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Abstract

The behaviour of market agents has always been extensively covered in the lit-

erature. Risk averse behaviour, described by von Neumann and Morgenstern (1944)

via a concave utility function, is considered to be a cornerstone of classical economics.

Agents prefer a fixed profit over uncertain choice with the same expected value, however

lately there has been a lot of discussion about the reliability of this approach. Some

authors have shown that there is a reference point where market utility functions are

convex. In this paper we have constructed a test to verify uncertainty about the con-

cavity of agents’ utility function by testing the monotonicity of empirical pricing kernels

(EPKs). A monotone decreasing EPK corresponds to a concave utility function while

non-monotone decreasing EPK means non-averse pattern on one or more intervals of

the utility function. We investigated the EPK for German DAX data for years 2000,

2002 and 2004 and found the evidence of non-concave utility functions: H0 hypothesis

of monotone decreasing pricing kernel was rejected at 5% and 10% significance level in

2002 and at 10% significance level in 2000.

JEL classification codes: G12, C12

Keywords: Risk Aversion, Pricing kernel
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1 Introduction

The behaviour of market agents has always been in focus in economic literature. Neu-

mann and Morgenstern (1944) describe risk averse behaviour using concave utility functions.

Agents prefer a fixed profit over uncertain choice with the same expected value, however

lately there has been a lot of discussion about the reliability of this approach. Recent em-

pirical studies by Jackwerth, J. C. (2002) showed that there is a reference point near the

inital wealth where market utility functions are convex. Rosenberg, J. and Engle, R. (2002)

observed a region of negative absolute risk aversion for orthogonal polynomial pricing ker-

nel. Detlefsen, et al (2007) raised the same question by recovering utility function through

empiricial pricing kernels for different time periods and observed a bump in EPK functions

near zero returns.

In this paper we test the concavity of utility function by checking the monotonicity of

pricing kernel. A strictly decreasing EPK corresponds to a concave utility function which

is consistent with classical theory of risk averse behaviour, while rejection of monotone de-

creasing EPK would mean non-averse pattern of the utility function. By analysing empirical

pricing kernels we can also identify on which interval or intervals monotonicity of EPK was

rejected. This setup is consistent with the main goal of the paper to test for monotonic-

ity in a particular region (e.g. near zero returns), although the results can be different on

other intervals (e.g. for large positive and negative returns the behaviour of EPK can be

unpredictable due to scarcity of the data).

In Figure 1.1 we compare utility functions obtained from DAX index in year 2000 and

derived from Black and Scholes model. Black and Scholes model is equivalent to monotone

increasing and concave utility function, see panel left of the figure. A nonparametric esti-

mator that replicates option prices provides us with market utility function, depicted on the

panel right of the figure. As can be observed, market utility function has a slight bump over

the region of zero returns. The aim of this paper is to find out whether observed fluctuations

are significant.

Construction of empricical pricing kernels has been well described by Ait-Sahalia and

Lo (2000). In their paper they distinguish the concept of economical risk which contains
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Figure 1: left: Utility function in the Black Scholes model for T = 0.5 years
ahead and drift µ = 0.1, volatility σ = 0.2 and interest rate r = 0.03. right:
Market utility function on 06/30/2000 for T = 0.5 years ahead.
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Figure 1: left: Utility function in the Black Scholes model for T = 0.5 years
ahead and drift µ = 0.1, volatility σ = 0.2 and interest rate r = 0.03. right:
Market utility function on 06/30/2000 for T = 0.5 years ahead.
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Figure 1.1: Classical utility function produced from Black Scholes model (left) and market

utility function estimated from empirical pricing kernel on 06/30/2000 (right)

investors’ preferences and statistical risk, which provides information on the risk of the data

generating process. Economic risk is well approximated by Arrow-Debrue prices and can be

estimated by risk neutral density q obtained from the derivative market. Their work offers

several accurate estimators of q using, for example, Black and Scholes (1973) model and also

present nonparametric estimators. In this paper risk neutral density is derived from implied

volatility models combined with Heston model, see Detlefsen, et al (2007) for details. These

kind of models provide a better fit because they incorporate sudden price jumps and explain

volatility smile. Due to the large number of observations in derivative option market, risk

neutral density q can be precisely estimated and considered to be known. Statistical risk is

presented by the distribution p of future prices conditional on current prices. Some attempts

to estimate p were undertaken by Rosenberg, J. and Engle, R. (2002) using GARCH model

and Ait-Sahalia and Lo (2000) using a nonparametric diffusion model. The main difficulty

in estimating p is that it depends on the underlying process of price St and can only be

estimated using the historical time series of St. Therefore, estimation of historical density

p is complicated by model specification and data scarcity and considered to be unknown.

Thus, we would like to test monotonicity of pricing kernel constructed as a ratio of estimated

q and unknown p.

Ait-Sahalia and Lo (2000) in their paper offer another test for risk neutrality and specific

preferences. Depending on the form of preferences they defineH0 hypothesis as a relationship

between estimated neutral density q and subjective density p. We do not make any assump-
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tions about the form of preferences and also consider subjective density p as unknown. In

our test H0 hypothesis of monotone decreasing EPK is compared to a general class of all

possible functions under H1. The test is constructed as follows: first the spacing method is

used to reduce the problem to an exponential model. On the basis of this model likelihood

ratio test is applied for a fixed interval and using intersection of tests for different intervals it

is expanded to a test independent of intervals. Finally, test statistics, calculated on observed

data, is compared to simulated critical values and a final decision about monotonicity is

taken.

The paper is organised as follows. In Section 2 we introduce important notations and

problem setup which is then reduced to an exponential model using the spacing method.

In Section 3 we formulate the hypotheses, construct a likelihood test for a fixed interval

[I, J ] and then expand it to an independent test a using multiple testing technique. We also

describe how to simulate critical values using the Monte-Carlo method. Section 4 contains

the performance of the test for simulated data and Section 5 provides results on DAX data

for 2000, 2002 and 2004.

2 Conception of the Test

2.1 Problem Setup

In this section we describe the relationships between (empirical) pricing kernel and utility

function. Suppose we have at our disposal an i.i.d. sample of asset returns X1, . . . , Xn.

Let q(x) denote risk neutral density Q(X < s) =
∫ s

−∞ q(x)dx and p(x) denote historical

probability density P (X < s) =
∫ s

−∞ p(x)dx which is assumed to be unknown.

Consider an investor who optimizes his strategy by maximizing his utility function U

which gives us an asset equation:

Pt = EP

[
βψ(XT ) · U

′(XT )

U ′(Xt)

]
where ψ(XT ) is a payoff function and EP is the expectation with respect to the real/historical

measure P.

5



Besides investor optimization problem, an asset can be priced under risk neutral measure

Q which enables us to construct a perfect hedge on derivative market:

Pt = EQ [exp(−rT ) · ψ(XT )]

Defining pricing kernel K(x) = q(x)
p(x)

we derive:

Pt =

∫ T

−∞
exp(−rT )ψ(XT ) · p(x)dx =

∫ T

−∞
exp(−rT )ψ(XT )

q(x)

p(x)
p(x)dx

= EP [exp(−rT ) · ψ(XT ) ·K(XT )]

Combining both equations we obtain:

β
U ′(XT )

U ′(Xt)
= exp(−rT ) ·K(XT ) (1)

Equation (1) shows the relationship between utility function U and pricing kernel K.

Pricing kernel K is proportional to marginal rate of substitution (MRS) between dates t and

T. Therefore, the form of utility function up to a constant is defined by a pricing kernel as

follows:

U(XT ) =
1

β
U ′(Xt) · exp(−rT )

∫ T

−∞
K(x)dx (2)

We want to test concavity of U(x) by checking the monotonicity of K(x). A strictly

decreasing K(x) corresponds to a concave utility function. We would like to check if there

exists an interval [a, b], where K(x) is not monotone decreasing.

Denote by X(1), . . . X(n) the order statistics related to X1, . . . , Xn i.e.

X(1) ≤ X(2), . . . ,≤ X(n)

With these notations we can rephrase our problem as follows: find (if possible) integers I, J

such that the sequence

Kk = K(X(k)) =
q(X(k))

p(X(k))
, I ≤ k ≤ J

is not monotone decreasing. The principal difficulty in this procedure is related to the fact

that p is considered to be unknown. To overcome this we will use three basic ingredients:

6



• spacing method to reduce the problem to a simple exponential model

• maximum likelihood test to check monotonicity of Kk for given I and J

• multiple-testing procedure to find I and J on the basis of the data at hand.

2.2 The Spacing Method

Our method is based on the Pyke’s theorem about the distribution of order statistics, see

Pyke, R. (1965). Consider U1, . . . , Un be i.i.d with a uniform distribution on [0, 1]. For the

order statistics

U(1) ≤ U(2), . . . ,≤ U(n)

define uniform spacings Sk as

Sk = U(k+1) − U(k) and Sn = U(n)

Theorem 2.1. Let U1, . . . , Un be i.i.d. uniformly distributed on [0, 1] and e1, . . . , en be i.i.d.

standard exponentially distributed random variables. Then

L{Sk, 1 ≤ k ≤ n} = L
{

ek∑n
i=1 ek

, 1 ≤ k ≤ n
}

Using the fact that E[ek] = 1 we obtain the following result:

n
{
U(k+1) − U(k)

}
= n · Sk ≈ ek. (3)

Let P (x) =
∫ x

−∞ p(u) du be the probability distribution function associated with p(x). Using

U(k) = P (X(k)) and first order Taylor approximation

P (X(k+1)) = P (X(k)) + P ′(X(k)) · (X(k+1) −X(k))
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we derive

U(k+1) − U(k) = P (X(k+1))− P (X(k)) ≈ p(X(k)) ·
(
X(k+1) −X(k)

)
(4)

Combining equations (4) with (3) we obtain

n
{
X(k+1) −X(k)

}
q(X(k)) ≈

q(X(k))

p(X(k))
ek = Kk · ek.

Thus our problem is reduced to the following one: check monotonicity of K(X(k)) = Kk

using

Zk = Kk · ek, I ≤ k ≤ J (5)

3 Construction of the Test

3.1 ML test for given I, J

Let A(I, J) be the set of all possible decreasing sequences on a given interval [I, J ]:

A(I, J) =
{
ak ≥ ak+1, I ≤ k < J

}
Let us defing the following hypotheses:

Hypothesis H0: K ⊂ A(I, J) and pricing kernel K is a monotone decreasing function

Hypothesis H1: K is any kind of function.

A nested model of monotone decreasing function under H0 is compared to a general class of

all possible functions under H1 by calculating the maximum of likelihood function for each

of the models. If function K is non-monotone in accordance with H1, maximum likelihood of

two models should significantly differ from each other. On the other hand when we remove

restriction on monotonicity and it does not bring significant improvement in likelihood,

restricted model H0 should be accepted.

The likelihood ratio monotonicity test is defined by the function

φ(Z) = 1

{
maxK⊂A(I,J) {p(Z,K)}

maxK {p(Z,K)}
−Hα(I, J) ≥ 0

}
8



In other words, if φ(Z) = 1 we accept the null hypothesis H0 : K ∈ A(I, J), otherwise the

alternative is accepted. This setup can be simplified with the following monotone transfor-

mation:

φ(Z) = 1

{
log

maxK⊂A(I,J) {p(Z,K)}
maxK {p(Z,K)}

− hα(I, J) ≥ 0

}
For a given probability of the first kind error α, the critical value hα(I, J) = logHα(I, J) is

defined as root of the equation:

P0

{
log

maxK∈A(I,J) p(Z,K)

maxK p(Z,K)
− hα(I, J) ≤ 0

}
= α,

where P0 is the probability measure generated by the observations from (5) with Kk ≡
1, I ≤ k < J .

Computation of maxK log {p(Z,K)} is straightforward. Using the results from equation (5)

that Zk = Kk · ek we derive log-likelihood function

log {p(Z,K)} = −
J∑

k=I

Zk

Kk

−
J∑

k=I

log(Kk) (6)

which gives us analytical result for maxK log {p(Z,K)} at Kk = Zk:

maxK log {p(Z,K)} = −(J − I)−
∑J

k=I log(Zk)

Computation of maxK⊂A(I,J) log {p(Z,K)} is performed via Newton-Raphson method with

the projection on decreasing sequence A(I, J). The main idea of this approach is to find the

maximum likelihood over all possible monotone decreasing sequences by interative optimiza-

tion via the Newton Raphson algorithm. This result is achieved through isotonic regression

combined with Newton-Raphson opimization algorithm.

Isotonic regression performs the least square estimation subject to monotonicity contraint

with strictly decreasing trend. For a given vectors x, y of size n the following minimization

problem is fulfilled:

min
fiso

n∑
i=1

{yi − fiso(xi)}2 s.t. fiso(xi) ≤ fiso(xj) where i > j

9



where fiso is isotonic regression. In practice isotonic regression represents a downward step-

wise function, see Figure 3.1. This procedure is unfortunately very time-consuming. It can

be also shown that maxK⊂A(I,J) log {p(Z,K)} is obtained at isotonic regression over Zk pa-

rameters since Zk gives us maxK log {p(Z,K)}. Thus Newton-Raphson algorithm can be

omitted, instead isotonic regression fiso(Zk) is applied to known Zk.

maxK⊂A(I,J) log {p(Z,K)} = −
∑J

k=I
Zk

fiso(Zk)
−
∑J

k=I log(fiso(Zk))
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Figure 3.1: Isotonic Regression over Zk generated as iid standard exponential

3.2 Multiple-testing

I J
[ , ]I J

1I n= …

1 n

1J I n= + …

Figure 3.2: Multiple testing on intervals I, J

The principal idea in the multiple testing is to construct a test that does not depend

on I and J . This problem is typically solved with the help of tests intersection, see Berger
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(1982). The hypothesis H0 of monotone decreasing function is rejected if it is rejected at

least on one of the interval [I, J ], see Figure 3.2. It means that we are looking for a minimal

critical surface h(I, J) such that:

P0

{
min
I,J

{
log

maxK∈A(I,J) p(Z, r)

maxK p(Z,K)
− hα(I, J)

}
≤ 0

}
= α.

Unfortunately the exact solution of this problem is extremely difficult and unknown. There-

fore we use the Monte-Carlo simulations to find a reasonable critical surface. We generate

“the worst”non-increasing case of the sequence K(k) as a constant:

K(1) = K(2) = . . . = K(n) = 1

Then using the result that Zk = Kk · ek we generate Zk ≈ exp(1) as an iid standard

exponential random variable.

Let us define ξ(I, J) as a test statistics over simulated Zk:

ξ(I, J) = log
maxK∈A(I,J) p(Z,K)

maxK p(Z,K)
= max

K∈A(I,J)
log {p(Z,K)} −max

K
log {p(Z,K)} (7)

Here ξ is a matrix of dimensions I, J with non-positive values. Maximum of value 0 is

reached at any monotone decreasing interval I, J .

Define mean M(I, J) and variance V 2(I, J) of test statistics ξ(I, J):

M(I, J) = E0ξ(I, J)

V 2(I, J) = E0 {ξ2(I, J)− E0ξ(I, J)}2

Parameters M(I, J) and V (I, J) are calculated by Monte-Carlo simulations of Zk as specified

above.

Critical value tα, where α is a significance level, is calculated as a root of:

P0

{
min
I,J

{ξ(I, J)−M(I, J) + tαV (I, J)} ≤ 0

}
= α (8)
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Equation (8) gives us a corresponding critical surface hα(I, J)

hα(I, J) = M(I, J)− tα · V (I, J)

In Figure 3.2 the calculation algorithm of critical values tα is displayed. Over all Monte-

Carlo simulations, Zk should violate α-threshold surfaces M(I, J)− tα ·V (I, J) in α percent

cases.

0( , ) ( , )M I J t V I Jα− ⋅

( )
( )

( . )max ,
( , ) log

max ,
K A I J

K

p Z K
I J

p Z K
ξ ⊂=

( , )I Jξ

α

Figure 3.3: Calculation of critical value tα

3.3 Multiple testing on blocks

Suppose initial set of Zk can be divided in m blocks of size b and the remainder n − b ·m,

see Figure 3.3.

( , )I J
1I n= …1 n1J I n= + …

b b b n m b− ⋅

Figure 3.4: Multiple testing on blocks
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The idea to introduce blocks is motivated by the variance reduction. Initially we imply that

the alternative hypothesis H1 is a set of all possible functions. By introducing blocks we

allow the function to be monotone decreasing on interval of size b and thus we decrease the

variance of the distribution. Blocks can be considered as a trade off between the variance

reduction and shift parameter. For small size block distribution is shifted, but variance

is also big. For large blocks the distribution function is less shifted but at the same time

associated with smaller variance.

On the left panel of Figure 3.5 distribuction functions of test statistics without block and

after introduction of block are depicted. First data are generated as linear trend with slope

b, constant a and iid exponential errors ei as xi = (a + b i) · ei. Test statistics is obtained

from equation (7) then ordered. Shift of distribution function is caused by increase of linear

slope b from 0 trend to 0.05. This idea is an underlying principle of the test, non-monotone

data shifts the ditribution to the left that should be determined by the test. Right panel of

the figure shows the influence of block parameter on variance and shift of cdfs. At best we

would like to maximize the shift and minimize the variance, with an increase of block size

m both shift and variance of cdf are smaller. The idea of blocks is to test monotonicity not

only on each interval I, J but also for all possible block sizes b.
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Figure 3.5: Multiple testing on blocks

Test statistics ξ(I, J, b) is obtained as a difference between maxK∈A(I,J) log {p(Z,K)} and

maxK log {p(Z,K)} but this time we assume that under H1 function is monotone decreasing

13



on each of m blocks of size b. Instead of taking each value, average for each block is taken:

max
K

log {p(Z,K)} = −m−
m∑

j=1

log

(∑j·b
k=j·b−b+1 Zk

b

)

The same procedure is performed for calculation of maxK∈A(I,J) log {p(Z,K)} but instead of

Zk best monotone decreasing approximation is taken as an isotonic regression fiso(Zk).

Finally we can formulate hypotheses: H0 hypothesis about monotonic decreasing function

is rejected when monotonicity is rejected at least on one of the intervals I, J with any block

size b:

min
(I,J,b)

{ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)} ≤ 0 (9)

Critical value tα,b is different for each value of b and obtained from the equation

P0

{
min
I,J,b

{ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)} ≥ 0

}
= α (10)

Now we are ready to summarize the monotonicity test:

1. Compute Z(X(k)) = n · q(X(k)) ·
{
X(k+1) −X(k)

}
2. Compute test statistics

ξ(I, J, b) = log
maxK∈A(I,J) p(Z,K)

maxK p(Z,K)
= maxK∈A(I,J) log {p(Z,K)} −maxK log {p(Z,K)}

3. Take decision: if

min
I,J,b

{ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)} ≤ 0

then K(·) is a non-monotone decreasing function

14



4 Implementation

In this section the performance of monotonicity test for artifically simulated data is evaluated.

We investigate the behavior of the test for different cases: monotone decreasing data, positive

linear trend and sudden jumps. Simulated data are generated in accordance with one of the

cases multiplied by standard exponential errors ei. By simulating different errors we can

obtain distribution function and then, basing on true function, calculate error probability

and evaluate the power of the test.

Before we apply the test to simulated and observed data, important parameters have to be

set. The decision about monotonicity is taken basing on sequence of surfaces ξ(I, J, b) −
M(I, J, b) + tα,b · V (I, J, b), one surface for each block size b. If at least one surface crosses

zero level H0 hypothesis about monotone decreasing funcion is rejected. If surface is located

under zero level it means that calculated test statistics is to the left of threshold value

M(I, J, b)−tα,b·V (I, J, b), see Figure 3.2. First we set the minimum interval of 10 observations

between J and I. This parameter is introduced to approximate test statistics ξ with Gaussian

distribution and improve the correlation betweeb statistics ξ(I1, J1) and ξ(I2, J2). Gaussian

approximation is possible due to central limit theorem, the bigger the interval is, the better

approximation. Obviously if the approximation is good, critical values tα should be close to

Gaussian critical values. Final goal of this parameter is to improve the power of the test.

The importance of b parameter has been discussed in Section 3.3. Large b reduces variance

but at the same time decreases shift of the distribution. We start with value b = 1 which

corresponds to no block until b = 0.5 · n which means the dataset is divided into exactly

two blocks. Values more than 50% of observations would correspond to only one block and

remainder and therefore do not make sense.

Calculation of critical values is described in Section 3.2. This procedure is very time con-

suming that is why we use dichotomic method in order to find the root of equation (8). This

is a method of iterative splitting of intervals into halfs until required precision of solution is

found.

First we generate a monotone decreasing sequence and check the performance of the test on

this dataset. The “worst”monotone sequence is a constant therefore we simulate x1 = x2 =

15



· · · = xi = 1. On the left panel of Figure 4.1 generated sequence x, Z and corresponding

isotonic regression over Zi are displayed. Having fixed b = 3 we calculated critical values tα,3

from equation (8) and corresponding testing surface M(I, J, 3)− tα,3 · V (I, J, 3)− ξ(I, J, 3)

which are depicted on the right side of the figure.
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Figure 4.1: Simulated monotone data and resulting testing surface, b = 3

The entire surface is located above zero level and therefore H0 hypothesis of monotone

decreasing function can not be rejected at 5% sifnificance level. The depicted above surface

is a single result of generated errors ei and fixed parameter b and therefore can not reflect

overall performance of the test. In order to demonstrate overall behavior of the test we

estimate error probability by generating different errors ei. In Figure 4.2 distribution of first

type error for different parameter b is plotted, i.e. probability to accept H1 although data

are distributed under H0. As it can be seen b parameters does not improve the first type

error.

In the next case data are generated with a positive linear trend xi = (a+ 0.05 · i) · e, where

a is a constant and i is an index from 1 to n. Simulated parameters M(I, J, b) and V (I, J, b)

do no depend on data but only on parameters b and number of observations n and therefore

can be taken from previously simulated example. For fixed b = 3 generated data, rejection

intervals and resulting surface ξ(I, J, 3)−M(I, J, 3)+ tα,3 ·V (I, J, 3) are given in Figure 4.3.

Rejection invervals show such I and J where testing surface crossed the zero level and H0

was rejected.
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Figure 4.2: First type error distribution for different block parameter b
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Figure 4.3: Simulated increasing data and resulting rejection intervals and testing surface

In order to calculate the error probability we calculate number of cases when test failed to

identify non-monone structure of the data, i.e. second type error. On Figure 4.4 there is a

distribution of second type erros for different b, starting from no block (b = 1) to exactly

two intervals b = 0.5 · n = 25. This figure shows that introduction of block significantly

improves the performance of the test: error probability decreases from 75% for no block to

almost 10% for b = 15.

In next example we simulate an artificial bump, see left panel of Figure 4.5. Ability of the test

to identify jumps or bumps in pricing kernel function is especially important since observed

data do not usually have an obvious positive trend. Instead EPK has various fluctuations,
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Figure 4.4: Second type error distribution for different block parameter b

bumps and jumps. Significant bump would correspond to non-concave utility function and

contradict to classical theory about risk-averse agents. On middle and right panels of Figure

4.5 testing surface ξ(I, J)−M(I, J) + tα · V (I, J) and rejection invervals I, J are given for

fixed block size b = 3.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

true function and Z
s
 on simulated data

True function
Z

k
Iso−regression

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Rejection intervals [I,J] for t
0.05

J

I

10
20

30
40

50

10

20

30

40

50

−5

0

5

10

15

J

Testing surface ξ(I,J) − M(I,J)+ t
0.05

 ⋅ V and Zero surface

I

ξ(
I,J

 −
 M

(I
,J

) 
+

  t
α ⋅ 

V
)

Figure 4.5: Simulated data with a bump and resulting rejection intervals and testing surface

Distribution of second type errors for different b is given on Figure 4.6. We can see that there

exists an optimal block size b which corresponds to a trade off between shift and variance

of distribution, see Section 3.3. Optimal b is different for each dataset and therefore we

consider a sequence of surfaces ξ(I, J, b) − M(I, J, b) + tα,b · V (I, J, b) for each block size

b. H0 hypothesis of monotonic decreasing function is rejected when at least one of these
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surfaces crosses zero level.
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Figure 4.6: Second type error distribution for different block parameter b

5 Monotonicity of DAX Empirical Pricing Kernel

Final goal of this paper is to test empirical pricing kernel obtained from observed data.

For the analysis we take data used in Detlefsen, et al (2007) where the pricing kernels and

the risk aversion are analyzed in summer of years 2000, 2002 and 2004 in order to consider

different market regimes. According to our test design the decision about monotonicity of

pricing kernel is made on the basis of generated Zk = n · (X(k+1) − X(k)) · q(X(k)) where

X are DAX returns and q is risk neutral density. DAX returns are calculated on half year

basis Xi = Xi−Xi−126

Xi−126
and then ordered to X(k). Corresponding ordered returns differences

X(k+1) −X(k) for years 2000, 2002 and 2004 are displayed in Figure 5.1.

Risk neutral density q (see Figure 5.2) is estimated using Heston model (1993) calibrated on

observed implied volatility surfaces with half year maturity. Fore more details on estimation

of risk neutral density refer to Detlefsen, et al (2007).

Resulting Zk values are displayed in Figure 5.3. For each set of Zk an isotonic regres-

sion was constructed which represents maxK⊂A(I,J) log {p(Z,K)} in equation (7). Numer-

ous simulations showed that in order to compute maximum likelihood for restricted model
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Figure 5.1: Half year ordered returns differences X(k+1)−X(k) for years 2000, 2002 and 2004
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Figure 5.2: Estimated risk neutral densities q for years 2000, 2002 and 2004

maxK⊂A(I,J) log {p(Z,K)} we have to take isotonic regression over optimal parameters which

maximize log {p(Z,K)} for all possible K. maxK log {p(Z,K)} is reached at Kk = Zk and

equal to −n−
∑n

k=1 log(Zk), so isotonic regression over observed Zk maximizes

maxK⊂A(I,J) log {p(Z,K)}.

In order to take a final decision about the motonocity sequence of surfaces M(I, I, b) and

V (I, J, b) has to be computed. M and V 2 are mean and variance parameters of test statistics

ξ obtained via Monte Carlo simulations of Zk as iid standard exponential random variable.

Each value of the matrixes M and V represent correspondingly mean and standard error of ξ

for a fixed parameter b and interval I, J and calculated as maxK⊂A(I,J) log {p(Z(I, J), K)}−
maxK log {p(Z(I, J), K)}. Matrix M has non-positive values with maximum at 0, V is non-

negative. Both matrixes exist only for J > I, see Section 3.2 for details. Since surfaces M

and V do not depend on observed data but only on the number of observations n and block
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Figure 5.3: Calculated Zk for years 2000, 2002 and 2004

size b they are computed once for all years. In Figure 5.4 corresponding surfaces M(I, J)

and V (I, J) are plotted for b = 1, M is linear increasing in I, J ; V is increasing in I, J at

square root speed.
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Figure 5.4: Surfaces M and V for 255 observations, b = 1

Next important step is to calculate critical values tα,b which are defined as a root to equation

(10). This procedure is time consuming, but at the same time does not rely on data and has

to be simulated once for a fixed number of observation n and block size b. We use dichotomic

method of iterative splitting intervals. In our analysis we start with intervals [0.0, 20.0] then

calculate correponding α for the mean of the interval. Depending on calculated α one of two

resulting intervals [0.0, 10.0] and [10.0, 20.0] is chosen. This procedure is repeated for selected
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interval until solution of required precision is found. Resulting critical values are presented

in Figure 5.5. It can be seen that critical values are changing for different parameter b.
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Figure 5.5: 5% and 10% distribution over b

Finally testing surfaces ξ(I, J, b)−M(I, J, b) + t0.05,b · V (I, J, b) for years 2000, 2002 and

2004 are produced. For fixed b = 50 corresponding surfaces are presented in figure 5.6. They

show the differences between simulated 5% threshold surface M − t0.05,50 · V calculated via

Monte Carlo simulations and test statistics ξ obtained from observed data in years 2000, 2002

and 2004. Hypothesis H0 of motononic descreasing EPK is rejected at 5% significance level if

test statistics ξ is smaller than threshold value M(I, J)− t0.05V (I, J). For each interval I, J

where surface ξ(I, J, 50)−M(I, J, 50)+t0.05,50V (I, J, 50) is negative, a corresponding rejection

interval is plotted in Figure 5.7. Summary of results for three years is presented in Table 5.1.

In addition to accepted hypothesis, value of minI,J,b {ξ(I, J, b)−M(I, J, b) + tα,b · V (I, J, b)}
is given in the table. By evaluating this values we can estimate the significance of accepted

hypotheses. Test significantly rejectes monotone decreasing EPK in 2002 as well as can not

reject strictly decreasing EPK in 2004 for 5% and 10% significance level. Situation in 2002 is

on the verge: H0 can not be rejected with 5% critical values, but rejected at 10% signifiance

level.
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Figure 5.6: Surface ξ(I, J, 50)−M(I, J, 50)− t0.05,50 · V (I, J, 50) for years 2000, 2002, 2004
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Figure 5.7: Rejection intervals (I, J) for years 2000, 2002 and 2004, b = 50

Sign. level/Year of analysis 2000 2002 2004

5% Significance level

minI,J,b 0.5437 -133.78 3.7935

Accepted H0 H0 H1 H0

10% Significance level

minI,J,b -0.1840 -134.42 3.1685

Accepted H1 H1 H1 H0

Table 5.1: Summary of results on monotonicity of EPK in 2000, 2002 and 2004.
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6 Conclusion

In this paper we describe the test that checks monotonicity of pricing kernels. By testing

monotonicity of pricing kernel we can determine whether utility function is concave or not.

A strictly decreasing pricing kernel corresponds to a concave utility function while non-

decreasing EPK means that the utility function contains some non-concave regions.

Pricing kernels are constructed as a ratio of risk neutral density q and subjective density

p. Density q is obtained from the derivative market and due to the large number of observa-

tions can be precisely estimated. p is usually estimated from historical information, but due

to scarcity of data is considered to be unknown. We therefore test the ratio of two densities
q
p
, where q is given and p is unknown. Using Pyke’s theorem (see Pyke, R. (1965)) this prob-

lem is reduced to a simple exponential problem. The test itself is constructed on the basis

of the likelihood ratio test for a fixed interval. By using the intersection of tests for different

intervals we can expand it to the variant which is independent of intervals. In section 3.3

we introduce a block parameter, which allows a function to be monotone on intervals of size

b. This innovation improves the power of the test by searching for the tradeoff between the

shift and variance of test distribution function.

We investigated EPK for German DAX data for years 2000, 2002 and 2004. We found

the evidence of non-concave utility function: H0 hypothesis of monotone decreasing pricing

kernel function was rejected at 5% and 10% significance level in 2002 and at 10% significance

level monotonicity in 2000. This result is consistent with the work of Jackwerth, J. C. (2002)

who observed partially negative risk aversion during the post crash period. For year 2004

a hypothesis of decreasing EPK could not be rejected at 5% as well as at 10% significance

level. These findings also support the idea of Giacomini and Haerdle (2007) who wrote the

the structure of pricing kernel may vary over time.
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