
HAL Id: hal-01322401
https://hal.science/hal-01322401v2

Preprint submitted on 7 Nov 2016 (v2), last revised 9 May 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Could the Darboux’s forces be an alternative to the
dark matter/energy?

Eric Guiot

To cite this version:
Eric Guiot. Could the Darboux’s forces be an alternative to the dark matter/energy?. 2016. �hal-
01322401v2�

https://hal.science/hal-01322401v2
https://hal.archives-ouvertes.fr


E.Guiot                  Could the Darboux’s forces be an alternative to the dark matter/energy? 

 

1 
 

Could the Darboux’s forces be an alternative to the dark 

matter/energy? 

 
Eric Guiot 

Independent researcher 

guiot.eric_1@yahoo.fr 

 

 

Abstract: In this paper we study the possibility that the Darboux’s forces be a classical alternative to 

Dark matter and Dark energy hypotheses. Indeed these central forces, which has been discovered in 

1877, admit the Newton’s force as a limiting case. We study their second limiting case, the Hooke’s, 

and we compare predictions of this model with the Friedman’s equation and with MOND theory. 
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1. Introduction 

 

It is well known that an important problem of the contemporary physics is to describe the celestial 

mechanics for large distances. For example, it appears that the classical laws of gravitation failed to 

describe the “flat” curves of rotation of the spirals galaxies without add, inside these galaxies, an 

important amount of a mysterious matter, called “dark matter” [1-3]. Another important problem of 

the celestial mechanics is to explain the expansion, at an increasing rate, of the universe [4] because 

classical theories of gravitation are always attractive. To solve this contradiction, physicians suggest 

that another mysterious energy, called this time “dark energy”, exists inside the Universe [5, 6]. 

Problem is that there is no proof of the reality of the “dark matter” and the “dark energy” despite 

several important experiments on the Earth [7]. Moreover the most accurate study to try to detect them 

in the space seems also have failed [8].  

Consequently, an important contemporary way of research is to modify the classical laws of 

Gravitation. Several alternative theories are in competition as for example, the )(Rf  theories of 

gravity [9], the scalar-tensor gravity theories [10] or the Modified Newtonian dynamics (MOND) 

theory [11]. But it appears today that no one of these theories does unanimity, and it is one of the 

reason of this work. 

 

Indeed we have studied an assumption which seems to have not been investigated. This one can be 

simply written: “if a point-particule interacts with a center of force without external disturbance its 

trajectory is conic (circle, ellipse, parabola or hyperbolae)”. This simple assumption can naturally be 

understood as a consequence of classical theories of gravitation and of observational data. In particular 

it is well known that a test-body moving under the influence of a Newtonian potential due to a central 

mass will describe a conic. Moreover it is also well known that if we modify the mathematical form of 

this potential we will induce perturbations on its trajectory (generally a modification of the perihelion 

precession). It is the reason for what attempts to modify Newtonian potential are generally strongly 

constraint with observational data or simply failed. We can evoke attempts to build a theory with a 

logarithmic corrected Newtonian potential [12, 13] or with a Yukawa-like potential [14], MOND [14], 

Dark matter theory [15] or other examples [16, 17, 18].  

Our idea was thus to consider the possibility that an alternative force of gravitation won’t modify 

trajectories inside our solar system. Consequently this force (as the Newton’s) should lead to conic 
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trajectories. Naturally this assumption based (as usual in the story of the Physics of Gravitation) on the 

trajectory limit drastically our choice of possible modified force of gravitation. 

 

By a way of consequence we studied relations between conic trajectories and forces and we learned 

that important works has been done about this problem at the 19th century. In particular in 1873 the 

mathematician Bertrand published a theorem [19, 20] which prove that it exists only two central and 

conservative forces which lead to closed trajectories, the Newton’s and the Hooke’s. Moreover it is 

interesting to note that these trajectories are in the two cases conic. Difference is that the Newton’s 

force is directed toward the foci of the conic and the Hooke’s toward its center. Another important 

information was the works of the mathematicians Halphen and Darboux. Indeed they discovered in 

1877 [21] a family of central forces which lead to conic trajectories and which admits two limiting 

cases, the Hooke’s and the Newton’s (other demonstrations has been published later [22, 23]). 

A consequence of this bibliography was to assume that these forces are perhaps the forces we are 

looking for. Firstly because one of their limiting case corresponds well to the force of gravitation in 

the case of small distances (as for example our solar system). Secondly because these forces are 

central and allow consequently to preserve the angular momentum of the system (we give the 

expressions in the paper). And thirsty because their second limiting case (the Hooke’s) is often evoked 

has an alternative to the Dark Energy (for example in the Friedman equation) to describe the 

expansion of the Universe (see for example references [24, 25]). 

 

The goal of the paper is thus to consider the possibility that the force of Newton becomes gradually a 

force of Hooke when distances increases while remaining central throughout its evolution. In other 

words to see if the Darboux’s force could be a possible alternative force of gravitation. We present 

consequently results we obtained about curve of rotation of galaxies, dynamics of the Universe and 

equivalence principle, with comparison with other theories. We begin the paper with a study of 

accelerations and forces which lead to conic trajectories.  

 

A. Family of accelerations and central forces which lead to conics trajectories 

 

A.1 Generalization of the Binet’s equation 

 

To obtain these accelerations we generalize the Binet’s equation. Indeed as distinguished from it we 

consider not only the radial acceleration but also the tangential acceleration. We present here this 

original method (at our knowledge) which has been published elsewhere [26]. 

 

As usual in celestial mechanics we will use the polar system of coordinate );;( eeF R


where F  (foci 

of the conic) is the origin of this system, r  is the radial distance to the origin with the relation 

RerMF


.  

And the angle  is measured from the periapsis of the orbit. In this system of coordinate the 

acceleration is given by the classical relation 

 errerra R




)2()( 2   

But the orbital shape is more concisely described by the reciprocal 
r

u
1

  as a function of   . 

And by using the relations 
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We obtain a generalization of the Binet’s equation.  
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By noticing that this equation can be written 
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We introduce two functions given by 
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We can now write the system of equation 
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We introduce a new function )(uf definite by 

)(.)( ufAuY   

Where A is constant. To obtain )(r as a conic, we have to solve a differential equation as 

Buu "  

 Where B is a second constant. Consequently we have now to introduce a relation between )(uY and  . 

This relation is 

)(ufCu   

Where C is a constant of the motion. Indeed with this relation we obtain 

)(" 222 ufAuuu   
 

And 
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This differential equation leads now to the classical solution 
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The parameter p of the conic is 

A

C
eap

2
2 )1(   

Where e is the eccentricity and a the semi major axis. Thus we obtain 

)1( 2eaAC   

We have now to determine the tangential component of the acceleration and by using 
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 Consequently our family of force (per unit mass) is with respect for the Newton’s law of dynamics 
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Or, more simply 




e
rf

f

d

dr
re

rf

f
reAfF RR





.

1'

2

11'

2

1
. 22


















   (1) 

Where A  and C  are two constants. Their physical dimensions depend on the choice of )(rf . Speed is 

given by 

)()2()( 2

2 rfrar
a

A
rrV    (2) 

A.2. Central force 

 

In previously part we determine a family of acceleration which lead to conic trajectories. In this part 

we determine by using the Newton’s second law of motion the central forces which lead to these 

trajectories.  

Vm
dt

d
F I


    (3) 

Where Im  is the inertial mass and V


the speed. If we consider the general case relation (3) becomes 

CII amVmF





  (4) 

Consequently we obtain a system of two equations 
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Where inertial mass is a function of r . Note that acceleration given by equation (2) isn’t necessary 

central and consequently that vectors of accelerations and forces aren’t necessary parallel. However 

and in agreement with our initial assumption we are looking for a central force. To obtain it we 

introduce an unmovable point (we call it I ) which is located between O and F (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We call  the distance FI . If the force is directed to I then the vector product 

0*


FMI  

Noting that, in our system of coordinate eeF R


 the vector MI


is given by 





Sin

rCos
MI




 

 We obtain 

0)(.   FrCosFSin R   (6) 

With the specific relationships to the conics 

F 

M 

O I 

 

 

  

Figure 1. Representation of the central force 



E.Guiot                  Could the Darboux’s forces be an alternative to the dark matter/energy? 

 

6 
 

eCos

ea
r






1

)1( 2

 and )(
)1( 2

rfr
ea

eCSin
r





  (7) 
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To obtain a central force we are looking for the family of functions )(rf and )(rmI
which leads to 

as a constant. Consequently we write the equation 
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This relation leads to 
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Where 1'C and 
2'C are two constant (notations of X’ will be used in all the paper for accelerations, X 

for forces). It is really interesting to note that  is independent from )(rm I
simply given by 
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We can now obtain the mathematical expression of our force. Introducing relation (8) in equations (2) 

and (5) force becomes 
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Noting that the distance RIM   is given by 
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We obtain  
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A.3. Darboux’s force and equivalence principle 

 

The force given by (10) is a part of the Darboux’s force. Indeed as we presented it in introduction 

mathematician Halphen and Darboux published simultaneous in 1877 a paper where they presented a 

family of central force which lead to conics trajectories. We have simply rediscovered them, using an 

original way. It is natural now to compare the different expressions. The second part of the Darboux’s 

forces are given by [21]  
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Where 1a , 
1b  and  are three constants and w  the angle of rotation given by 

FIMw


  

It is possible to show [27] that if its center of force is located on the OF axis (see Figure 1.) this force 

can, be written 

R
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Where 1C and 2C are two constant (not necessary equal to 
1'C and 2'C . The center of force is given 

by 

21

2

CaC

eaC
IF


  

The force admits two limiting cases: If 02 C force is the Newton’s. Constant A  is thus given by 

GG mGMA   

Where G is the constant of gravity, 
GM the gravitational mass of the center of force and Gm  of the 

body which orbits around it). We have also the relationship 

11 C  

Second limiting case is obtained when 01 C and is the Hooke’s. 

We can now write the equality of the expressions (10) and (11) 
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After simplification we obtain 
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We can also write the equality of   
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This equation becomes 
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We solve now the system of equations given by {12,13}. Results is 
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And the law of dynamic is simply 



E.Guiot                  Could the Darboux’s forces be an alternative to the dark matter/energy? 

 

8 
 

CI amF   

Acceleration and force are parallel and directed toward the same point. Acceleration is thus obtained 

by introducing 
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We write the equality of the force 
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We introduce now the ratio of masses   given by 
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It is interesting to that this ratio is constant for a given force of Darboux on all a conic trajectory.  

 

A.4. Coefficient of Darboux’s force 

 

We saw that the force is given by 
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In this part we will add drastic conditions on its coefficient by studying the physical signification of 

the force. We begin by the limiting cases. These cases are three: 

 

Firstly If 0 the force is naturally the Newton’s. The coefficients are given in this case by 

11 C   and  02 C  

Secondly if ea the force is the Hooke’s and coefficient 
1C  is given by 
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Thirsty if ea2 the center of force is located at the second foci of the conic. Consequently force is 

also the Newton’s. We write thus the equation 
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We can also consider the two body-problem. Indeed its solving add another drastic condition on the 

coefficients. We write thus that, if two bodies 
1M and 

2M interacts only with each other’s the sum of 

the forces has to be equal to zero (by remembering that inertial masses are constant on all the 

trajectory) 
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I is the center of mass given by 
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Or 
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Consequently as in the Newton’s case the two body-problem can be reformulated as a one body-

problem. Positions of 
1M and 

2M are thus located on two homothetic ellipses (Figure 2.) 
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Figure 2. Representation of the two bodies-problem 
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We deduce 
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General relationship is consequently 
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We verify our initial conditions 

If  11 C   then 02 C  and 0  

If  01 C   then aC 2
 and ea  

If 11 C  then aC 22   and ea2  

  

It is interesting to note that the force admit now a great simplification 
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)1( 1Cea    (17) 

It is also interesting to note that if the motion is circular we have aRr   . Force is equal to the 

Newton’s and is consequently always attractive 

R

GG e
r

mGM
F


2

  

But in the case of free fall motion we have  rR . Force becomes 

R

GG

CaRC

mGM
F eR

))1(( 32

11




  

And can thus be attractive or repulsive. At end we can also have a brief look on the acceleration 

induced by the Darboux’s force and given by 

R
CrC

CaC

a

GM
a G

C 3

21

21

)''(

''




  

With 

21

2

''

'

CaC

eaC


  

For the same reasons we will obtain 

If 1'1 C and 0'2 C acceleration becomes the Newton’s and 

If 0'1 C it becomes the Hooke’s. 

Note that when force is the Newton’s the ratio gravitational/inertial masses is given by 

1
'

2

1

1 









C

C
  
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The equivalence principle is respected in this limiting case. Note that this result can perhaps be 

considered as a demonstration of this principle. 

 

B. Theory of gravitation 

 

B.1. Periphery of galaxies: determination of coefficients 

 

It is well known that the speed of the stars at the periphery of one spiral galaxy is constant and well 

described by the relation 

  4
1

0aGMV G   (18) 

Where 
GM is the visible mass of the galaxy and 

0a the Millgrom’s acceleration (around

210

0 10.2,1  msa )(note that expression (17) has been often verified, see for example references [11, 

28] and is in agreement with Tully-Fisher law [29]).In this part we study if our model is compatible 

with this relation and we concluded about the principle of equivalence we expect.  

 

To begin this study we introduce a constant 0r  given by 

0

0
a

GM
r G   (19) 

We have two limiting cases: Firstly, when the force is the Newton’s we have relations 

  ar 0  

Secondly, when the force is the Hooke’s we have the conditions 

ar 0  

We consider that this condition is satisfied at the periphery of the galaxies. We can consequently 

obtain information about 
2'C in this limiting case. To do it we approximate the trajectories of stars to 

circles as is customary [11, 26]. The acceleration given by equation (14) is 

R
CrC

CaC

a

GM
a G

C 3

21

21

)''(

''




  

We write in this case the equality between accelerations for circular motion (note that here 0'1 C and

aRr  ). Thus 

a

V

C

GM
a G

C

2

2

2'
  

And using (18) and (19) we obtain 

02' arC   

We have a problem with this expression. Indeed if we write 

22' CC   

It appears that we can’t solve the two body-problem because  

012011 rmrm II   

Consequently the two ellipses won’t be homothetic because 

2211  II mm  

Moreover the force of gravitation will become 
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0

2ra

mGM
F GG  

Which is inconsistent with the force of Hooke in the case of gravitation (see section E.1. of the paper). 

We have concluded that if we want use this force to describe the dynamics of stars, and if we want 

respect the classical physics, we have to abandon the equivalence principle. Indeed the ratio 

gravitation/inertial masses given by (14)  
2

2

2

2

1

1

''



















C

C

C

C
  

Can’t be here equal to 1 if the force is the Hooke’s. But we can consider that the mathematical form of 

the two coefficients is proximate and by analogy with 

)1( 12 CaC   

We assume that 

)'1(' 102 CarC   

(Note that the boundaries conditions of acceleration are respected).  Consequently we obtain 
2

1

1

0 '1

1














C

C

r

a
  (21) 

And 















1

1

01

1

'1

1

' C

C

r

a

C

C
 

Which leads to 

aarC

rC
C




)(
'

01

01

1
 (22) 

 

We have here a second problem because we have only one equation for two unknowns. But it appears 

that we can use boundaries conditions to reduce the choice. Indeed we know that 1C , 1'C  and   are three 

continuous functions defined by 

0

1

1

1

1'0

10

r

a

C

C









 

We know also that 

If   0ra    then  

1

1'

1

1

1









C

C

 

And 

If    0ra    then  

0

1

1

0'

0

r

a

C

C








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Moreover when 0ra   force should be composed at an equal part of the Newton and the Hooke. For 

this reason we assume that in this case we have 

0
2

1
er  

This means that point I is located at the same distance between O and F. we deduce that at this point

2

1
1 C  and 

02
2

1
rC   

We have tested several functions in order to see if they could respect our conditions. It appears that we 

obtained a family of simple and proximate relations which allows to respect all its conditions and 

could be consequently correct. It is the reason for what in this paper we suggest 

kk

k

ar

r
C




0

0

1  

Where k is a positive number such 
2

nk  . n  is a natural integer. Relations between coefficients 

becomes 






































































2

0

2
1

0
2

1

0

2
1

0
2

1

0

1

2

2
1

0
2

1

2
1

0

1

0

1

2

0

0

1

1

'

'

kk

kk

kk

k

kk

k

kk

k

kk

k

ra

ra

r

ra

ra
C

ra

r
C

ra

a
C

ra

r
C



 (22) 

We see that coefficients have the same mathematical form and we think it is a cogent argument for this 

solution. Note also that the expression of the physical quantities are generally simple (see for example 

the angular momentum in section B.2.1). Moreover if we plot function )(1 aC for several values of k  

(figure 3) 
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And the expected variations of )(a  (Figure 4) 

 

 
 

We see that the evolution seems correct whatever the value of k . At end note that a proximate relation 

given by 

C

C

a

aa 0
  

has already been suggested in a relativistic theory [28].  

 

B.2. Properties of the force 

 

Magnitude of the force becomes now 
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6,00E-01
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Figure 3. C1 for several values of k in function of 

Log(a/r0)
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Newton's force

Hooke's force
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Figure 4. variation of log(n) with log (a/r0)
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R
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mGMR

aar
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F
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k

GG

3

1
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0

3

0

0 ))((























 

This force is located at I definite by 

kk

k

ra

a
eIF

0

1






 

 

B.2.1. Angular momentum 

 

The angular momentum is the cross product of the particle’s position vector and its momentum vector 

)..(  erermVmp RII





  

at F , foci of the conic we obtain 

ZIRRIF ermererermL





..)..(*.. 2    

And by using  

21 ''

1
)(

CrCr

C
rf

r

C


   (23) 

we obtain 

ZIF e
CrC

Cr
mL


.

'' 21 
  

The angular momentum at I is given by 

).).(*  emrerFILL IRFI





  

By noting that 

)..(  eSineCosFI R


  

IL


becomes 

  ZIFI eSinrCosrmLL





 ..   

And 

  ZIII eSinrCosr
aCC

eaC
m

CrC

Cr
mL





 





 .

'''' 12

2

21

 

By using the specific relationships to the conics (7) we obtain 

ZII e
aCC

aC
mL



12 '' 
 )( 12 sm  

This vector is constant. Angular momentum becomes simply 

ZGIZ

kk

k

kk

kII eeaGM
C

C
me

ra

r
a

ra

r
ar

aC
mL


)1(

'
)1(

2

1

1

2
1

0
2

1

2
1

0

2
1

0
2

1

2
1

0

0

















  

Angular momentum is well constant. It is also interesting to note that it can be written 

ZGGII eeaGMmmL


)1( 2  
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B.2.2. Equation of time 

 

As usual, we write this equation by using the eccentric anomaly E (Figure 2). Indeed (in the case of 

an ellipse) we have the relation 

eCosE

e
E






1

1 2

  

By using equation (23) 

21

2

''

1

1

1

CrCr

C

eCosE

e
E






  

And by using 

)1( CosEar   

We obtain 

 
a

A

ea

C
CeCosEaCE 




2
21

1
')1('  

By an integration 

t
a

A
ECeSinEEaC  21 ')('  

Consequently if trajectory is bounded we obtain 

t
a

A
aSinEeCCaCE  121 ')''(  

t
a

A
SinE

CaC

aC
eECaC 












21

1
21

''

'
)''(  

And 

mtt
a

A

CaC
SinE

CaC

aC
eE 







)''(

1

''

'

2121

1  

Thus the mean motion is given by 

a

A

CaC
m

)''(

1

21 
  

If the force is the Newton’s we obtain the equation of time of Kepler 

t
a

A
eSinEE

3
  

And if the force is the Hooke’s we obtain simply 

t
aC

A
E

2

2'
  

These results indicates that we have well a time invariance. In agreement with Noether’s theorem 

Energy is conserved. 

. 

C. Predictions 
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We study in this part several predictions of our model, in particular about the curve of rotation of 

galaxies and about the expansion of the Universe. 

 

C.1. Curve of rotation of galaxies: comparison with MOND 

To obtain this curve we consider as usual the circular motion and we write in this case the fundamental 

equality of dynamics 

 

R
aarC

mGM

r

V
m GG

I 3

1

2

))(( 
  

We have the relationships Rar  . Speed is thus given by 

 






















kk

kk

GG

ra

ra

ar

GM

a

GM
V

0

2
1

0
2

1

0

   (24) 

Note that we can distinguish two limiting cases:  

If ar 0  the speed becomes the Newton’s given by 

a

GM
V G  

If ar 0 this speed becomes  

  4
1

0

0

aGM
r

GM
V G

G     

We introduce a variable
0r

a
y  (24)  






















k

k

G

y

y

a

GM
V

1

1 2
1

 

We present the graph we obtained for 
2

3k (Figure 5).  

 
 

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

-1 -0,5 0 0,5 1 1,5 2 2,5

Hooke

Darboux

Figure 5. Evolution of the speed
Log(V)=f(Log(a/r0))
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For comparison with our solar system Earth is located at 5)(
0


r

aLog and pluton at 3)(
0


r

aLog  : 

Difference between the Newton’s and Darboux’s model are tiny. But we can expect modification of 

the dynamics at the extreme periphery of the solar system. Note also that the speed due to the model is 

inferior to the limital speed when 
0ra  .  

 

It is also interesting to compare the speed we have obtained with the speed due to MOND theory. 

Indeed it is well known that this theory allows to obtain very good fit of curve of rotation of spiral 

galaxies. If functions are proximate we will deduce that the model could likely be correct to describe 

these curves.  

 

MOND theory assumes that “the Newtonian acceleration Ng produced by the visible matter is linked to 

the true acceleration g  by means of an interpolating function   » [11] given by 

Ngg
a

g
)(

0

  

Where 

1)( x if 1x  

xx )( if 1x  

Force and acceleration are linked by 

g
a

g
mF I


)(

0

   (25)  

Where F is the Newton’s force. In his theory inertial and gravitational mass are equal and (25) 

becomes in the case of circular motion 

a

V

a

g

a

GM G
2

0

2
)(   (26) 

Several possible expressions of   has been tested with success. The most popular choice was the 

“standard”  function [11] 

2
1

1 x

x


     

And the “simple”  function [14] 

x

x




1
2     

Note that these two functions allows to obtain excellent fit for 
210

0 10.2,1  msa . By using 

acceleration given by 

a

V
g

2

  

And by introducing this relation into (26) we obtain two expressions of the speed 
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We plot the functions on figure 6. 

 

 

C.2. Comparison with “Mass Discrepancy Acceleration Relation” 

 

Recently an empirical correlation (called MDAR”) between radial acceleration and distribution of 

baryon in a wide range of galaxies has been published [31]. We can thus compare our model with this 

result.  

 

Correlation is given by 

)exp(1
0g

g

g
g

BAR

BAR

OBS



  

Where 
OBSg is the radial observed acceleration, 

BARg the acceleration due to visible baryonic matter 

and 
0g a constant acceleration proximate to the Millgrom’s. Note that this function has already been 

used in MOND [32]. In our case radial acceleration is given (for circular motion) by 

2

21 )''( CrC
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a G
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  

With coefficients given by (22) and by using 
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We obtain 
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With this notation MDAR becomes 

)(.
)exp(1

1
xhg

x
gg BARBAROBS 


  

 

It seems thus interesting to compare the functions )(xf and )(xg . We plot the two functions on figure 

7. 

 

 
 

No that the nearest function we obtained was the “standard” interpolating function of MOND. 

 

 

 

C.2. Expansion of the Universe 

 

C.2.1. Consequence on the parabolic motion: dynamics of the Universe. 

 

We see here the predictions of this model about the dynamics of the universe. To do it we study the 

limiting case of parabolic motion.  The eccentricity is given by 

1e  

And in the simplest case the angular  is determined by 

   

And we have relation 

arR   

Consequently our force becomes simply 
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We can see that the sign of this force can be positive or negative, and is depending on the ratio
a

r
. 

Indeed, if ar   the force is repulsive. However, it also appears that this force can be attractive if ar  . 

Accelerations becomes 

R

G e
a

r

a

GM
g










 1

2
 

 

We can deduce the implication of the model about the dynamics of the Universe. We consider, for 

example, the interaction of two clusters of galaxies between themselves. We approximate their motion 

with a parabolic motion, and the force of gravitation is the force we present here.  

If the clusters move away from one another it is possible that this force is repulsive. Consequently, 

their relative speed will increase, at least for a time. It appears that if our idea is correct this kind of 

interactions is actually majority inside the Universe. However when the distance between the clusters 

progresses this force becomes a day attractive. Consequently model can describe the actual expansion 

of the Universe at an increasing rate, and simultaneously can be compatible with the classical idea of 

“Big Bang / Big Crunch”. It doesn’t need “dark energy” hypothesis, because the Universe is 

considerate as a kind of harmonic oscillator.  

Indeed for a closed homogeneous and isotropic universe, we can compare it to a kind of spring. The 

expansion of the universe is accelerated because this “spring” is today compressed. This point 

indicates that the free end of the spring hasn’t reached its “relaxed” position. After this point the force 

becomes attractive and the rate of the expansion decreases.  

 

We will now briefly compare the model with the Friedmann’s equations. 

 

C.2.2.. Comparison with the Friedmann’s equations 

 

The first equation of Friedmann is used for modeling an isotropic and homogeneous universe and is 

derived from the Einstein’s field equations [24]. In this equation Einstein has inserted a factor called 

the cosmological constant. By taking care of this factor the first Friedmann’s equation becomes 
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Where 1a is the scale factor, G the Newton’s gravitational constant,  the cosmological constant, c

the speed of light in vacuum, )(t the density of mass of the universe and 2
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Where m is constant. 

The first term of this equation can be compared with a Kinetic energy. The second term with a 

Newtonian potential, the third with an isotropic harmonic oscillator potential. 

The right-hand side of this equation is constant. Consequently this equation can be understood as the 

conservation of the Mechanical energy. 
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If we have a look on equation (27) we can deduce that the force we present here doesn’t lead to a 

comparable equation. Indeed we can’t write a potential which is only the addition of a Newtonian and 

harmonic oscillator potential, because in this case the trajectory won’t be a conic. 

 

However if 1a we can consider that the Newtonian potential disappears in equation (27).  It 

appears that in this case this equation possesses an interesting analogy with the model we study. 

Indeed, in the case of parabolic motion the force is given by 
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In this limiting case the force is conservative. Consequently we can determine a potential which is 

only depending on r . This one is given by 
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Where 1V is constant. By writing as usual that the potential has to be null when ar  we obtain 
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This force is located at O and the distance ROM  is given by using the relation 
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The Kinetic energy is given by 
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Thus the Mechanical energy is 
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And Mechanical energy per inertial mass unity 
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We can now compare equations (27) and (28). It appears that we can write two proportionality 

relations 
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It seems thus that if this analogy is correct the cosmological constant should be negative. Moreover 

this cosmological constant should be depending on the Millgrom’s acceleration. 

 

But as we wrote it previously it seems that it is only an analogy. However we can perhaps consider 

that the mathematical similarity between the two equations is an argument for the model.  

 

D. Possible test inside our solar system? 

 

As often in this domain of the Physics we are faced to the lake of experimental results. It is the case of 

the dominant approach (Dark Matter/ Energy approach) and of the majority of alternative theories. 

Indeed tests seem very difficult to implement when acceleration is so small [32]. However we can 

suggest tests inside our solar system to valid or invalid the model. Indeed it is perhaps possible to 

detect small perturbations around the Newton’s law if it is correct. In particular we think that it could 

be interesting to test the parabolic or hyperbolic motion, for example with a spacecraft.  

Indeed in the case of free fall motion, the acceleration (we have obtained it with a series when 0r  ) 

should be 
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Which is consequently not absolutely equal to the Newton’s. 

 

Another test could be around the equivalence principle. Indeed model predicts that it isn’t absolutely 

respected. For example if two test-body are dropped out from the same distance from the center of 

force the semi-major axis of their trajectory will be equal, but the ratio gravitational/inertial masses 

given by 
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This constant isn’t exactly the same for the two test-body. However generally difference should be a 

negligible amount, because masses of test-body are small in comparison with the mass of the Earth. 

For example mass of test bodies inside satellite Microscope [33] are around 0.5 and 1.5 Kg and Earth 

around 2410 Kg… Difference of 0r  and consequently of   should be in these conditions really small 

and likely undetectable.  

 

E Discussion 

 

E.1. About the force of Hooke 

 

In this paper, we studied the possibility that the force of Hooke could perhaps be the force of 

gravitation valuable for large distances, by choosing correct coefficients. We think consequently it 

makes senses to ask ourselves if this idea can have a physical reality. It appears that we can find 

several argument in favor of this hypothesis. 

Firstly, we can notice that the force of Hooke exist already in the gravitation. It is the force which 

interacts with a point-particle inside a sphere where the density of mass is uniform. This is the 

consequence of the theorem of Gauss. For example, in a sphere the force is given by 
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Where 
intGM is the total gravitational mass contained inside the sphere of radius r . If the point 

particle is dropped out from a distance a from the center and if the mass density is uniform we obtain 
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Where C is constant. We can compare this expression with force we obtained in a comparable motion  
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We see that the expressions are identical. By using this analogy we can suggest a physical 

interpretation of our force:  progressively, when the distance to the center of force increases, the point 

particle which orbits around the center of mass “considers” that this mass is progressively «diluted” 

inside a closed volume. This volume is depending on the semi major axis of its trajectory. At the end 

of this evolution the force becomes entirely the Hooke’s. Note that this kind of interpretation was 

already used in another action-at-a-distance, to build the model of the atom of Thomson at the 19th 

century.  

 

We can also add that this force is often used in chemistry for modeling molecular bonds. For this kind 

of reasons (and also for the analogy with the Friedman’s equation we studied) our conclusion is that 

we can’t absolutely exclude the possibility that the force of Hooke be a force of gravitation valuable 

for large distances. 

 

E.2. Strengths and weakness of the model  

 

We can list several strengths of the model we presented. In a first time it is interesting to note that it is 

in agreement with corpus of classical Physics. In particular, energy and angular momentum are 

conserved. Note that it is an important difference with other theories, in particular with MOND. 

Moreover model allows to solve the two body problem, at the cost of a modification of equivalence 

principle.  
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A second interesting point is that model seems describe correctly dynamics of Galaxies and Universe 

without Dark matter or Dark Energy. Curve of rotation of galaxies are well flat and actual expansion 

of Universe can be explained. It seems thus that this model present less difficulties than other which 

failed often to describe simultaneous these two facts. 

Another important argument for this model is that the ratio inertial/gravitational mass is constant on all 

a trajectory: this indicates that it is perhaps possible that it becomes a day the limiting case of a 

relativistic theory. 

 

Among the weak points we think to several difficulties. Firstly, the force is depending on the 

trajectory. And secondly, the model is non-relativistic and consequently can only be an approximation 

of reality. It is possible that a day these two difficulties are solved, if the model becomes a limiting 

case of a relativistic theory. In our opinion this theory should be based on the equivalence relations we 

give in the paper.  

 

F. Conclusion 

 

In this paper I present a classical model as an alternative to dark matter and dark energy. I used the 

Darboux’s forces to see if these forces could be transitional forces between the Newton’s and the 

Hooke’s. Conclusion is that these forces should lead to curve of rotation of galaxies comparable to 

MOND theory, and that they could perhaps describe the actual dynamics of the Universe.  Equivalence 

principle is violated (except in the Newton’s case) but ratio of inertial/gravitational masses is constant 

on all a trajectory. Moreover model respect conservation of Energy and of Angular Momentum, and 

seems in agreement with corpus of classical physics. We don’t expect modification on advance on 

perihelion of planets inside our solar system but a modification of the mean motion at the extreme 

periphery of it. Principal difficulty of the model is that the force isn’t conservative and consequently is 

depending on the trajectory. However this difficulty is perhaps not unsurmountable, especially if we 

consider that it could be the limiting case of a relativistic theory. At end it seems interesting to test it 

on real curves of rotation of galaxies and on parabolic interactions between clusters of galaxies. 
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