asymptotic bounds for the probability for a random walk to have
small deviations, i.e., to stay until time n within distance significantly smaller than

√
n from the

origin. Let (Sn, n ≥ 0) be a centred random walk on R with finite variance σ2. We assume that
for any x ∈ R, Px(S0 = x) = 1 and we set P = P0.

Theorem 2.3 (Mogul’skĭı estimate [23]). Let f < g be continuous functions on [0, 1] such that
f0 < 0 < g0 and (an) a sequence of positive numbers such that

lim
n→+∞

an = +∞ and lim
n→+∞

a2
n

n
= 0.

For any f1 ≤ x < y ≤ g1, we have

lim
n→+∞

a2
n

n
log P

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]
= −π2σ2

2

∫ 1

0

ds

(gs − fs)2
. (2.3)

In the rest of this article, we use some modifications of the Mogul’skĭı theorem, that we use later
choosing an = n1/3. We start with a straightforward corollary: the upper bound of the Mogul’skĭı
theorem holds uniformly with respect to the starting point.

Corollary 2.4. Let f < g be continuous functions on [0, 1] such that f0 < g0 and (an) a sequence
such that lim

n→+∞
an = +∞ and lim

n→+∞
a2
n/n = 0. For any f1 ≤ x < y ≤ g1, we have

lim
n→+∞

a2
n

n
log sup

z∈R

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]
= −π2σ2

2

∫ 1

0

ds

(gs − fs)2
. (2.4)

Proof. We observe that

sup
z∈R

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]

≥ P
an

f0+g0
2

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]
.

Therefore, applying Theorem 2.3, we have

lim inf
n→+∞

a2
n

n
log sup

z∈R

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]
≥ −π2σ2

2

∫ 1

0

ds

(gs − fs)2
.

We choose δ > 0, and set M =
⌈
g0−f0

δ

⌉
. We observe that for any z 6∈ [f0, g0],

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]
= 0,

thus

sup
z∈R

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]

= max
0≤k≤M−1

sup
z∈[f0+kδ,f0+(k+1)δ]

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]

≤ max
0≤k≤M−1

Pan(f0+kδ)

[
Sn
an

∈ [x, y + δ],
Sj
an

∈
[
fj/n, gj/n + δ

]
, j ≤ n

]
.

4



As a consequence, we have

lim sup
n→+∞

a2
n

n
log sup

z∈R

Pzan

[
Sn
an

∈ [x, y],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

]
≤ −π2σ2

2

∫ 1

0

ds

(gs − fs + δ)2
.

Letting δ → 0 ends the proof.

We now extend Theorem 2.3 to enriched random walks, a useful toy-model to study the spine of
the branching random walk. The following lemma is proved using a method similar to the original
proof of Mogul’skĭı in [23].

Lemma 2.5 (Mogul’skĭı estimate for spine). Let ((Xj , ξj), j ∈ N) be an i.i.d. sequence of random
variables taking values in R × R+, such that E(X1) = 0 and σ2 := E(X2

1 ) < +∞. We write
Sn =

∑n
j=1 Xj and En = {ξj ≤ n, j ≤ n}. Let (an) ∈ R

N
+ be such that

lim
n→+∞

an = +∞, lim
n→+∞

a2
n/n = 0 and lim

n→+∞
a2
nP(ξ1 ≥ n) = 0.

Let f < g be two continuous functions. For all f0 < x < y < g0 and f1 < x′ < y′ < g1, we have

lim
n→+∞

a2
n

n
inf

z∈[x,y]
log Pzan

(
Sn
an

∈ [x′, y′],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n,En

)
= −π2σ2

2

∫ 1

0

ds

(gs − fs)2
.

Proof. For any z ∈ [x, y], we have

Pzan

(
Sn
an

∈ [x′, y′],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n,En

)
≤ sup

h∈R

Phan

(
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n

)
.

So the upper bound in this lemma is a direct consequence of Corollary 2.4.
We now consider the lower bound. We assume in a first time that f and g are two constants.

Let n ≥ 1, f < x < y < g and f < x′ < y′ < g, we bound from below the quantity

P x
′,y′

x,y (f, g) = inf
z∈[x,y]

Pzan

(
Sn
an

∈ [x′, y′],
Sj
an

∈ [f, g], j ≤ n,En

)
.

Setting A ∈ N and rn =
⌊
Aa2

n

⌋
, we divide [0, n] into K =

⌊
n
rn

⌋
intervals of length rn. For

k ≤ K, we write mk = krn, and mK+1 = n. By restriction to the set of trajectories verifying
Smk ∈ [x′an, y

′an], applying the Markov property at times mK , . . .m1, we have

P x
′,y′

x,y (f, g) ≥ πx
′,y′

x,y (f, g)
(
πx

′,y′

x′,y′ (f, g)
)K

, (2.5)

where πx
′,y′

x,y (f, g) = infz∈[x,y] Pzan

(
Srn
an

∈ [x′, y′],
Sj
an

∈ [f, g], j ≤ rn, Ern

)
.

Let δ > 0 chosen small enough such that M =
⌈
y−x
δ

⌉
≥ 3 we observe easily that

πx
′,y′

x,y (f, g) ≥ min
0≤m≤M

πx
′,y′

x+mδ,x+(m+1)δ(f, g)

≥ min
0≤m≤M

πx
′−(m−1)δ,y−(m+1)δ
x,x (f − (m− 1)δ, g − (m+ 1)δ). (2.6)

Moreover, we have

πx
′,y′

x,x (f, g) = Pxan

(
Srn
an

∈ [x′, y′],
Sj
an

∈ [f, g], Ern

)

≥ Pxan

(
Srn
an

∈ [x′, y′],
Sj
an

∈ [f, g]

)
− rnP(ξ1 ≥ n).

Using the Donsker theorem [11],
(
S⌊rnt⌋

an
, t ∈ [0, 1]

)
converges, under law Pxan , as n → +∞ to a

Brownian motion with variance σ
√
A starting from x. In particular

lim inf
n→+∞

πx
′,y′

x,x (f, g) ≥ Px(BAσ2 ∈ (x′, y′), Bu ∈ (f, g), u ≤ Aσ2).
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Using (2.6), we have

lim inf
n→+∞

πx
′,y′

x,y (f, g) ≥ min
0≤m≤M

Px+mδ(BAσ2 ∈ (x′ + δ, y′ − δ), Bu ∈ (f + δ, g − δ), u ≤ Aσ2).

As a consequence, recalling that K ∼ n
Aa2

n
, (2.5) leads to

lim inf
n→+∞

a2
n

n
logP x

′,y′

x,y (f, g) ≥
1

A
min

0≤m≤M
log Px+mδ(BAσ2 ∈ (x′ + δ, y′ − δ), Bu ∈ (f + δ, g − δ), u ≤ Aσ2). (2.7)

As Px(Bt ∈ (x′, y′), Bs ∈ (f, g), s ≤ t) is computable (see e.g. Itô and McKean [16], p.31), we have

lim
t→+∞

1

t
log Px(Bt ∈ (x′, y′), Bs ∈ (f, g), s ≤ t) = − π2

2(g − f)2
.

Letting A → +∞ then δ → 0, (2.7) becomes

lim inf
n→+∞

a2
n

n
logP x

′,y′

x,y (f, g) ≥ − π2σ2

2(g − f)2
. (2.8)

We now take care of the general case. Let f < g be two continuous functions such that
f0 < 0 < g0. We write ht = ft+gt

2 , and ε > 0 such that 12ε ≤ inft∈[0,1] gt − ft and A ∈ N such that

sup
|t−s|≤ 2

A

|ft − fs| + |gt − gs| + |ht − hs| ≤ ε.

For any a ≤ A, we write ma = ⌊an/A⌋,

Ia,A = [fa/A + ε, ga/A − ε] and Ja,A = [ha/A − ε, ha/A + ε],

except J0,A = [x, y] and JA,A = [x′, y′].
We apply the Markov property at times mA−1, . . . ,m1, we have

inf
z∈J0,A

Pzan

(
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n,En

)

≥
A−1∏

a=0

inf
z∈Ja,A

Pzan

(
Sma+1

an
∈ Ja+1,A, Ema+1−ma

Sj
an

∈ Ia,A, j ≤ ma+1 −ma

)
.

Applying equation (2.8), we conclude

lim inf
n→+∞

a2
n

n
log inf

z∈J0,A

Pzan

(
Sj
an

∈
[
fj/n, gj/n

]
and ξj ≤ n, j ≤ n

)

≥ − 1

A

A−1∑

a=0

π2σ2

2(ga,A − fa,A − 2ε)2
.

Letting ε → 0 then A → +∞, we conclude the proof.

Lemma 2.5 is extended as follows, to take into account functions g such that g(0) = 0.

Corollary 2.6. Let ((Xj , ξj), j ∈ N) be i.i.d. random variables such that E(X1) = 0 as well as
σ2 := E(X2

1 ) < +∞. We write Sn =
∑n

j=1 Xj and En = {ξj ≤ n, j ≤ n}. Let (an) ∈ R
N
+ verifying

lim
n→+∞

an = +∞, lim sup
n→+∞

a3
n/n < +∞ and lim

n→+∞
a2
nP(ξ1 ≥ n) = 0.

Let f < g be two continuous functions such that f0 < 0 and lim inft→0
gt
t > −∞. For any

f1 ≤ x′ < y′ ≤ g1, we have

lim
n→+∞

a2
n

n
log P

(
Sn
an

∈ [x′, y′],
Sj
an

∈ [fj/n, gj/n], j ≤ n,En

)
= −π2σ2

2

∫ 1

0

ds

(gs − fs)2
.

6



Proof. Let d > 0 be such that for all t ∈ [0, 1], g(t) ≥ −dt. We set x < y < 0 and A > 0 verifying
P(X1 ∈ [x, y], ξ1 ≤ A) > 0. Observe that for any n ≥ 1 large enough we can choose δ > 0 small
enough such that

∀j ≤ δan, fj/nan < jx < jy < −j dan
n

≤ angj/n.

We set N = ⌊δan⌋. Applying the Markov property at time N , for any n ∈ N large enough, we
have

P

(
Sn
an

∈ [x′, y′],
Sj
an

∈
[
fj/n, gj/n

]
, j ≤ n,En

)
≥ P (Sj ∈ [jx, jy], j ≤ N,EN )

× inf
z∈[2δx,δy/2]

Pzan

(
Sn−N

an
∈ [x′, y′],

Sj−N
an

∈
[
f j+N

n
, g j+N

n

]
, j ≤ n−N,En−N

)

with P (Sj ∈ [jx, jy], j ≤ N,EN ) ≥ P (X1 ∈ [x, y], ξ1 ≤ A)
N

. As lim supn→+∞
a3
n

n < +∞, we have

lim inf
n→+∞

a2
n

n
log P

(
Sn
an

∈ [x′, y′],
Sj
an

∈ [fj/n, gj/n], j ≤ n,En

)

≥ lim inf
n→+∞

a2
n

n
inf

z∈[2δx,δy/2]
Pzan

(
Sn−N

an
∈ [x′, y′],

Sj−N
an

∈
[
f j+N

n
, g j+N

n

]
, j ≤ n−N,En−N

)
.

Consequently, applying Lemma 2.5 and letting δ → 0, we have

lim inf
n→+∞

a2
n

n
log P

(
Sn
an

∈ [x′, y′],
Sj
an

∈ [fj/n, gj/n], j ≤ n,En

)
≥ −π2σ2

2

∫ 1

0

ds

(gs − fs)2
.

The upper bound is a direct consequence of Corollary 2.4.

2.3 Lower bounds for the total size of the population in a Galton-Watson

process

We start this section by recalling the definition of a Galton-Watson process. Let µ be a law on Z+,
and (Xk,n, (k, n) ∈ N

2) an i.i.d. array of random variables with law µ. The process (Zn, n ≥ 0)
defined inductively by

Z0 = 1 and Zn+1 =

Zn∑

k=1

Xk,n+1

is a Galton-Watson process with reproduction law µ. The quantity Zn represents the size of the
population at time n, and Xk,n the number of children of the kth individual alive at time n − 1.
Galton-Watson processes have been extensively studied since their introduction by Galton and
Watson3 in 1874. The results we use here can been found in [3].

We write

f :
[0, 1] −→ [0, 1]

s 7−→ E
[
sX1,1

]
=
∑+∞
k=0 µ(k)sk.

We observe that for all n ∈ N, E
(
sZn
)

= fn(s), where fn is the nth iterate of f . Moreover, if
m := E(X1,1) < +∞, then f is a C1 strictly increasing convex function on [0, 1] that verifies

f(0) = µ(0), f(1) = 1 and f ′(1) = m.

We write q the smallest solution of the equation f(q) = q. It is a well-known fact that q is the
probability that the Galton-Watson process gets extinct i.e., P(∃n ∈ N : Zn = 0) = q. Observe

that q < 1 if and only if m > 1. If m > 1, we also introduce α := − log f ′(q)
logm ∈ (0,+∞].

3Independently from the seminal work of Bienaymé, who also introduced and studied such a process in 1847.
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Lemma 2.7. Let (Zn, n ≥ 0) be a Galton-Watson process with reproduction law µ. We write
b = min{k ∈ Z+ : µ(k) > 0} and m = E(Z1) ∈ (1,+∞). There exists C > 0 such that for all
z ∈ (0, 1) and n ∈ N, we have

P(Zn ≤ zmn) ≤





q + Cz
α
α+1 if b = 0

Czα if b = 1

exp
[
−Cz− log b

logm−log b

]
if b ≥ 2.

Remark 2.8. One may notice that these estimates are in fact tight, under some suitable integrability
conditions, uniformly in large n, as z → 0. To obtain a lower bound, it is enough to compute the
probability for a Galton-Watson tree to remain as small as possible until some time k chosen
carefully, then reproduce freely until time n. A more precise computation of the left tail of the
Galton-Watson process can be found in [14].

Proof. We write s0 = q+1
2 , and for all k ∈ Z, sk = fk(s0), where negative iterations are iterations

of f−1. Using the properties of f , there exists C− > 0 such that 1 − sk ∼k→−∞ C−m
k. Moreover,

if µ(0) + µ(1) > 0, there exists C+ > 0 such that sk − q ∼k→+∞ C+f
′(q)k. Otherwise,

sk = f (b)(0)
bk

b−1 +o(bk) as k → +∞

where f (b)(0) = b!µ(b) is the bth derivative of f at point 0.
Observe that for all z < m−n, we have P(Zn ≤ zmn) = P(Zn = 0) ≤ 1. Therefore, we

always assume in the rest of the proof that z ≥ m−n. By the Markov inequality, we have, for all
z ∈ (m−n, 1) and s ∈ (0, 1),

P(Zn ≤ zmn) = P(sZn ≥ szm
n

) ≤ E(sZn)

szmn
=

fns
szmn

.

In particular, for s = sk−n, we have P(Zn ≤ zmn) ≤ sk
(sk−n)zm

n . The rest of the proof consists in

choosing the optimal k in this equation, depending on the value of b.
If b = 0, we choose k = − log z

logm−log f ′(q) which grows to +∞ as z → 0, while k ≤ n logm
logm−log f ′(q)

so k − n → −∞. As a consequence, there exists c > 0 such that for all n ≥ 1 and z ≥ m−n,

(sk−n)
−zmn ≤ exp

(
Czmk

)
.

As limz→0 zm
k = 0, we conclude that there exists C > 0 such that for all n ≥ 1 and z ≥ m−n,

P(Zn ≤ zmn) ≤ q + Cf ′(q)
− log z

logm−log f′(q) + Czmk = q + Cz
−

log f′(q)

logm−log f′(q) = q + Cz
α
α+1 .

Similarly, if b = 1, then q = 0 and f ′(0) = µ(1). We set k = − log z
logm . There exists C > 0 such

that for all n ≥ 1 and z ≥ m−n, we have

P(Zn ≤ zmn) ≤ Cµ(1)− log z
logm ≤ Cz− log µ(1)

logm .

Finally, if b ≥ 2, we choose k = − log z
logm−log b , there exists c > 0 (small enough) such that

P(Zn ≤ zmn) ≤ exp
[
−cz− log b

logm−log b

]
,

which ends the proof.

Lemma 2.7 is used to obtain a lower bound on the size of the population in a branching random
walk above a given position.

Lemma 2.9. Under assumptions (1.1) and (1.3), there exist a > 0 and ̺ > 1 such that a.s. for
n ≥ 1 large enough # {|u| = n : ∀j ≤ n, V (uj) ≥ −na} ≥ ̺n.
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Proof. As lima→+∞ E
[∑

|u|=1 1{V (u)≥−a}

]
= E

[∑
|u|=1 1

]
, by (1.1) there exists a > 0 such that

̺1 := E
[∑

|u|=1 1{V (u)≥−a}

]
> 1. We write N =

∑
|u|=1 1{V (u)≥−a}. We have E(N) < +∞

by (1.3). One can easily couple a Galton-Watson process Z with reproduction law N with the
branching random walk (T, V ) in a way that

∑

|u|=n

1{∀j≤n,V (uj)≥−ja} ≥ Zn.

We write p := P(∀n ∈ N, Zn > 0) > 0 for the survival probability of this Galton-Watson process.

For n ∈ N, let Z̃n be the number of individuals with an infinite number of descendants. Con-
ditionally on the survival of Z, the process (Z̃n, n ≥ 0) is a supercritical Galton-Watson process
that survives almost surely (see e.g. [3]). Applying Lemma 2.7, there exists ̺ > 1 such that

P(Z̃n ≤ ̺n) ≤ ̺−n.

By the Borel-Cantelli lemma, a.s. for any n ≥ 1 large enough Z̃n ≥ ̺n.
We introduce a sequence of individuals (un) ∈ TN such that |un| = n, u0 = ∅ and un+1 is

the leftmost child of un, with ties broken uniformly at random. We write q = P(N ≥ 2) for the
probability that un has at least two children, both of them above −a. We introduce the random
time T defined as the smallest k ∈ N such that the second leftmost child v of uk is above −a,
and the Galton-Watson process coupled with the branching random walk rooted at v survives. We
observe that T is stochastically bounded by a geometric random variable with parameter pq, and
that conditionally on T , the Galton-Watson tree that survives has the same law as Z̃.

Thanks to these observations, we note that T < +∞ and infj≤T V (uj) > −∞ a.s. For any
n ≥ 1 large enough such that T < n and infj≤T V (uj) ≥ −na we have

# {u ∈ T : |u| = 2n, ∀j ≤ n, V (uj) ≥ −3na} ≥ ̺n,

concluding the proof.

3 Branching random walk with a killing boundary

In this section, we study the behaviour of a branching random walk on R in which individuals
below a given barrier are killed. Let f ∈ C([0, 1]) such that lim supt→0

ft
t < +∞ and n ∈ N. For

any k ≤ n every individual alive at generation k below level fk/nn
1/3 are removed, as well as all

their descendants. Let (T, V ) be a branching random walk, we denote by

T
(n)
f =

{
u ∈ T : |u| ≤ n, ∀j ≤ |u|, V (uj) ≥ n1/3f(k/n)

}
,

and note that T
(n)
f is a random tree. The process (T

(n)
f , V ), called branching random walk with a

killing boundary, has been introduced in [2, 17], where a criterion for the survival of the process

is obtained. In this section, we study the asymptotic behaviour of (T
(n)
f , V ). More precisely, we

compute the probability that T
(n)
f survives until time n, and provide bounds on the size of the

population in T
(n)
f at any time k ≤ n.

To obtain these estimates, we first find a function g such that with high probability, no indi-

vidual alive at generation k in T
(n)
f is above n1/3gk/n. We compute in a second time the first and

second moments of the number of individuals in T that stay at any time k ≤ n between n1/3fk/n
and n1/3gk/n.

With a careful choice of functions f and g, one can compute the asymptotic behaviour of the
consistent maximal displacement at time n, which is [12, Theorem 1] and [13, Theorem 1.4]; or
the asymptotic behaviour as ε → 0 of the probability there exists an individual in the branching
random walk staying at any time n ∈ N above −εn, which is [15, Theorem 1.2]. We present these
results respectively in Theorem 3.7 and Theorem 3.8, with weaker integrability conditions than in
the seminal articles.
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3.1 Number of individuals in a given path

For any two continuous functions f < g, we denote by Ht(f, g) = π2σ2

2

∫ t
0

ds
(gs−fs)2 . For n ≥ 1 and

k ≤ n, we write I
(n)
k = [fk/nn

1/3, gk/nn
1/3]. We compute in a first time the number of individuals

in T
(n)
f crossing for the first time at some time k ≤ n the boundary gk/nn

1/3. We set

Y
(n)
f,g =

∑

u∈T
(n)

f

1{V (u)>g|u|/nn1/3}1{V (uj)≤gj/nn1/3,j<|u|}.

Lemma 3.1. Let f ≤ g such that f0 ≤ 0 ≤ g0. Under assumptions (1.1) and (1.2),

lim sup
n→+∞

n−1/3 log E
[
Y

(n)
f,g

]
≤ − inf

t∈[0,1]
gt +Ht(f, g). (3.1)

Proof. Using Lemma 2.2, we have

E
[
Y

(n)
f,g

]
=

n∑

k=1

E



∑

|u|=k

1{V (u)≥gk/nn1/3}1{
V (uj)∈I

(n)

j
,j<k

}



=

n∑

k=1

E

[
e−Sk1{Sk≥gk/nn1/3}1{

Sj∈I
(n)

j
,j<k

}
]

≤
n∑

k=1

e−n1/3gk/nP
(
Sj ∈ I

(n)
j , j < k

)
.

Let δ > 0, we set I
(n),δ
k =

[
(fk/n − δ)n1/3, (gk/n + δ)n1/3

]
. Let A ∈ N, for a ≤ A we write

ma = ⌊na/A⌋ and g
a,A

= infs∈[a/A,(a+1)/A] gs. Applying the Markov property at time ma, for any

k > ma, we have

e−n1/3gk/nP
(
Sj ∈ I

(n)
j , j < k

)
≤ e

−n1/3g
a,AP

(
Sj ∈ I

(n),δ
j , j ≤ ma

)
.

Applying Theorem 2.3, we have

lim sup
n→+∞

n−1/3 log E
[
Y

(n)
f,g

]
≤ max

a<A
−g

a,A
−Ha/A(f − δ, g + δ).

Letting δ → 0 and A → +∞, we conclude that

lim sup
n→+∞

n−1/3 log E
[
Y

(n)
f,g

]
≤ sup

t∈[0,1]

−gt −Ht(f, g).

Using this lemma, we note that if inft∈[0,1] gt + Ht(f, g) ≥ δ, then with high probability no

individual in T
(n)
f crosses the curve g./nn

1/3 with probability at least 1 − e−δn1/3

. In a second

time, we take interest in the number of individuals staying between f./nn
1/3 and g./nn

1/3. For any
f1 ≤ x < y ≤ g1, we set

Z
(n)
f,g (x, y) =

∑

|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{
V (uj)∈I

(n)

j
,j≤n

}.

Lemma 3.2. Let f < g be such that lim inft→0
gt
t > −∞ and lim supt→0

ft
t < +∞. Under

assumptions (1.1) and (1.2), we have

lim
n→+∞

n−1/3 log E
(
Z

(n)
f,g (x, y)

)
= −(x+H1(f, g)).

Proof. Applying (2.2), we have

E
(
Z

(n)
f,g (x, y)

)
= E

[
e−Sn1{Sn∈[xn1/3,yn1/3]}1{

Sj∈I
(n)
j

,j≤n
}
]
,
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which yields

E
(
Z

(n)
f,g (x, y)

)
≤ e−xn1/3

P
(
Sn ∈ [xn1/3, yn1/3], Sj ∈ I

(n)
j , j ≤ n

)
. (3.2)

Moreover, note that for any ε > 0 small enough, Z
(n)
f,g (x, y) ≥ Z

(n)
f,g (x, x + ε), and we have

E(Z
(n)
f,g (x, y) ≥ e−(x+ε)n1/3

P
(
Sn ∈ [xn1/3, (x+ ε)n1/3], Sj ∈ I

(n)
j , j ≤ n

)
. (3.3)

As f < g, lim inft→0
gt
t > −∞ and lim supt→0

ft
t < +∞, either f0 < 0 or g0 > 0. Consequently,

applying Corollary 2.6, for any f1 ≤ x′ < y′ ≤ g1 we have

lim
n→+∞

n−1/3 log P
(
Sn ∈ [x′n1/3, y′n1/3], Sj ∈ I

(n)
j , j ≤ n

)
= −H1(f, g).

Therefore, (3.2) yields

lim sup
n→+∞

n−1/3 log E(Z
(n)
f,g (x, y)) ≤ −x−H1(f, g)

and (3.3) yields

lim inf
n→+∞

n−1/3 log E(Z
(n)
f,g (x, y)) ≥ −x− ε−H1(f, g).

Letting ε → 0 concludes the proof.

Lemma 3.2 is used to bound from above the number of individuals in T
(n)
f who are at time n

in a given interval. To compute a lower bound we use a second moment concentration estimate.
To successfully bound from above the second moment, we are led to restrict the set of individuals
we consider to individuals with “not too many siblings” in the following sense. For u ∈ T, we set

ξ(u) = log


1 +

∑

v∈Ω(u)

eV (v)−V (u)




where Ω(u) is the set of siblings of u, i.e., the set of children of the parent of u except u itself. For
any δ > 0 and f1 ≤ x < y ≤ g1, we write

Z̃
(n)
f,g (x, y, δ) =

∑

|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{
V (uj)∈I

(n)
j

,ξ(uj)≤δn1/3,j≤n
},

and note that for any δ > 0, Z̃
(n)
f,g (x, y, δ) ≤ Z

(n)
f,g (x, y).

Lemma 3.3. Let f < g be such that lim inft→0
gt
t > −∞ and lim supt→0

ft
t < +∞. Under

assumptions (1.1), (1.2) and (1.3), for any f1 ≤ x < y ≤ g1 and δ > 0 we have

lim inf
n→+∞

n−1/3 log E(Z̃
(n)
f,g (x, y, δ)) ≥ −(x+H1(f, g)), (3.4)

lim sup
n→+∞

n−1/3 log E

[(
Z̃

(n)
f,g (x, y, δ)

)2
]

≤ −2(x+H1(f, g)) + δ + sup
t∈[0,1]

gt +Ht(f, g). (3.5)

Proof. For any ε > 0, applying Proposition 2.1 we have

E
[
Z̃

(n)
f,g (x, y, δ)

]

= E


 1

Wn

∑

|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{
V (uj)∈I

(n)

j
,j≤n

}1{ξ(uj)≤δn1/3,j≤n}




≥ Ê

[
e−V (wn)1{V (wn)∈[xn1/3,(x+ε)n1/3]}1{

V (wj)∈I
(n)
j

,ξ(wj)≤δn1/3,j≤n
}
]

≥ e−(x+ε)n1/3

P̂
[
V (wn) ∈ [xn1/3, (x+ ε)n1/3], V (wj) ∈ I

(n)
j , ξ(wj) ≤ δn1/3, j ≤ n

]
.

11



Setting X = ξ(w1), (1.3) implies Ê(X2) < +∞, thus limz→+∞ z2P̂(X ≥ z) = 0. Applying
Corollary 2.6, we obtain

lim inf
n→+∞

n−1/3 log E
[
Z̃

(n)
f,g (x, y, δ)

]
≥ −(x+ ε) −H1(f, g),

and conclude the proof of (3.4) by letting ε → 0.
We now take care of the second moment. Using again Proposition 2.1, we have

E
[
(Z̃

(n)
f,g (x, y, δ))2

]

=E


 Z̃

(n)
f,g (x, y, δ)

Wn

∑

|u|=n

1{V (u)∈[xn1/3,yn1/3]}1{
V (uj)∈I

(n)
j

,j≤n
}1{ξ(uj)≤δn1/3,j≤n}




≤Ê

[
e−V (wn)Z

(n)
f,g (x, y)1{V (wn)∈[xn1/3,yn1/3]}1{

V (wj)∈I
(n)
j

,j≤n
}1{ξ(wj)≤δn1/3,j≤n}

]

≤e−xn1/3

Ê

[
Z

(n)
f,g (x, y)1{V (wn)∈[xn1/3,yn1/3]}1{

V (wj)∈I
(n)
j

,j≤n
}1{ξ(wj)≤δn1/3,j≤n}

]
. (3.6)

We decompose Z
(n)
f,g (x, y) according to the generation at which individuals split with the spine.

For u, v ∈ T, we write v ≥ u if v is a descendant of u. For u ∈ T we set

Λ(u) =
∑

|v|=n,v≥u

1{V (v)∈[xn1/3,yn1/3]}1{
V (vj)∈I

(n)

j
,j≤n

}.

Note that Z
(n)
f,g (x, y) = 1{V (wn)∈[xn1/3,yn1/3]}1{

V (wj)∈I
(n)

j
,j≤n

}+
∑n
k=1

∑
u∈Ωk

Λ(u), where we write

Ωk = Ω(wk) for the set of siblings of wk.

By definition of P̂, conditionally on F̂k the subtree of the descendants of u ∈ Ωk is distributed
as a branching random walk starting from V (u). For any k ≤ n and u ∈ Ωk, applying Lemma 2.2
we have

E
[

Λ(u)| F̂k
]

= 1{
V (wj)∈I

(n)

j
,j≤k−1

} EV (u)


 ∑

|v|=n−k

1{V (v)∈[xn1/3,yn1/3]}1{
V (vj)∈I

(n)

k+j
,j≤n−k

}



= 1{
V (wj)∈I

(n)
j

,j≤k−1
}e−V (u) EV (u)

[
e−Sn−k1{Sn−k∈[xn1/3,yn1/3]}1{

Sj∈I
(n)

k+j
,j≤n−k

}
]

≤ eV (wk)−xn1/3

eV (u)−V (wk)PV (u)

[
Sj ∈ I

(n)
k+j , j ≤ n− k

]
.

Thus, by definition of ξ(wk−1),
∑

u∈Ωk

E
[

Λ(u)| F̂k
]

≤ eV (wk)−xn1/3

eξ(wk) sup
z∈R

Pz

[
Sj ∈ I

(n)
k+j , j ≤ n− k

]
.

Let A ∈ N. For any a ≤ A we write ma = ⌊na/A⌋. For any k ≤ ma and z ∈ R, applying the
Markov property at time ma − k we have

Pz

[
Sj ∈ I

(n)
k+j , j ≤ n− k

]
≤ sup

z′∈R

Pz′

[
Sj ∈ I

(n)
ma+j , j ≤ n−ma

]
.

We write Ψ
(n)
a = supz′∈R

Pz′

[
Sj ∈ I

(n)
ma+j , j ≤ n− ma

]
. By Corollary 2.4, we have

lim sup
n→+∞

n−1/3 log Ψ(n)
a ≤ −

(
H1(f, g) −Ha/A(f, g)

)
.

Moreover, (3.6) becomes

E

[(
Z̃

(n)
f,g (x, y)

)2
]

≤ e−xn1/3

P(Sj ∈ I
(n)
j , j ≤ n)

+ e−2xn1/3
A−1∑

a=0

Ψ
(n)
a+1

ma+1∑

k=ma+1

E

[
eV (wk)eξ(wk)1{

V (wj)∈I
(n)
j

,ξ(wj)≤δn1/3,j≤n
}
]
.
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We set ga,A = sups∈[ aA ,
a+1
A ] gs, we have

E

[
eV (wk)eξ(wk)1{

V (wj)∈I
(n)
j

,ξ(wj)≤δn1/3,j≤n
}
]

≤ en
1/3(ga,A+δ)P(Sj ∈ I

(n)
j , j ≤ n).

We apply Theorem 2.3 to obtain

lim sup
n→+∞

n−1/3 log

ma+1∑

k=ma+1

E

[
eV (wk)ξ(wk)1{

V (wj)∈I
(n)

j
,ξ(wj)≤δn1/3,j≤n

}
]

≤ ga,A + δ −H1(f, g).

We conclude that

lim sup
n→+∞

n−1/3 log E
[
(Z̃

(n)
f,g (x, y))2

]
≤ −(2x+H1(f, g)) + δ + max

a<A
ga,A + H a+1

A
(f, g).

Letting A → +∞ concludes the proof.

A straightforward consequence of Lemma 3.3 is a lower bound on the asymptotic behaviour of

the probability for Z
(n)
f,g to be positive.

Corollary 3.4. Under the assumptions of Lemma 3.3, we have

lim inf
n→+∞

n−1/3 log P
[
Z

(n)
f,g (x, y) ≥ 1

]
≥ − sup

t∈[0,1]

gt +Ht(f, g).

Proof. For any δ > 0, we have Z
(n)
f,g (x, y) ≥ Z̃

(n)
f,g (x, y, δ). As a consequence,

P
[
Z

(n)
f,g (x, y) ≥ 1

]
≥ P

[
Z̃

(n)
f,g (x, y, δ) ≥ 1

]
≥

E
[
Z̃

(n)
f,g (x, y, δ)

]2

E
[
Z̃

(n)
f,g (x, y, δ)2

]

by the Cauchy-Schwarz inequality. Therefore using Lemma 3.3 we have

lim inf
n→+∞

n−1/3 log P
[
Z

(n)
f,g (x, y) ≥ 1

]
≥ − sup

t∈[0,1]

gt +Ht(f, g).

Another application of Lemma 3.3 is a lower bound on the value of the sum of a large number

of i.i.d. versions of Z
(n)
f,g (x, y). Together with Lemma 2.9, this result is used to obtain almost sure

lower bounds on Z
(n)
f,g .

Corollary 3.5. Under the assumptions of Lemma 3.3, we set (Z
(n),j
f,g (x, y), j ∈ N) i.i.d. copies of

Z
(n)
f,g (x, y). Let z > 0, we write p =

⌊
ezn

1/3
⌋
. For any ε > 0, we have

lim sup
n→+∞

n−1/3 log P




p∑

j=1

Z
(n),j
f,g (x, y) ≤ exp

(
n1/3(z − x−H1(f, g) − ε

)

 ≤ −z+ sup

t∈[0,1]

gt+Ht(f, g).

Proof. The proof is based on the following observation. Let (Xj , j ∈ N) be i.i.d. random variables
with finite variance. Using the Bienaymé-Chebychev inequality, we have

P




p∑

j=1

Xj ≤ 1

2
E




p∑

j=1

Xj




 ≤ P



∣∣∣∣∣∣

p∑

j=1

Xj − pE(X1)

∣∣∣∣∣∣
≥ pE(X1)/2




≤ 4
Var

(∑p
j=1 Xj

)

p2 E(X1)2
≤ 4

Var(X1)

pE(X1)
≤ 4

E(X2
1 )

pE(X1)2
. (3.7)
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Let δ > 0, as Z
(n)
f,g (x, y) ≥ Z̃

(n)
f,g (x, y, δ), we have

P




p∑

j=1

Z
(n),j
f,g (x, y) ≤ exp

(
n1/3(z − x−H1(f, g) − ε)

)



≤ P




p∑

j=1

Z̃
(n),j
f,g (x, y, δ) ≤ exp

(
n1/3(z − x−H1(f, g) − ε

)

 ,

where (Z̃
(n),j
f,g (x, y, δ), j ∈ N) is a sequence of i.i.d. copies of Z̃

(n),j
f,g (x, y, δ). By Lemma 3.3,

lim inf
n→+∞

n−1/3 log E
(
Z̃

(n)
f,g (x, y, δ)

)
≥ − (x+H1(f, g)) ,

thus, for any ε > 0, for any n ≥ 1 large enough we have

E
(
Z̃

(n)
f,g (x, y, δ)

)
/2 ≥ e−n1/3(x+H1(f,g)+ε).

Therefore, using again Lemma 3.3 and (3.7), we have

lim sup
n→+∞

n−1/3 log P




p∑

j=1

Z̃
(n),j
f,g (x, y, δ) ≤ exp

(
n1/3(z − x−H1(f, g) − ε

)



≤ −z + δ + sup
t∈[0,1]

gt +Ht(f, g).

Consequently, letting δ → 0 we have

lim sup
n→+∞

n−1/3 log P




p∑

j=1

Z
(n),j
f,g (x, y) ≤ exp

(
n1/3(z − x−H1(f, g) − ε

)

 ≤ −z+ sup

t∈[0,1]

gt+Ht(f, g).

3.2 Asymptotic behaviour of the branching random walk with a killing

boundary

The results of Section 3.1, in particular Lemma 3.1 and Corollaries 3.4 and 3.5, emphasize the
importance of the functions g verifying

∀t ∈ [0, 1], gt = g0 −Ht(f, g) > ft, (3.8)

in the study of T
(n)
f . For such a function, the estimates of Lemmas 3.1, 3.2 and 3.3 are tight. They

enable to precisely study the asymptotic behaviour of T
(n)
f .

Theorem 3.6. We consider a branching random walk (T, V ) satisfying (1.1), (1.2) and (1.3). Let
f ∈ C([0, 1]) be such that f0 < 0. If there exists a continuous function g such that

g0 = 0, ∀t ∈ [0, 1], gt = −π2σ2

2

∫ t

0

ds

(gs − fs)2
and ∀t ∈ [0, 1], gt > ft,

then almost surely for n ≥ 1 large enough, {u ∈ T
(n)
f : |u| = n} 6= ∅ and

lim
n→+∞

1

n1/3
#
{
u ∈ T

(n)
f : |u| = n

}
= g1 − f1,

lim
n→+∞

1

n1/3
min

u∈T
(n)

f
,|u|=n

V (u) = f1 and lim
n→+∞

1

n1/3
max

u∈T
(n)

f
,|u|=n

V (u) = g1 a.s. (3.9)
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Otherwise, writing

λ = inf

{
g0, g ∈ C([0, 1]) : ∀t ∈ [0, 1], gt = g0 − π2σ2

2

∫ t

0

ds

(gs − fs)2
> ft

}
, (3.10)

then
lim

n→+∞
n−1/3 log P

({
u ∈ T

(n)
f : |u| = n

}
6= ∅
)

= −λ. (3.11)

Proof. We study the solutions of the differential equation (3.8). As (t, x) 7→ − π2σ2

2(x−ft)2 is locally

Lipschitz on {(t, x) ∈ [0, 1] × R : x > ft}, the Cauchy-Lipschitz theorem implies that for any
x > f0, there exists a unique continuous function gx defined on the maximal interval [0, tx] such
that gx0 = x, either tx = 1 or gtx = ftx , and for any t < tx

gxt = x− π2σ2

2

∫ t

0

ds

(gxs − fs)2
.

Moreover, we observe that tx is increasing with respect to x and gxt is decreasing in t and increasing
in x on {(t, x) ∈ [0, 1] × (f0,+∞) : t ≤ tx}. With this notation, we have

λ = inf {x > f0 : tx = 1} .

As limx→+∞ supt∈[0,1]
π2σ2

2(x−ft)2 = 0, there exists x > 0 large enough such that tx = 1. This implies

λ < +∞.
We note that for any x > 0 such that gx > f on [0, 1], applying Corollary 3.4 we obtain

lim inf
n→+∞

n−1/3 log P
[
{u ∈ T

(n)
f : |u| = n} 6= ∅

]
≥ lim inf

n→+∞
n−1/3 log P

[
Z

(n)
f,gx(f1), gx1 ) ≥ 1

]
≥ −x.

Therefore, we have lim infn→+∞ n−1/3 log P
[
{u ∈ T

(n)
f : |u| = n} 6= ∅

]
≥ − min(λ, 0).

If λ ≥ 0, writing t = tλ, we use the fact that at some time before tλ each individual in T
(n)
f

crosses n1/3g./n before time tn, thus

P
(

∃|u| = n : u ∈ T
(n)
f

)
≤ P

(
∃u ∈ T

(n)
f : V (u) ≥ n1/3g|u|/n

)
.

We set f
(1)
s = fst/t

1/3 and g
(1)
s = gλst/t

1/3. Applying Lemma 3.1, and writing m = ⌊tn⌋ we have

lim sup
n→+∞

n−1/3 log E
(
Y

(m)

f(1),g(1)

)
≤ −λ,

which by Markov inequality yields

lim sup
n→+∞

n−1/3 log P
(
u ∈ Tf : |u| ≤ tn, V (u) ≥ n1/3g|u|/n

)
≤ −λ,

concluding the proof of (3.11).
We now assume λ < 0, or equivalently g0 > f . Applying Lemma 3.1, for any ε > 0 we have

lim sup
n→+∞

n−1/3 log P
(

∃u ∈ T
(n)
f : V (u) ≥ n1/3gε|u|/n

)
≤ − inf

t∈[0,1]
gεt +Ht(f, g

ε) = −ε.

By the Borel-Cantelli lemma, almost surely for any n ≥ 1 large enough, we have

{
u ∈ T

(n)
f : V (u) ≥ n1/3gε|u|/n

}
= ∅. (3.12)

In particular, letting ε → 0 we have

lim sup
n→+∞

1

n1/3
max

u∈T
(n)

f
,|u|=n

V (u) = g1 a.s.
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Moreover, by Lemma 3.2 we have

E
[
Z

(n)
f,gε(f1, g

ε
1)
]

≤ −(f1 +H1(f, gε)) = gε1 − f1 − ε.

Thus, by the Markov inequality and the Borel-Cantelli Lemma

lim sup
n→+∞

n−1/3 logZ
(n)
f,gε(f1, g

ε
1) ≤ gε1 − f1.

Mixing with (3.12) and letting ε → 0, we conclude

lim sup
n→+∞

1

n1/3
log #

{
u ∈ T

(n)
f : |u| = n

}
≤ g1 − f1.

To obtain the other bounds of (3.9), we apply Lemma 2.9. For any ε > 0 there exists ̺ > 1
and δ > 0 such that almost surely for any n ≥ 1 large enough,

#
{
u ∈ T

(n)
f : |u| =

⌊
δn1/3

⌋
and V (u) ∈ [−εn1/3, εn1/3]

}
≥ ̺δn

1/3

.

We write Sn this event. On Sn, each of these ̺δn
1/3

individuals starts an independent branching
random walk from some point in [−εn1/3, εn1/3] with a killing boundary n1/3f./n. For ε small
enough, we use Corollary 3.5 to bound from below the number of descendants that stay between
f + 2ε and g−2ε + 2ε. We have

lim sup
n→+∞

n−1/3 log P
[

#
{
u ∈ T

(n)
f : |u| = n

}
≤ en

1/3(g−2ε
1 −f1)

∣∣∣Sn
]

≤ −η + sup
t∈[0,1]

g−2ε
t + 2ε+Ht(f + 2ε, g−2ε + 2ε) = −η.

Using again the Borel-Cantelli lemma, we obtain

lim inf
n→+∞

n−1/3 log #
{
u ∈ T

(n)
f : |u| = n

}
≥ g−2ε

1 − f1 a.s.

Consequently, letting ε → 0 we conclude

lim
n→+∞

n−1/3 log #
{
u ∈ T

(n)
f : |u| = n

}
= g0

1 − f1 a.s.

In particular, almost surely for n ≥ 1 large enough, T
(n)
f survives until time n, which is enough to

prove

lim inf
n→+∞

1

n1/3
min

u∈T
(n)

f
,|u|=n

V (u) ≥ f1 a.s.

We observe by Corollary 3.4 that for any ε > 0 small enough, for any f1+2ε < x < y < g−2ε
1 +2ε

we have
lim inf
n→+∞

n−1/3 log P
(
Z

(n)
f+2ε,g−2ε+2ε(x, y) > 0

)
≥ 0.

Therefore, for any f1 < x < y < g1, for any ε > 0 small enough we have

P
(
Z

(n)
f,g (x, y) = 0

∣∣∣Sn
)

=
(

1 − eo(n1/3)
)eηn1/3

.

We conclude that for any ζ > 0 small enough,

lim inf
n→+∞

n−1/3 log
(

− log P
(
Z

(n)
f,g (f1 + ζ, f1 + 2ζ) = 0

))
> 0

as well as
lim inf
n→+∞

n−1/3 log
(

− log P
(
Z

(n)
f,g (g1 − 2ζ, g1 − ζ) = 0

))
> 0.

Using once again the Borel-Cantelli lemma, we obtain respectively

lim sup
n→+∞

1

n1/3
min

u∈T
(n)

f
,|u|=n

V (u) ≤ f1 and lim inf
n→+∞

1

n1/3
max

u∈T
(n)

f
,|u|=n

V (u) ≥ g0
1 a.s.

which concludes the proof.
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3.3 Applications

Using the results developed in this section, we deduce the asymptotic behaviour of the consistent
maximal displacement at time n of the branching random walk.

Theorem 3.7 (Consistent maximal displacement of the branching random walk, [12, 13]). We
consider a branching random walk (T, V ) satisfying (1.1), (1.2) and (1.3). We have

lim
n→+∞

max|u|=n mink≤n V (uk)

n1/3
= −

(
3π2σ2

2

)1/3

.

Proof. To prove this result, we only have to show that for any δ > 0, almost surely for n ≥ 1 large
enough we have

{
u ∈ T

(n)(
− 3π2σ2

2

)1/3
+δ

: |u| = n

}
= ∅ and

{
u ∈ T

(n)(
− 3π2σ2

2

)1/3
−δ

: |u| = n

}
6= ∅.

We solve for λ < 0 the differential equation gt = −π2σ2

2

∫ t
0

ds
(gs−λ)2 , thus gt = λ+

(
−λ3 − 3π2σ2

2 t
)1/3

for t < −2λ3

3π2σ2 . By Theorem 3.6, for any λ > −
(

3π2σ2

2

)1/3

, almost surely for any n ≥ 1 large enough

the tree T
(n)
λ gets extinct before time n. For any λ < −

(
3π2σ2

2

)1/3

, almost surely for n ≥ 1 large

enough the tree T
(n)
λ survives until time n.

Similarly, we provide the asymptotic behaviour, as ε → 0 of the probability of survival of a
branching random walk with a killing boundary of slope −ε.
Theorem 3.8 (Survival probability in the killed branching random walk [15]). Let (T, V ) be a
branching random walk satisfying (1.1), (1.2) and (1.3). We have

lim
ε→0

ε1/2 log P (∀n ∈ N, ∃|u| = n : V (uj) ≥ −εj, j ≤ n) = − πσ

21/2
.

Proof. For any ε > 0 and n ∈ N, we set ̺(n, ε) = P (∃|u| = n : V (uj) ≥ −εj, j ≤ n) and

̺(ε) = lim
n→+∞

̺(n, ε) = P (∀n ∈ N, ∃|u| = n : V (uj) ≥ −εj, j ≤ n) .

In a first time, we prove that for any θ > 0, we have

− πσ

(2θ)1/2
≤ lim inf

n→+∞
n−1/3 log ̺

(
n, θn−2/3

)
≤ lim sup

n→+∞
n−1/3 log ̺

(
n, θn−2/3

)
≤ Φ−1(θ), (3.13)

where Φ : λ 7→ π2σ2

2λ2 − λ
3 .

Applying Lemma 3.1 with functions f : t 7→ −θt and g : t 7→ λ(1 − t)1/3 − θt we prove the
upper bound of (3.13). Using the fact that an individual staying above f (n) until time n crosses
g(n) at some time k ≤ n, the Markov inequality implies

lim sup
n→+∞

n−1/3 log ̺(n, θn−2/3) ≤ lim sup
n→+∞

n−1/3 log E(Y
(n)
f,g ) ≤ − inf

t∈[0,1]
gt +Ht(f, g)

≤ − inf
t∈[0,1]

λ(1 − t)1/3 − θt+
π2σ2

2

∫ t

0

ds

(λ(1 − s)1/3)2

≤ − inf
t∈[0,1]

λ− θt+ 3Φ(λ)
[
1 − (1 − t)1/3

]
.

We observe that t 7→ 1−(1− t)1/3 is a convex function on [0, 1], with derivative 1/3 at t = 0. Thus,
for any λ > 0 such that Φ(λ) > 0, for all t ∈ [0, 1], 3Φ(λ)

[
1 − (1 − t)1/3

]
≥ Φ(λ)t. We conclude

that for any λ > 0 such that Φ(λ) ≥ θ > 0, we have

lim sup
n→+∞

n−1/3 log ̺(n, θn−2/3) ≤ −λ.
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With λ = Φ−1(θ), we conclude the proof of the upper bound of (3.13). We now observe that for
any ε > 0, we have ̺(ε) ≤ ̺(n, ε). Setting n =

⌊
(ε/θ)3/2

⌋
, for any θ > 0 we have

lim sup
ε→0

ε1/2 log ̺(ε) ≤ lim sup
ε→0

ε1/2 log ̺(n, ε) ≤ −θ1/2Φ−1(θ).

We note that limθ→+∞ θ1/2Φ−1(θ) = limλ→0 λΦ(λ)1/2 = πσ
21/2 , which concludes the proof of the

upper bound in Theorem 3.8.
To prove the lower bound in (3.13), we apply Corollary 3.4 to functions f : t 7→ −θt and

g : t 7→ λ− θt. We have

lim inf
n→+∞

n−1/3 log ̺(n, θn−2/3) ≥ lim inf
n→+∞

n−1/3 log P
(
Z

(n)
f,g (f1, g1) ≥ 1

)
≥ − sup

t∈[0,1]

λ− θt+
π2σ2

2λ2
t.

Choosing λ = πσ
(2θ)1/2 , we obtain lim infn→+∞ n−1/3 log ̺(n, θn−2/3) ≥ − πσ

(2θ)1/2 , proving the lower

bound of (3.13). This equation implies that for any θ > 0,

lim inf
n→+∞

n−1/3 log ̺(θ3/2n, n−2/3) ≥ − πσ

21/2
.

By (1.1), there exist a > 0 and P ∈ N such that E
((∑

|u|=1 1{V (u)≥−a}

)
∧ P

)
> 1. Conse-

quently, there exists ̺ > 1 and c > 0 such that

lim inf
n→+∞

# {|u| = n : ∀j ≤ n, V (uj) ≥ −aj}
̺n

≥ W with positive probability.

We conclude there exists a > 0, r > 0 and ̺ > 1 such that

inf
n∈N

P (# {|u| = n : ∀j ≤ n, V (uj) ≥ −aj} ≥ ̺n) ≥ r.

With this notation, we observe that for any θ > 0, ε > 0, δ > 0 and n ∈ N, we have

P
(

#
{

|u| = (θ + δ)n : ∀j ≤ n, V (uj) ≥ −
(
θε+δa
θ+δ

)
j
}

≥ ̺δn
)

≥ r̺ (θn, ε) .

Given λ > πσ
21/2 and θ > 0, we set ε > 0 small enough such that

ε1/2 log ̺
(⌈

2θ2ε−3/2
⌉
, ε
)
> −λ.

We write δ = θε
a−2ε and n =

⌊
(θ + δ)ε−3/2

⌋
, choosing ε > 0 small enough such that δ < θ. We have

P
(
# {|u| = n : ∀j ≤ n, V (uj) ≥ −2εj} ≥ ̺δn

)
≥ re−λε−1/2

,

We construct a Galton-Watson process (Gp(ε), p ≥ 0) based on the branching random walk (T, V )
such that

Gp(ε) = # {|u| = pn : ∀j ≤ pn, V (uj) ≥ −2εj} .

We observe that G(ε) stochastically dominates a Galton-Watson process G̃(ε), in which individuals

make Nε =
⌊
̺δn
⌋

children with probability pε = re−λε−1/2

and none with probability 1 − p. As
ε → 0 we have

lim
ε→0

ε1/2 log(pεNε) = −λ+ θ2 log ̺,

which is positive choosing some θ > 0 large enough. With this choice of θ, for any ε > 0 small
enough pεNε > 2. Consequently qε the probability of survival of G̃(ε) is positive for any ε > 0
small enough. Moreover, we have ̺(2ε) ≥ qε.

We introduce fε : s 7→ E(sG̃(ε)) which is a convex function verifying

fε(1) = 1 and fε(1 − qε) = 1 − qε.

18



For any h > 0, for any ε > 0 small enough

fε(1 − hpε) = 1 − pε + pε(1 − hpε)
Nε ≤ 1 − pε + pε exp(−hpεNε) ≤ 1 − pε + pεe

−2h.

Choosing h > 0 small enough, for any ε > 0 small enough we have fε(1 − hp) < 1 − hp. This
proves that qε > hpε, leading to

lim inf
ε→0

ε1/2 log ̺(ε) ≥ lim inf
ε→0

ε1/2 log pε ≥ −λ.

Letting λ → − πσ
21/2 concludes the proof.

4 Branching random walk with selection

In this section, we make a coupling between branching random walks with a killing barrier and
branching random walks with selection to compute the asymptotic behaviour of the extremal
process of the latter. Let φ : N → N and (T, V ) be a branching random walk starting with φ0

individuals. We denote by Tφ the subtree of T consisting of individuals surviving the branching
random walk with selection of the φn rightmost individuals at time n. More precisely, an individual
at generation n survives if its parent has survived, and the individual is one of the φn rightmost

such children (with ties broken uniformly at random). Observe that T
(n)
f the tree of the branching

random walk with a killing boundary can also be described as a branching-selection process Tψ ,

where ψn = {u ∈ T
(n)
f : |u| = n} is an adapted process.

In this section, we consider a function φ verifying φk =
⌊
en

1/3hk/n
⌋

for a given continuous

positive function h. For such a function, we write Th
(n) for Tφ. We set

Mh
n = max

u∈T
h
(n)
,|u|=n

V (u) and mh
n = min

u∈T
h
(n)
,|u|=n

V (u).

We study (Th
(n), V ) by comparing it with q =

⌊
eh0n

1/3
⌋

independent branching random walks with

a killing boundary f , choosing f in a way that

log #
{
u ∈ T

(n)
f : |u| = ⌊tn⌋

}
≈ n1/3(ht − h0).

Using Lemmas 3.1 and 3.2, we choose functions (f, g) verifying

∀t ∈ [0, 1],

{
gt + π2σ2

2

∫ t
0

ds
(gs−fs)2 = h0

ft + π2σ2

2

∫ t
0

ds
(gs−fs)2 = h0 − ht.

which solution is

f : t ∈ [0, 1] 7→ h0 − ht − π2σ2

2

∫ t

0

ds

h2
s

and g : t ∈ [0, 1] 7→ h0 − π2σ2

2

∫ t

0

ds

h2
s

. (4.1)

To compare branching random walk with selection and branching random walks with killing
boundary, we couple them in a fashion preserving a certain partial order, that we describe now.
Let µ, ν be two Radon measures on R, we write

µ 4 ν ⇐⇒ ∀x ∈ R, µ((x,+∞)) ≤ ν((x,+∞)).

The relation 4 forms a partial order on the set of Radon measures, that can be used to rank
populations, representing an individual by a Dirac mass at its position. We prove there exists
a coupling between branching-selection processes preserving partial order 4. This lemma is an
adaptation of [4, Corollary 2].

Lemma 4.1. Let φ and ψ be two adapted processes. On the event




∑

u∈Tφ,|u|=0

δV (u) 4

∑

u∈Tψ,|u|=0

δV (u) and ∀j ≤ n, φj ≤ ψj



 ,

we have
∑
u∈Tφ,|u|=n δV (u) 4

∑
u∈Tψ,|u|=n δV (u).
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Proof. The lemma is a direct consequence of the following observation. Given m ≤ n, x ∈ R
m and

y ∈ R
n such that

∑m
j=1 δxj 4

∑n
j=1 δyj and (zji , j ≤ n, i ∈ N), we have

m∑

j=1

+∞∑

i=1

δxj+zji
4

n∑

j=1

+∞∑

i=1

δyj+zji
.

Consequently, step k of the branching-selection process preserves order 4 if φk ≤ ψk.

This lemma implies that branching random walks with selection and branching random walk
with killing can be coupled in an increasing fashion for the order 4, as soon as there are at any
time k ≤ n more individuals in one process than in the other. The main result of the section is
the following estimate on the extremal positions in the branching random walk with selection.

Theorem 4.2. Assuming (1.1), (1.2) and (1.3), for any continuous positive function h we have

lim
n→+∞

Mh
n

n1/3
= h0 − π2σ2

2

∫ 1

0

ds

h2
s

and lim
n→+∞

mh
n

n1/3
= h0 − h1 − π2σ2

2

∫ 1

0

ds

h2
s

a.s.

Remark 4.3. It is worth noting that choosing h as a constant, Theorem 4.2 provides information on

the Brunet-Derrida’s N -BRW, on the time scale (logN)3

h3 . Letting h → 0, we study the asymptotic
behaviour of the N -BRW on a typical time scale.

The proof of Theorem 4.2 is based on the construction of an increasing coupling existing

between (Th
(n), V ) and approximatively eh0n

1/3

independent branching random walks with a killing

boundary n1/3f./n. Using Lemma 4.1, it is enough to bound the size of the population at any time
in the branching random walks with a killing boundary to prove the coupling. In a first time, we

bound from below the branching random walk with selection by e(h0−2ε)n1/3

independent branching
random walks with a killing boundary.

Lemma 4.4. We assume that (1.1) and (1.2) hold. For any positive continuous function h and
ε > 0, there exists a coupling between (Th

(n), V ) and i.i.d. branching random walks ((Tj , V j), j ≥ 1)
such that almost surely for any n ≥ 1 large enough, we have

∀k ≤ n,
∑

u∈T
h
(n)

|u|=k

δV (u) <

e(h0−2ε)n1/3

∑

j=1

∑

u∈T
j

|u|=k

1{V j(ui)≥(fi/n−ε)n1/3,i≤k}δV j(u). (4.2)

Proof. Let n ∈ N and ε > 0, we denote by p =
⌊
e(h0−2ε)n1/3

⌋
and by T̃

(n)
f−ε the disjoint union of

Tj(n)
f−ε for j ≤ p. For u ∈ T̃

(n)
f−ε, we write V (u) = V j(u) if u ∈ Tj . By Lemma 4.1, it is enough to

prove that almost surely, for any n ≥ 1 large enough we have

∀k ≤ n, log #
{
u ∈ T̃

(n)
f−ε : |u| = k

}
≤ n1/3hk/n.

We first prove that with high probability, no individual in T̃
(n)
f−ε crosses the boundary (gk/n −

ε)n1/3 at some time k ≤ n. By Lemma 3.1, we have

lim sup
n→+∞

n−1/3 log P
(

∃u ∈ T̃
(n)
f−ε : V (u) ≥ (g|u|/n − ε)n1/3

)

≤ lim sup
n→+∞

n−1/3 log
(
pP
(

∃u ∈ T
(n)
f−ε : V (u) ≥ (g|u|/n − ε)n1/3

))

≤ h0 − 2ε− inf
t∈[0,1]

(
gt − ε+

π2σ2

2

∫ t

0

ds

(gs − fs)2

)
= −ε.

Using the Borel-Cantelli lemma, almost surely for any n ≥ 1 large enough and u ∈ T̃
(n)
f−ε, we have

V (u) ≤ (g|u|/n − ε)n1/3.
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By this result, almost surely, for n ≥ 1 large enough and for k ≤ n, the size of the kth generation

in T̃
(n)
f−ε is given by

Z
(n)
k =

∑

u∈T̃
(n)

f−ε

1{|u|=k}1{V (uj)≤(gj/n−ε)n1/3,j≤k}.

Using the Markov inequality, we have

P
(

∃k ≤ n : Z
(n)
k ≥ en

1/3hk/n
)

≤
n∑

k=1

e−n1/3hk/n E
[
Z

(n)
k

]
.

We now provide a uniform upper bound for E(Z
(n)
k ). Applying Lemma 2.2, for any 1 ≤ k ≤ n we

have

E
[
Z

(n)
k

]
≤ pE

[
e−Sk1{Sj∈[(fj/n−ε)n1/3,(gj/n−ε)n1/3]}

]

≤ pe−(fk/n−ε)n1/3

P
(
Sj ∈

[
(fj/n − ε)n1/3, (gj/n − ε)n1/3

]
, j ≤ k

)
.

Let A ∈ N. For any a ≤ A we write ma = ⌊na/A⌋ and f
a,A

= infs∈[a/A,(a+1)/A] fs. For any

k ∈ (ma,ma+1], applying the Markov property at time ma and Theorem 2.3 we have

E
[
Z

(n)
k

]
≤ exp

[
(h0 − 2ε)n1/3 − n1/3

(
f
a,A

− ε+
π2σ2

2

∫ a/A

0

ds

h2
s

)]

As h0 = ft + ht + π2σ2

2

∫ t
0
ds
h2
s
, letting A → +∞ we have

lim sup
n→+∞

n−1/3 log P
(

∃k ≤ n : Z
(n)
k ≥ en

1/3hk/n
)

≤ −ε.

Consequently, applying the Borel-Cantelli lemma again, for any n ≥ 1 large enough we have

∀k ≤ n, log #
{
u ∈ T̃

(n)
f−ε : |u| = k

}
≤ n1/3hk/n

which concludes the proof, by Lemma 4.1.

Similarly, we prove that the branching random walk with selection is bounded from above by⌊
e(h0+2ε)n1/3

⌋
independent branching random walks with a killing boundary.

Lemma 4.5. We assume (1.1), (1.2) and (1.3) hold. For any continuous positive function h and
ε > 0, there exists a coupling between (Th

(n), V ) and i.i.d. branching random walks ((Tj , V j), j ≥ 1)
such that almost surely for any n ≥ 1 large enough we have

∀k ≤ n,
∑

u∈T
h
(n)

|u|=k

δV (u) 4

e(h0+2ε)n1/3

∑

j=1

∑

u∈T
j

|u|=k

1{V j(ui)≥(fi/n−ε)n1/3,i≤k}δV j(u). (4.3)

Proof. Let n ∈ N and ε > 0, we denote by p =
⌊
e(h0+2ε)n1/3

⌋
and by T̃

(n)
f−ε the disjoint union of

Tj(n)
f−ε for j ≤ p. For u ∈ T̃

(n)
f−ε, we write V (u) = V j(u) if u ∈ Tj . Similarly to the previous

lemma, the key tool is a bound from below of the size of the population at any time in T̃
(n)
f−ε. For

any 1 ≤ k ≤ n, we set

Z
(n)
k =

∑

u∈T̃
(n)

f−ε

1{|u|=k}1{V (uj)≤(gj/n−ε)n1/3,j≤k} and

Z̃
(n)
k =

∑

u∈T̃
(n)

f−ε

1{|u|=k}1{V (u)≥f1n1/3}1{V (uj)≤(gj/n−ε)n1/3,j≤k}.

21



For any t ∈ (0, 1), applying Corollary 3.5, we have

lim sup
n→+∞

n−1/3 log P
[
Z̃

(n)
⌊nt⌋ ≤ e(ht+ε)n

1/3
]

≤ −3ε.

Let A ∈ N, for a ≤ A we set ma = ⌊na/A⌋. By the Borel-Cantelli lemma, almost surely, for any
n ≥ 1 large enough we have

∀a ≤ A, log Z̃(n)
ma ≥ n1/3(h a

A
+ ε).

We extend this result into a uniform one. To do so, we notice that Theorem 3.7 implies there
exists r > 0 small enough and λ > 0 large enough such that

inf
n∈N

P
[
∃|u| = n : ∀k ≤ n, V (uk) ≥ −λn1/3

]
> r.

Consequently, every individual alive at time ma above fa/An
1/3 starts an independent branching

random walk, which has probability at least r to have a descendant at time ma+1 which stayed at
any time in k ∈ [ma,ma+1] above (fa/A − λA−1/3)n1/3. We choose A > 0 large enough, such that

λA−1/3 < ε. Conditionally on Fma , infk∈[ma,ma+1] Z
(n)
k is stochastically bounded from below by a

binomial variable with parameters Z̃
(n)
ma and r. We conclude from an easy large deviation estimate

and the Borel-Cantelli lemma again, that almost surely for n ≥ 1 large enough we have

∀k ≤ n, logZ
(n)
k ≥ n1/3hk/n.

Applying Lemma 4.1, we conclude that for any k ≤ n,
∑

u∈T
h
(n)

|u|=k

δV (u) 4
∑
u∈T̃

(n)

f−ε

|u|=k

δV (u).

Using Lemmas 4.4 and 4.5, we easily bound the maximal and the minimal displacement in the
branching random walk with selection.

Proof of Theorem 4.2. The proof is based on the observation that for any x1 ≥ x2 ≥ · · · ≥ xp and
y1 ≥ y2 ≥ · · · ≥ yq, if

∑p
j=1 δxj 4

∑q
j=1 δyj then p ≤ q, x1 ≤ y1 and xp ≤ yp.

Let n ∈ N and ε > 0, we denote by p̌ =
⌊
e(h0−2ε)n1/3

⌋
and by p̂ =

⌊
e(h0+2ε)n1/3

⌋
. Given

((Tj , V j), j ∈ N) i.i.d. branching random walks, we set Ť
(n)
f−ε (respectively T̂

(n)
f−ε) the disjoint

union of Tj (n)
f−ε for j ≤ p̌ (resp. j ≤ p̂). For u ∈ T̂

(n)
f−ε, we write V (u) = V j(u) if u ∈ Tj . By

Lemmas 4.4 and 4.5, we have

max
u∈Ť

(n)

f−ε
,|u|=n

V (u) ≤ Mh
n ≤ max

u∈T̂
(n)

f−ε
,|u|=n

V (u).

For any δ > −h0, we denote by gδ the solution of the differential equation

gδt +
π2σ2

2

∫ t

0

ds

(gδs − fs)2
= h0 + δ.

Applying the discussion at the beginning of the proof of Theorem 3.6, we observe that gδ is well-
defined on [0, 1] for δ in a neighbourhood of 0. We notice that g0 = g and that δ 7→ gδ is continuous
with respect to the uniform norm. Moreover

P

(
max

u∈T̂
(n)

f−ε
,|u|=n

V (u) ≥ gδ1n
1/3

)
≤ P

(
∃u ∈ T̂

(n)
f−ε : V (u) ≥ gδ|u|/nn

1/3
)

≤ p̂P
(

∃|u| ≤ n : V (u) ≥ gδ|u|/nn
1/3
)
.

Consequently, using Lemma 3.1, we have

lim sup
n→+∞

n−1/3 log P

(
max

u∈T̂
(n)

f−ε
,|u|=n

V (u) ≥ gδ1n
1/3

)
≤ h0 + 2ε− inf

t∈[0,1]
gδt +

π2σ2

2

∫ t

0

ds

(gδs − fs + ε)2
.
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For any δ > 0, for any ε > 0 small enough we have

lim sup
n→+∞

n−1/3 log P
(
Mh
n ≥ gδ1n

1/3
)
< 0.

By the Borel-Cantelli lemma, we have lim supn→+∞
Mh
n

n1/3 ≤ gδ1 a.s. Letting δ → 0 concludes the
proof of the upper bound of the maximal displacement.

To obtain a lower bound, we notice that

P
(
Mh
n ≤ (gδ1 − 2ε)n1/3

)
≤ P

(
max

u∈Ť
(n)

f−ε
,|u|=n

V (u) ≤ (gδ1 − 2ε)n1/3

)

≤ P

(
max
|u|=n

V (u) ≤ (gδ1 − 2ε)n1/3

)p̌
.

We only consider individuals that stayed at any time k ≤ n between the curves n1/3(fk/n − ε) and

n1/3(g−δ
k/n − ε), applying Corollary 3.4, for any δ > 0 small enough, for any ε > 0 small enough, we

have

lim inf
n→+∞

n−1/3 log P
(

∃|u| = n : V (u) ≥ (g−δ
1 − 2ε)n1/3

)

≥ − sup
t∈[0,1]

g−δ
t − ε+

π2σ2

2

∫ t

0

ds

(gδs − fs)2
≥ ε− h0 + δ.

As a consequence,

lim inf
n→+∞

n−1/3 log
(

− log P
(
Mh
n ≤ (gδ1 − 2ε)n1/3

))
≥ δ − ε.

For any δ > 0 small enough, for any ε > 0 small enough, applying the Borel-Cantelli lemma we
have

lim inf
n→+∞

Mh
n

n1/3
≥ gδ1 − 2ε a.s.

Letting ε → 0 then δ → 0 concludes the almost sure asymptotic behaviour Mh
n .

We now bound mh
n. By Lemma 4.5, almost surely for n ≥ 1 large enough, the

⌊
en

1/3h1

⌋
th

rightmost individual at generation n in T̂
(n)
f−ε is above mh

n. Therefore for any x ∈ R, almost surely
for n ≥ 1 large enough,

1{mhn≥xn1/3} ≤ 1{
#
{
u∈T̂

(n)

f−ε
:|u|=n,V (u)≥xn1/3

}
≥eh1n

1/3
}.

Let δ > 0. By Lemma 3.1, we have

lim sup
n→+∞

n−1/3 log P
(

∃u ∈ T̂
(n)
f−ε : V (u) ≥ (gδk/n − ε)n1/3

)
≤ h0 − (h0 + δ − ε).

Consequently, for any δ > 0, for any ε > 0 small enough, almost surely for n ≥ 1 large enough the

population in T̂
(n)
f−ε at time k belongs to I

(n)
k . We write

Z(n)(x) =
∑

u∈T̂
(n)

f−ε

1{|u|=n}1{V (u)≥xn1/3}1{
V (uj)≤(gδ

j/n
−ε)n1/3,j≤n

}.

By Lemma 3.2, we have

lim sup
n→+∞

n−1/3 log E
[
Z(n)(x)

]
≤ h0 −

(
x+

π2σ2

2

∫ t

0

ds

(gδs − fs)2

)

≤ gδ1 − δ − x.
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Using the Markov inequality, for any δ > 0, for any n ≥ 1 large enough we have Z(n)(gδ1 − h1) ≤
eh1n

1/3

, which leads to

lim sup
n→+∞

mh
n

n1/3
≤ gδ1 − h1 a.s.

Letting δ → 0 concludes the proof of the upper bound of mh
n.

The lower bound is obtained in a similar fashion. For any ζ > 0, we write k =
⌊
ζn1/3

⌋
. Almost

surely, for n ≥ 1 large enough we have

∑

u∈Ť
(n)

f−ε

|u|=n−k

δV (u) 4

∑

u∈T
h
(n)

|u|=n−k

δV (u).

This inequality is not enough to obtain a lower bound on mh
n, as there are less than eh1n

1/3

individuals alive in Ť
(n)
f−ε at generation n − k. Therefore, starting from generation n − k, we

start a modified branching-selection procedure that preserves the order 4 and guarantees there

are
⌊
eh1n

1/3
⌋

individuals alive at generation n.

In a first time, we bound from below the size of the population alive at generation n− k. We
write, for δ > 0 and η > 0

X(n) =
∑

u∈Ť
(n)

f−ε

1{|u|=n−k}1{
V (uj)≤(g−δ

j/n
−ε)n1/3,ξ(uj)≤eηn

1/3
,j≤n−k

}.

By Lemma 3.3, we have

lim inf
n→+∞

n−1/3 log E(X(n)) ≥ h0 − 2ε−
(

(f1 − ε) +
π2σ2

2

∫ 1

0

ds

(g−δ
s − fs)2

)
= δ − ε+ (g−δ

1 − f1).

Consequently, using the fact that for p̌ i.i.d. random variables (Xj), we have

P




p̌∑

j=1

Xj ≤ p̌E(X1)/2


 ≤ 4 E(X2

1 )

p̌E(X1)2
,

for any ε > 0 and δ > 0 small enough enough, Lemma 3.3 leads to

lim sup
n→+∞

n−1/3 log P
(
X(n) ≤ e((g−δ

1 −f1)+δ)n1/3
)

≤ η + h0 − δ − ε− (h0 − 2ε).

For any ξ > 0, choosing δ > 0 small enough, and ε > 0 and η > 0 small enough, we conclude by
the Borel-Cantelli lemma that almost surely, for n ≥ 1 large enough

#
{
u ∈ Ť

(n)
f−ε : |u| = n− k

}
≥ exp

(
n1/3(h1 − ξ)

)
.

In a second time, we observe by (1.1) there exists a > 0 and ̺ > 1 such that

E



∑

|u|=1

1{V (u)≥−a}


 > ̺.

We consider the branching-selection process that starts at time n − k with the population of the
(n−k)th generation of Ť(n), in which individuals reproduce independently according to the law L,
with the following selection process: an individual is erased if it belongs to generation n−k+j and

is below n1/3f(n−k)/n−ja, or if it is not one of the en
1/3h(n−k+j)/n rightmost individuals. By Lemma

4.1, this branching-selection process stays at any time n−k ≤ j ≤ n below (Th
(n), V ) for the order 4.

Moreover, by definition, the leftmost individual alive at time n is above n1/3(f(n−k)/n − ε− aζ).
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We now bound the size of the population in this process. We write (Xj , j ∈ N) for a sequence
of i.i.d. random variables with the same law as

∑
|u|=1 1{V (u)≥−a}. By Cramér’s theorem, there

exists λ > 0 such that for any n ∈ N, we have

P

(
n∑

k=1

Xj ≤ n̺

)
≤ e−λn.

Consequently, the probability that there exists j ∈ [n − k, n] such that the size of the population

at time j in the branching-selection process is less than min
(
̺k+j−ne(h(n−k)/n−ξ)n1/3

, ehj/nn
1/3
)

decays exponentially fast with n. Applying the Borel-Cantelli lemma, for any ζ > 0, there exists
ξ > 0 such that almost surely for n ≥ 1 large enough, the number of individuals alive at generation

n in the bounding branching-selection process is
⌊
eh1n

1/3
⌋
. On this event, mh

n is greater than the

minimal position in this process. We conclude, letting n grows to +∞, ε and ζ decrease to 0 that

lim inf
n→+∞

mh
n

n1/3
≥ h0 − h1 − π2σ2

2

∫ 1

0

ds

h2
s

a.s.

completing the proof of Theorem 4.2.

An application of Theorem 4.2 leads to Theorem 1.1.

Proof of Theorem 1.1. Let a > 0, we denote by φ : n 7→
⌊
ean

1/3
⌋

and by (Tφ, V ) the branching

random walk with selection of the φ(n) rightmost individuals at generation n. For n ∈ N we write

Mφ
n = max

u∈Tφ,|u|=n
V (u) and mφ

n = min
u∈Tφ,|u|=n

V (u).

Let ε > 0 and n ∈ N, we set k = ⌊nε⌋ and h : t 7→ a(t + ε)1/3. Applying Lemma 4.1, we can

couple (Tφ, V ) with a branching random walk with selection of the en
1/3h. rightmost individuals

(T̃h
(n), V ) in a way that

∑

u∈T̃
h
(n)

|u|=n−k

δV (u)+mφ
k
4

∑

u∈T
φ

|u|=n

δV (u) 4

∑

u∈T̃
h
(n)

|u|=n−k

δV (u)+Mφ
k
. (4.4)

In effect the population at time k in Tφ is by definition between mφ
k and Mφ

k , and there are

en
1/3hj/n individuals alive at generation k + j.
Applying Theorem 4.2, we have

lim sup
n→+∞

Mφ
n −Mφ

k

n1/3
≤ lim sup

n→+∞

Mh
n−k

n1/3
≤ aε1/3 − π2σ2

2

∫ 1−ε

0

ds

(a(s+ ε)1/3)2
a.s.

as well as

lim inf
n→+∞

mφ
n − mφ

k

n1/3
≥ lim inf

n→+∞

mh
n−k

n1/3
≥ −a− π2σ2

2

∫ 1−ε

0

ds

(a(s+ ε)1/3)2
a.s.

As limε→0

∫ 1−ε

0
ds

(a(s+ε)1/3)2 = 3
a2 , for any δ > 0, for any ε > 0 small enough we have

lim sup
n→+∞

Mφ
n −Mφ

⌊εn⌋

n1/3
≤ −3π2σ2

2a2
+ δ a.s.

We set p =
⌊
− logn

log ε

⌋
, and observe that

Mφ
n

n1/3
=

1

n1/3

p−2∑

j=0

(
Mφ

⌊εjn⌋ −Mφ
⌊εj+1n⌋

)
+
Mφ

⌊εp−1n⌋

n1/3

≤
p−2∑

j=0

εj/3
Mφ

⌊εjn⌋ −Mφ
⌊εj+1n⌋

(εjn)1/3
+

supj≤ε−2 M
φ
j

n1/3
.
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Using a straightforward adaptation of the Cesàro lemma, we obtain

lim sup
n→+∞

Mφ
n

n1/3
≤ − 3π2σ2

2a2 + δ

1 − ε1/3
a.s.

Letting ε → 0 then δ → 0 we have

lim sup
n→+∞

Mφ
n

n1/3
≤ −3π2σ2

2a2
a.s. (4.5)

Similarly, for any δ > 0, for any ε > 0 small enough we have

lim inf
n→+∞

mφ
n −mφ

⌊εn⌋

n1/3
≥ −a− 3π2σ2

2a2
− δ a.s.

Setting p =
⌊
− logn

log ε

⌋
and observing that

mφ
n

n1/3
≥

p−2∑

j=0

εj/3
mφ

⌊εjn⌋ −mφ
⌊εj+1n⌋

(εjn)1/3
+

infj≤ε−2 mφ
j

n1/3
,

we use again the Cesàro lemma to obtain, letting ε then δ decrease to 0,

lim inf
n→+∞

mφ
n

n1/3
≥ −a− 3π2σ2

2a2
a.s. (4.6)

To obtain the other bounds, we observe that (4.4) also leads to

lim inf
n→+∞

Mφ
n

n1/3
≥ lim inf

n→+∞

Mh
n−k +mφ

k

n1/3
≥ −π2σ2

2a2

∫ 1−ε

0

ds

(s+ ε)2/3
−
(
a+

3π2σ2

2a2

)
ε1/3 a.s.

by Theorem 4.2 and (4.6). Letting ε → 0 we have

lim inf
n→+∞

Mφ
n

n1/3
≥ −3π2σ2

2a2
a.s.

Similarly, we have

lim sup
n→+∞

mφ
n

n1/3
≤ lim sup

n→+∞

mh
n−k +Mφ

k

n1/3
≤ −a− π2σ2

2a2

∫ 1−ε

0

ds

(s+ ε)2/3
a.s.

using Theorem 3.6 and (4.5). We let ε → 0 to obtain

lim sup
n→+∞

mφ
n

n1/3
≤ −a− 3π2σ2

2a2
a.s.

The careful reader will notice that, for almost any a ∈ R there exist a 6= a such that

a+
3π2σ2

2a2
= a+

3π2σ2

2a2 .

With this notation, both the branching random walk with selection of the ean
1/3

rightmost indi-

viduals at generation n and the branching random walk with selection of the ean
1/3

rightmost ones
are coupled, between times εn and n with branching random walks with the same killing barrier

f : t ∈ [ε, 1] 7→
(
a+

3π2σ2

2a2

)
t1/3,

the difference between the processes being the number of individuals initially alive in the processes,

respectively ea(εn)1/3

and ea(εn)1/3

.
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A Notation

• Branching random walk (T, V )

– T: genealogical tree of the process;

– u ∈ T: individual in the process;

– ∅: initial ancestor of the process;

– V (u): position of the individual u;

– |u|: generation at which u belongs;

– uk: ancestor of u at generation k;

– Ω(u): set of sibling of u;

– L: law of (V (u), |u| = 1).

• Many-to-one lemma

– Px: law of (T, V + x);

– Px =
∑

|u|=n e
V (u)−x.Px: the size-biased law;

– P̂x: law of (T, V + x,w) the branching random walk with spine.

• Branching random walk with a killing boundary

– f, g: continuous functions on [0, 1];

– I
(n)
k =

[
f(k/n)n1/3, g(k/n)n1/3

]
;

– T
(n)
f =

{
u ∈ T : |u| ≤ n, ∀j ≤ |u|, V (uj) ≥ n1/3f(k/n)

}
: subtree of T, the genealogical

tree of the branching random walk with killing boundary.

• Branching random walk with selection

– φ : N → N: size of the population;

– Tφ: sub-forest of the disjoint union of φ(0) i.i.d. trees with the same law as T, the
genealogical tree consisting at each generation n the φ(n) rightmost children of the
individuals alive at generation n− 1;

– h: continuous positive function;

– Th
(n) = Tφ, where φ(k) =

⌊
en

1/3h(k/n)
⌋
.
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[9] É. Brunet and B. Derrida. Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3),
56(3, part A):2597–2604, 1997.

[10] R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch.
Verw. Gebiete, 70(3):351–360, 1985.

[11] M. D. Donsker. An invariance principle for certain probability limit theorems. Mem. Amer.
Math. Soc.,, 1951(6):12, 1951.

[12] M. Fang and O. Zeitouni. Consistent minimal displacement of branching random walks.
Electron. Commun. Probab., 15:106–118, 2010.

[13] G. Faraud, Y. Hu, and Z. Shi. Almost sure convergence for stochastically biased random walks
on trees. Probability Theory and Related Fields, 154:621–660, 2012.

[14] K. Fleischmann and V. Wachtel. Lower deviation probabilities for supercritical Galton-Watson
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