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Memristor, the missing fourth passive circuit element predicted forty years ago by Chua was
recognized as a nanoscale device in 2008 by researchers of a H. P. Laboratory. Recently the notion
of memristive systems was extended to capacitive and inductive elements, namely, memcapacitor
and meminductor whose properties depend on the state and history of the system. In this paper,
we use fractional calculus to generalize and provide a mathematical paradigm for describing
the behavior of such elements with memory. In this framework, we extend Ohm’s law to the
generalized Ohm’s law and prove it.

Keywords : Fractance; memfractance; memristor; memcapacitor; meminductor; Ohm’s law;
fractional calculus.

1. Introduction

In his paper, Chua [1971] had predicted the exis-
tence of the missing fourth passive circuit element,
which is characterized by a constitutive nonlinear
relationship between the charge q and the flux ϕ.
Such a physical device would not be reported until
2008, when a physical model of a two-terminal hp
device behaving as a memristor was announced in
[Strukov et al., 2008]. This element shows many
interesting features when describing electrical phe-
nomena, especially at small (molecular or cellular)
scales. In fact, the memristor is a device that does

not depend on any particular material or physi-
cal mechanism. For example, spin-transfer magnetic
tunnel junctions [Chua, 2011] are also memristors
even though the physical memristive mechanism
is completely different from the hp memristor. A
memristor is also useful for bioimpedance in bio-
electricity modeling [Johnsen, 2012].

In [Gale et al., 2014] a simpler method to make
memristors for testing purpose has been demon-
strated. These drop-coated Al/TiO2/Al memristors
undergo memristive Bi-Polar Switching. These
devices can be synthesized with equipment available

Published in 
International Journal of Bifurcation and Chaos,
Vol. 24, No. 9 (2014) pp. 1430023-1 to 1430023-29
DOI: 10.1142/S0218127414300237

page 1

personnal file

Modifié avec la version de démonstration de PDF Editor, un logiciel CAD-KAS (http://www.cadkas.com).
This text only appears in the demo version. This text can be removed with the full version.
Modifié avec la version de démonstration de PDF Editor, un logiciel CAD-KAS (http://www.cadkas.com).
This text only appears in the demo version. This text can be removed with the full version.



September 19, 2014 14:43 WSPC/S0218-1274 1430023

in a standard chemistry lab, simplifying the
methodology still further and widening the field of
researchers who can experiment with memristors.

Recently [Di Ventra et al., 2009], the notion of
memristive systems was extended to capacitive and
inductive elements, namely, capacitors and induc-
tors whose properties depend on the state and his-
tory of the system. The authors argue that these
devices are common at the nanoscale, where the
dynamical properties of electrons and ions are likely
to depend on the history of the system, at least
within certain time scales. These elements (mem-
ristor, memcapacitor, and meminductor) and their
combination in circuits open up new functionalities
in electronics and are likely to find applications in
neuromorphic devices to stimulate learning, adapta-
tive, and spontaneous behavior. Fractional calculus
[Butzer & Westphal, 2000] which is a generalization
of integration and differentiation to arbitrary order,
allows us to generalize equations of classic electric
elements (resistor, capacitor and inductor) to frac-
tance elements [Le MeHaute & Crepy, 1983]. In this
paper, we use fractional calculus in order to gen-
eralize and provide a mathematical paradigm for
circuit elements with memory: the memfractance.
In this framework, we extend Ohm’s law to the
generalized Ohm’s law for memory elements and
prove it. The motivation and signification of this
paper is that there may exist future nanoelectron-
ics devices that are more realistically modeled with
memfractance elements. Several illustrative exam-
ples are explored theoretically and numerically,
using the new tool of interpolated memfractance
of four memory elements: memristor, memcapaci-
tor, meminductor and the newly introduced second-
order memristor, respectively. A special attention is
devoted to the interpolated characteristic of a mem-
fractor lying between memristor and memcapacitor
which exhibits an unexpected new behavior of time
variation of flux (ϕ − t curve). This phenomenon
is studied very carefully by the means of rigor-
ous proofs. Finally, following Chua who has intro-
duced the notion of (α, β) elements which defines
an infinite discrete family of circuit elements, which
is essential for developing a rigorous mathematical
theory of nonlinear circuits, we extend the gener-
alized Ohm’s law in order to embed memfractor
elements into this periodic table. In this scope, we
define an infinite continued family of circuit ele-
ments with a special metric. We call it — fractional
circuit element family. In Sec. 2, we recall the

general background of both circuit elements with
memory and fractional calculus. We generalize the
definition of fractance and we give the related
Ohm’s law. In Sec. 3, the second-order memristor
is defined, the paradigm of memfractance is intro-
duced and the generalized Ohm’s law for memory
elements is proved. In Sec. 4, the interpolated mem-
fractance is carefully studied in order to consider
particular memfractor elements. Numerical illustra-
tive examples are computed and their results dis-
played in Sec. 5. A special attention is devoted
to the interpolated characteristic of a memfrac-
tor lying between memristor and memcapacitor.
Finally, in Sec. 6, we extend the generalized Ohm’s
law to the periodic table of circuit elements.

2. General Backgrounds

In this section, we recall some preliminary concepts
of circuit elements with memory, fractional calculus
and fractance element.

2.1. Circuit elements with memory

The general class of nth-order u-controlled mem-
ory devices are defined [Chua & Kang, 1976; Chua,
2003, 2009, 2012] as those described by the follow-
ing relations: {

y(t) = g(x, u, t)u(t),

ẋ = f(x, u, t),
(1)

where f is a continuous n-dimensional vector func-
tion, x denotes a set of n state variables describ-
ing the internal state of the system, u(t) and y(t)
are any two complementary constitutive variables
[Chua, 2003] denoting input and output of the sys-
tem (i.e. current, charge, voltage or flux) and where
g is a generalized response satisfying |g(x, u, t)| < ∞
for |u(t)| < ∞.

Memcapacitive, memristive and meminductive
systems are special cases of (1), where the two con-
stitutive variables that define them are charge and
voltage for the memcapacitance, current and volt-
age for memristance and, current and flux for the
meminductance. Following [Chua & Kang, 1976;
Chua, 2012], we give a brief definition of circuit ele-
ments with memory.

Definition 2.1. An nth-order current-controlled
memristor is defined by{

vR(t) = R(x, i, t)i(t),

ẋ = f(x, i, t),
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where v(t) and i(t) denote the voltage and cur-
rent across the device and R is a scalar, called the
memristance.

The ideal memristor is a special case of generic
memristor when R depends only on charge, namely

vR(t) = R(q(t))i(t). (2)

Considering devices with R(x, i, t) > 0, it has been
proved [Chua & Kang, 1976] that these devices
are passive and possess the no energy discharge
property.

Definition 2.2. An nth-order charge-controlled
memcapacitor is defined by{

vC(t) = C−1(x, q, t)q(t),

ẋ = f(x, q, t),

where C−1 denotes the inverse memcapacitance.
The ideal memcapacitor is a special case of the
generic memcapacitor when C−1 depends only on
the integral of charge, namely

vC(t) = C−1

(∫ t

−∞
q(τ)dτ

)
q(t). (3)

Definition 2.3. An nth-order current-controlled
meminductor is defined by{

ϕ(t) = L(x, i, t)i(t),

ẋ = f(x, i, t),

where L is the meminductance and ϕ(t) is the flux
defined by ϕ(t) =

∫ t
−∞ vL(τ)dτ . The ideal memin-

ductor is a special case of the generic meminductor
when L depends only on the integral of current,
namely

ϕL(t) = L

(∫ t

−∞
i(τ)dτ

)
i(t). (4)

Remark 2.1. It is important to stress that “q” and
“ϕ” are defined mathematically and need not have
any physical interpretation.

Figure 1 shows three symbols used for the
devices defined above as presented in [Di Ventra
et al., 2009; Chua, 2009].

2.2. Fractional calculus

The idea of fractional calculus has been known since
the development of the regular calculus [Leibniz,

Memristor MeminductorMemcapacitor

Fig. 1. Symbols of circuit elements with memory (from
[Chua, 2009]).

1962] and it means a generalization of integra-
tion and differentiation to arbitrary order. It has
been found that many systems in interdisciplinary
fields can be described by the fractional differen-
tial equations, such as viscoelastic systems, dielec-
tric polarization, electrode–electrolyte polarization,
electromagnetic waves and quantum evolution of
complex systems [Bagley & Calico, 1991; Sun et al.,
1984; Tavazoei, 2010; Szabo & Abonyi, 1965; Kus-
nezov et al., 1999]. There are several definitions
of fractional derivatives [Caputo, 1967; Podlubny,
1999; Samko et al., 1993; Butzer & Westphal,
2000]. One of the more common definitions is the
Riemann–Liouville definition of fractional deriva-
tives [Podlubny, 1999; Samko et al., 1993], given by

R
a Dα

t f(t) =
1

Γ(n − α)
dn

dtn

∫ t

a
(t − τ)n−α−1f(τ)dτ

=
dn

dtn
(ajn−α

t f(t)), t > a,

n − 1 ≤ α < n,

where Γ is the gamma function and aj
β
t is the

Riemann–Liouville integral operator defined by:

aj
β
t f(t) =

1
Γ(β)

∫ t

a
(t − τ)β−1f(τ)dτ.

From Eqs. (2.62), (2.69), (2.70) and (2.133) of [Pod-
lubny, 1999] we say that, for a positive integer n
and α ∈ R, β ∈ R− and under suitable conditions
of f we have

R
a Dα

t (Ra Dβ
t f(t)) = R

a Dα+β
t f(t), (5)

dn

dtn
(Ra Dα

t (f(t))) = R
a Dn+α

t f(t). (6)
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The Laplace transform of the α-order Riemann–
Liouville differential operator is:

L{R
0 Dα

t f(t)} = sαL{f(t)}

−
n−1∑
k=0

sk[R0 Dα−1−k
t f(t)]t=0.

For zero initial conditions we have

L{0D
α
t f(t)} = sαL{f(t)}.

A numerical method often used for calculation
of Riemann–Liouville fractional derivative is based
on Grünwald–Letnikov definition given by

G
a Dα

t f(t) = lim
h→0

1
hα

k= t−a
h∑

k=0

(−1)k

× Γ(α + 1)
k!Γ(α − k + 1)

f(t − kh), (7)

where t > a and α is a positive real number.
Its integral form is

G
a D−α

t f(t) = lim
h→0

hα

k= t−a
h∑

k=0

Γ(α + k)
k!Γ(α)

f(t − kh).

(8)

When f is of class Cm, where m − 1 ≤ α < m,
then Riemann–Liouville definition and Grünwald–
Letnikov definition are equivalent [Podlubny, 1999].

Another definition is the Caputo definition
of fractional derivatives [Caputo, 1967] which is
given by:

aD
α
t f(t) =

1
Γ(n − α)

∫ t

a
(t − τ)n−α−1f (n)(τ)dτ

= jn−α

(
dn

dtn
f(t)

)
, t > a,

where n = [α] is the value of α rounded up to the
nearest integer. The Laplace transform of the α-
order Caputo differential operator is:

L{0D
α
t f(t)} = sαL{f(t)} −

n−1∑
k=0

sα−1−kf (k)(0).

For zero initial conditions we have

L{0D
α
t f(t)} = sαL{f(t)}

and in this case the three cited definitions of
fractional derivatives are equivalent.

Remark 2.2. In this paper, we use indifferently the
equivalent notations Dα

t = R
0 Dα

t = G
0 Dα

t = 0D
α
t .

2.3. Fractance

The definition equations of classical electric ele-
ments: resistor (R), capacitor (C) and inductor (L)
(in which R,C,L, are constants) are respectively

v(t) = Ri(t), (9)

v(t) =
1
C

q(t), (10)

ϕ(t) = Li(t). (11)

Taking into account that


q(t) = q(t0) +
∫ t

t0

i(τ)dτ,

ϕ(t) = ϕ(t0) +
∫ t

t0

v(τ)dτ,

(12)

then the Eqs. (9)–(11) can be written as follows

v(t) = Ri(t),

v(t) =
1
C

∫ t

t0

i(τ)dτ,

v(t) = L
d

dt
i(t),

assuming v(t0) = 0 and q(t0) = 0.
Let us introduce the following operators Dn

t ,
n = −1, 0, 1:

D1
t f(t) =

d

dt
f(t),

D−1
t f(t) =

∫ t

−∞
f(τ)dτ and

D0
t f(t) = f(t).

Using the above notations, Eqs. (9)–(11) can be
expressed by only one equation as follows [Chua,
2003, 2012]

v(t) = anDn
t i(t), (13)

where

an =




1
C

, if n = −1,

R, if n = 0,

L, if n = 1.
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Applying the Laplace transform to both sides
of (13) yields L(v(t)) = ansnL(i(t)). It follows that
V (s) = ansnI(s) and the impedance is given by

Z(s) =
V (s)
I(s)

= ansn, (14)

when n is set equal to an arbitrary real num-
ber α between −1 and 1, then Eq. (14) gives the
impedance Z(s) = Fαsα of a fractional electrical
element called a “fractance” device. The term frac-
tance was coined by Le MeHaute & Crepy [1983] for
denoting electrical elements with noninteger order
impedance. Noting that Eq. (13) can be obtained
by applying the inverse Laplace transform L−1 to
both sides of Eq. (14), so when n is an arbitrary
real number α between −1 and 1, Eq. (13) can be
written as

v(t) = aαDα
t i(t), (15)

which describes the fractance element. In this
case Dα

t = R
0 Dα

t is a fractional operator (fractional
derivative for α ≥ 0, and fractional integral for
α < 0), for the special cases α = −1, α = 0 and
α = 1 the fractance becomes a capacitor, a resis-
tor and an inductor, respectively, and the interpo-
lated characteristics between these elements can be
obtained via the fractance [Radwan et al., 2008], see
Fig. 2.

2.4. Generalized law of fractance

Equation (15) can be formulated in a more general
form that will be useful in the next section; namely,

Eqs. (9)–(11) can be written as

D0
t v(t) = RD0

t i(t) or D1
t ϕ(t) = RD1

t q(t),
(16)

D0
t v(t) =

1
C

D−1
t i(t) or D1

t ϕ(t) =
1
C

D0
t q(t),

(17)

D−1
t v(t) = LD0

t i(t) or D0
t ϕ(t) = LD1

t q(t)
(18)

and these three equations can be represented by a
single equation [Coopmans et al., 2009] as follows

Dα1−1
t v(t) = Fα1,α2Dα2−1

t i(t), (19)

or, as Fα1,α2 is a constant

v(t) = Fα1,α2Dα2−α1
t i(t), (20)

and

Dα1
t ϕ(t) = Fα1,α2Dα2

t q(t), (21)

or

v(t) = Fα1,α2Dα2−α1+1
t q(t), (22)

where

Fα1,α2 =




1
C

, if α1 = 1, α2 = 0,

R, if α1 = α2 = 1,

L, if α1 = 0, α2 = 1.

For α1 = α2 = 1 we obtain (16), then (20)
describes a resistor, for α1 = 1, α2 = 0, we
obtain (17), then (20) describes a capacitor, for

q
t

t

ditq

0

)()(

t

t

dvt

0

)()(

dt
d

tv )(
dt
dq

ti )(

Ldi

d
Cdv

dq

Rdidv

01 10

0

F

1

iv

1

Fig. 2. Interpolated characteristics of fractance between a capacitor, a resistor and an inductor.
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α1 = 0, α2 = 1, we obtain (18), then (20) describes
an inductor.

All the above equations can be generalized so
the variables α1 and α2 are tuned continuously from
0 to 1 as in a homotopy mapping. For α1, α2 arbi-
trary real between 0 and 1, Eq. (20) describes a frac-
tor. The new formulation is more compatible with
the representation given in Fig. 2 and will help us in
the formulation of the memfractance law. Moreover
this two-dimensional definition of fractance extends
the previous one-dimensional definition of fractance
given by Eq. (15) to a general family of devices when
used with elements with memory.

Remark 2.3. If we set α = α2 −α1 with −1 < α < 1
then Eq. (20) is equivalent to Eq. (15).

3. Memfractor

Now let us recall the circuit elements with memory,
and we attempt to introduce a fractional memory
element which has interpolated characteristics
between a memcapacitor, a memristor, a memin-
ductor and a new element called second-order mem-
ristor, similarly to that of a fractance element.

3.1. Second-order memristor

In this section, we need to introduce a new ele-
ment which extends the memristor notion (see
Definition 2.1) in order to connect the integral of
flux ρ to the integral of charge σ.

Definition 3.1. A second-order charge-controlled
memristor is defined by{

ϕR2(t) = R2(x, q, t)q(t),

ẋ = f(x, q, t),

R2 is a scalar, called the second-order memristance.

The ideal second-order memristor is a spe-
cial case of generic second-order memristor when
R2 depends only on integral of charge σ(t) =∫ t
t0

q(τ)dτ , namely

ϕR2(t) = R2(σ(t))q(t). (23)

3.2. Generalized constitutive
relations

We define the functions C−1
M , RM , LM , R2M and

Fα1,α2

M as follows:

C−1
M (t) = C−1(σ(t)),

Fig. 3. Symbol of the second-order memristor.

RM (t) = R(q(t)),

LM (t) = L(q(t)),

R2M (t) = R2(σ(t))

and

Fα1,α2

M (t) =




C−1
M (t), if α1 = 1, α2 = 0,

RM (t), if α1 = α2 = 1,

LM (t), if α1 = 0, α2 = 1,

R2M (t), if α1 = 0, α2 = 0,

where the lower integration limit (initial moment
of time) may be selected as −∞ or zero if∫ 0
−∞ q(τ)dτ = 0. With these notations Eqs. (2)–(4)

and (23) can be written as follows

VR(t) = RM (t)I(t), (24)

VC(t) = C−1
M (t)q(t), (25)

ϕL(t) = LM (t)I(t), (26)

ϕR2(t) = R2M (t)q(t), (27)

which can be written in the form of an operator
relationship between flux ϕ and charge q as follows

D1
t ϕR(t) = RM (t)D1

t q(t), (28)

D1
t ϕC(t) = C−1

M (t)D0
t q(t), (29)

D0
t ϕL(t) = LM (t)D1

t q(t), (30)

D0
t ϕR2(t) = R2M (t)D0

t q(t). (31)

Using the fractional operator Dα
t we introduce

a new fractional memory element as follows:

Definition 3.2. We define a memfractor by

Dα1
t ϕ(t) = Fα1,α2

M (t)Dα2
t q(t), (32)

where α1, α2 are arbitrary real numbers between
0 and 1, and Fα1,α2

M is called memfractance. When
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α1 = 1, α2 = 0 we obtain a memcapacitor, when
α1 = α2 = 1 we obtain a memristor, when α1 = 0,
α2 = 1 we obtain a meminductor and when α1 =
α2 = 0 we obtain a second-order memristor. For
noninteger values of α1, α2 this element possesses
interpolated characteristics between a memcapaci-
tor, a memristor, a meminductor and a second-order
memristor as depicted in Fig. 4.

When Fα1,α2

M (t) = Fα1,α2 is equal to a constant,
then (32) describes a fractance element [Eq. (20)].

It follows from this definition that this new
postulated element generalizes the classical cir-
cuit elements in two ways, first it generalizes
them by a continuous variation in the derivative

order using the concept of fractional derivative to
obtain a fractance element, and secondly, it gen-
eralizes them by introduction of memory in its
characteristic impedances, to obtain memory circuit
elements.

Remark 3.1 (Fractor, Fractductor and Memfractor).
Bohannan [2002] introduced a new electrical ele-
ment called the Fractor, which can be used to emu-
late the dielectric property of Lithium Hydrazinium
Sulfate (LiN2H5SO4), and exhibits characteristics
intermediate between a resistor and a capacitor. In
[Coopmans et al., 2009], the authors introduced the
fractductor which is intermediate between a resistor
and an inductor. More generally, we propose to call

2nd-order
meminductor

q

t t

d
q

t
0

)
(

)
(

t t

d
t

0

)
(

)
(

dt
d

t )(
dt
d

tq )(

dqRd M

1 0
2 1

1 1

2 0

1 12 1,

0 1 1
2 1

1 1
0 2 1

2nd-order
memristor

2nd-order
 memcapacitor

3rd-order
memristor

d R2M d

1 1

3

22

1
t

t 0t
d

1
t

t 0t
d

2

Fig. 4. Interpolated characteristics of memfractor between a memcapacitor, a memristor, a meminductor and a second-order
memristor.
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Table 1. Schematic representation of constitutive relationship Eq. (32).

“memfractor” any electrical device which exibits
a “memfractance”. Memfractor then includes both
fractor and fractductor as a particular case.

3.3. Generalized Ohm’s law for
memory elements

The memfractance elements introduced above allow
us to generalize Ohm’s law for memory elements of
electrical circuits as follows:

Proposition 1. The voltage across a memfractance
element is given by the relation

v(t) = D1−α1
t (Fα1,α2

M (t)Dα2
t q(t)). (33)

Proof. We have

v(t) =
dϕ(t)

dt
= D1

t ϕ(t),

thus

ϕ(t) = D−1
t v(t),

applying the fractional operator Dα1
t to both sides

of this equation and taking into account relation (5)
yields

Dα1
t ϕ(t) = Dα1−1

t v(t), (34)

substituting in Eq. (32) we obtain

Dα1−1
t v(t) = Fα1,α2

M (t)Dα2
t q(t). (35)

Applying the fractional operator D1−α1
t to both

sides of (35) and taking into account relation (5)
leads to Eq. (33), this completes the proof. �

Taking into account the relation (5) and the
fact that i(t) = d

dtq(t), then the following propo-
sition which gives the relation between the volt-
age across the memfractance and the current source
applied across the memfractance is a straightfor-
ward consequence of Proposition 1.

Proposition 2 (Generalized Ohm’s Law). The volt-
age across a memfractance element can be expressed
by the relation

v(t) = D1−α1
t (Fα1,α2

M (t)Dα2−1
t i(t)). (36)

Remark 3.2. In this paper, we restrict the domain of
validity of Eq. (32) to the values of α1, α2 between
0 and 1 as displayed in Table 1.

Remark 3.3. Ohm’s law in magnetohydrodynam-
ics is also called generalized Ohm’s law [Szabo &
Abonyi, 1965].

4. Interpolated Memfractance

The memfractor can be considered in a cer-
tain way as an interpolation of the four memory
elements (memristor, memcapacitor, meminductor
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Table 2. Values of scalar coefficients.

(α1, α2) a(α1,α2) b(α1,α2) c(α1,α2) d(α1,α2)

(0, 0) 0 0 0 1
(0, 1) 0 0 1 0
(1, 0) 1 0 0 0
(1, 1) 0 1 0 0

and second-order memristor). Similarly, the frac-
tional impedance

Fα1,α2

M (t) =
Dα1

t ϕ(t)
Dα2

t q(t)
, when Dα2

t q(t) �= 0, (37)

can be considered as an interpolation of the memre-
sistance, inverse memcapacitance, meminductance
and second-order memresistance, respectively. In
this paper, we propose the following form of Fα1,α2

M
as an interpolation of a given memresistance RM (t),
inverse memcapacitance C−1

M (t), meminductance
LM (t) and second-order memresistance R2M (t);
namely,

Fα1,α2

M (t) = a(α1,α2)C
−1
M (t) + b(α1,α2)RM (t)

+ c(α1,α2)LM (t) + d(α1,α2)R2M (t),

(38)

where a(α1,α2), b(α1,α2), c(α1,α2) and d(α1,α2) are
scalar coefficients that satisfy the conditions in
Table 2.

Example 4.1. As an example, the expressions of
the scalar coefficients a(α1,α2), b(α1,α2), c(α1,α2) and
d(α1,α2) used in this paper are given as follows

a(α1,α2) = α1(1 − α2),

b(α1,α2) = α1α2

(
α1 + α2

2

)
,

c(α1,α2) = α2(1 − α1),

d(α1,α2) = (1 − α1)(1 − α2).

Their graphical representations are given in
Figs. 5–8, respectively.

5. Numerical Illustrative Examples

To illustrate the interpolated characteristic of a
memfractor between a memcapacitor, a memris-
tor, a meminductor and second-order memristor we
consider three numerical examples (0 ≤ α1 ≤ 1,
α2 = 1), (α1 = 1, 0 ≤ α2 ≤ 1), and (0 ≤ α1 ≤ 1,
0 ≤ α2 ≤ 1).

Fig. 5. Graphical representation of the coefficient a(α1,α2) = α1(1 − α2).
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Fig. 6. Graphical representation of the coefficient b(α1,α2) = α1α2
(α1+α2)

2 .

Fig. 7. Graphical representation of the coefficient c(α1,α2) = α2(1 − α1).
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Fig. 8. Graphical representation of the coefficient d(α1,α2) = (1 − α1)(1 − α2).

Assuming that we have a memcapacitor with
memcapacitance1

CM (σ) =
1

1 + (2 + σ)2
, (39)

where σ is the integral of charge q, namely (σ(t) =∫ t
−∞ q(τ)dτ), a memristor with memresistance

RM (q) = 1 + q + q2, (40)

a meminductor with memductance

LM (q) = 1 + eq (41)

and a second-order memristor with second-order
memresistance

R2M (σ) = 1 + σ + σ2. (42)

We suppose that the current source i(t) applied
across the memfractor is given by{

i(t) = cos(t), if t ≥ 0

0, if t < 0
(43)

and assuming the initial charge q0 = q(0) = 0, then
we obtain upon integrating (43) the corresponding

charge

q(t) =
∫ t

0
i(τ)dτ = sin(t) (44)

and

σ(t) =
∫ t

0
q(τ)dτ = 1 − cos(t), (45)

substituting (44) into (33) we obtain the voltage
across the memfractor, namely

v(t) = D1−α1
t (Fα1,α2

M (t)Dα2
t (sin(t))). (46)

For the calculation of fractional derivative,
we use a numerical method based on Grünwald–
Letnikov definition [see (7) and (8)], with a constant
integration step size h = 0.002.

5.1. Intermediate behavior of
memfractance between
memristor and meminductor

In this subsection, we illustrate the interpolated
characteristic of memfractance between a memris-
tor and a meminductor, therefore we consider the
case 0 ≤ α1 ≤ 1, α2 = 1 (see Table 1).

1We have chosen the formula (39) for CM (σ(t)) because it gives the vC–q curve as a simple loop passing through the origin
similar to the one given in [Di Ventra et al., 2009].
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Fig. 9. Periodic waveform of (v–t curve) for (0 ≤ α1 ≤ 1, α2 = 1) obtained by solving (33) with Fα1,α2
M (t) = Fα1,1

M (t) =

α1(
1+α1

2 )(1 + sin(t) + sin2(t)) + (1 − α1)(1 + esin(t)).

Figure 9 displays the time variation of voltage
(v–t curve) which always has a periodic waveform.

Figure 10 shows the hysteresis loop (Lissajous
curve) in the v–i plane. For α1 = 1, α2 = 1 (memris-
tor case) there is a pinched hysteresis loop: double-
valued Lissajous curve for all time t except when
it passes through the pinched point (0, 0). Upon
decreasing α1 the pinched point is moved from (0, 0)
and disappears when α1 passes the critical value
α1 ≈ 0.33, then the hysteresis loop becomes clearly
a double-valued Lissajous curve which changes its
shape continuously and takes its final shape when
(α1 = 0, α2 = 1) corresponding to the hysteresis
loop of a meminductor.

Figure 11 shows the hysteresis loop in the v–q
plane. When α1 = 1 and α2 = 1 (memristor case)
the relation (46) becomes

v(t) = RM (q(t)) cos(t), (47)

substituting (40) and (44) into (47) and taking into
account that cos(t) = ∓

√
1 − sin2(t) yields

v(t) = ∓(1 + sin(t) + sin2(t))
√

1 − sin2(t) (48)

= ∓(1 + q(t) + q2(t))
√

1 − q2(t), (49)

which is a double-valued function of q, in this case,
the hysteresis loop is a double-valued Lissajous

curve symmetric with respect to q-axis. Upon
decreasing the derivative order α1 from 1 to 0, the
loop changes continuously its shape and takes its
final form when (α1 = 0, α2 = 1) where it collapses
into a single-valued function corresponding to the
hysteresis loop of a meminductor, in this case the
relation (46) becomes

v(t) =
d

dt
(LM (q(t)) cos(t)), (50)

substituting (41) and (44) into (50) yields

v(t) = (1 − sin(t) − sin2(t))esin(t) − sin(t)

= (1 − q(t) − q2(t))eq(t) − q(t),

which is a single-valued function of q.
Figure 12 shows the hysteresis loop in the ϕ–i

plane. For α1 = 0, α2 = 1 (meminductor case) we
have

ϕ(t) = (1 + esin(t)) cos(t)

= (1 + e∓
√

1−cos2(t)) cos(t)

= (1 + e∓
√

1−i2(t))i(t),

which is a double-valued function of i(t) for all time
t except when i(t) = 0, so the hysteresis loop is a
double-valued Lissajous curve for all time t except
when it passes through the pinched point (0, 0).
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Fig. 10. Hysteresis loop (Lissajous curve) associated with Fig. 9 (Example 5.1) in the v–i plane for (0 ≤ α1 ≤ 1, α2 = 1).

Upon increasing the derivative order α1 from 0 to 1,
the loop changes continuously its shape by moving
its pinched point and when passing the critical value
α1 ≈ 0.32, the pinched point disappears and the

loop becomes a double-valued Lissajous curve of
ϕ(t)–i(t) for all time t and takes its final form when
(α1 = 1, α2 = 1) corresponding to the hysteresis
loop of a memristor.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

1
=0,

2
=1

1
=0.2,

2
=1

1
=0.5,

2
=1

1
=0.8,

2
=1

1
=1,

2
=1

v(t)

q(t)

Meminductor

Memristor

Fig. 11. Hysteresis loop (Lissajous curve) associated with Fig. 9 (Example 5.1) in the v–q plane for 0 ≤ α1 ≤ 1, α2 = 1.
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Fig. 12. Hysteresis loop (Lissajous curve) (Example 5.1) in the ϕ–i plane for 0 ≤ α1 ≤ 1, α2 = 1.

Figure 13 shows the hysteresis loop (Lissajous
curve) in the ϕ–q plane. For α1 = 1, α2 = 1 (mem-
ristor case) we have

dϕ(t)
dt

= (1 + q(t) + q2(t))
dq(t)
dt

,

integrating with respect to t gives

ϕ(t) = q(t) +
q2(t)

2
+

q3(t)
3

,

which is a single-valued function of q. Upon decreas-
ing α1, this hysteresis loop becomes a double-valued
Lissajous curve which changes its shape continu-
ously and takes its final shape when (α1 = 0,
α2 = 1) corresponding to the hysteresis loop of a
meminductor, in this case, we have

ϕ(t) = ∓(1 + eq(t))
√

1 − q2(t),

which is a double-valued function of q.
From this subsection, we postulate that any

intermediate state between meminductor and mem-
ristor can be modeled by a memfractor element,
choosing a convenient fractional derivative order α1

between 0 and 1.

5.2. Continuous behavior of
memfractance between
memristor and memcapacitor

In this subsection, we illustrate the interpolated
characteristic of a memfractor between a memristor
and a memcapacitor. In particular, let us consider
the case (α1 = 1, 0 ≤ α2 ≤ 1).

Figure 14 displays the time variation of volt-
age (v–t curve) which always has a periodic wave-
form. Figure 15 shows the hysteresis loop (Lissajous
curve) in the v–i plane. For α1 = 1, α2 = 1 (memris-
tor case) the hysteresis loop is pinched at the origin
point (0, 0) as mentioned in Sec. 5.1. Upon decreas-
ing α2, this hysteresis loop becomes a double-valued
Lissajous curve which changes its shape continu-
ously and takes its final shape when (α1 = 1,
α2 = 0) corresponding to the hysteresis loop of a
memcapacitor, in this case we have

v(t) = (1 + (3 − cos(t))2) sin(t)

= ±(1 + (3 − cos(t))2)
√

1 − cos2(t)

= ±(1 + (3 − i(t))2)
√

1 − i2(t),

which is a double-valued function of i.
Figure 16 shows the hysteresis loop in the v–q

plane. For α1 = 1, α2 = 0 we have a pinched
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Fig. 13. Hysteresis loop (Lissajous curve) (Example 5.1) in the ϕ–q plane for (0 ≤ α1 ≤ 1, α2 = 1).
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Fig. 14. Periodic waveform of (v–t curve) for (α1 = 1, 0 ≤ α2 ≤ 1) obtained by solving (33) with Fα1,α2
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Fig. 15. Hysteresis loop (Lissajous curve) associated with Fig. 14 (Example 5.2) in the v–i plane for (α1 = 1, 0 ≤ α2 ≤ 1).
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Fig. 16. Hysteresis loop (Lissajous curve) associated with Fig. 14 (Example 5.2) in the v–q plane for (α1 = 1, 0 ≤ α2 ≤ 1).
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hysteresis loop: double-valued Lissajous curve of
v(t)–q(t) for all time t except when it passes through
the origin (0, 0), where the loop is pinched (memca-
pacitor case) which agrees with the result obtained
in [Di Ventra et al., 2009], in this case we have

v(t) = (1 + (3 − cos(t))2) sin(t)

= (1 + (3 ∓
√

1 − sin2(t))2) sin(t)

= (1 + (3 ∓
√

1 − q2(t))2)q(t),

which is a double-valued function of q(t) for all time
t except when q(t) = 0. Upon increasing the deriva-
tive order α2, the loop changes its shape by mov-
ing its pinched point and when passing the critical
value α2 ≈ 0.35, the pinched point disappears and
the loop becomes a double-valued Lissajous curve
of v(t)–q(t) for all time t.

Figure 17 displays the time variation of flux (ϕ–
t curve) which has an oscillation form. For α1 = 1,
α2 = 0 (memcapacitor case) the curve has a peri-
odic waveform in a horizontal band but when α2

increases the band of oscillations inclines (Fig. 20
shows the variation of the slope of this band when
varying α2) and for α2 = 1 the band of oscillation

becomes horizontal. In order to investigate this
phenomenon, we calculate ϕ(t) by integrating the
relation (33) and taking into account that the frac-
tional derivative of the sine function 0D

α2
t sin(t)

is not an exact periodic function [Tavazoei, 2010]
but it converges rapidly to the periodic function
sin(t + α2

π
2 ) as illustrated in Fig. 18. Considering

that

0D
α2
t sin(t) ≈ sin

(
t + α2

π

2

)
, for t 	 0 (51)

we can write

0D
α2
t sin(t) = sin

(
t + α2

π

2

)
+ ε(t), (52)

where limt→+∞ ε(t) = 0, and we have

v(t) = F 1,α2

M (t)Dα2
t sin(t)

=
(

(1 − α2)(1 + (3 − cos(t))2) + α2

(
1 + α2

2

)

× (1 + sin(t) + sin2(t))
)

Dα2
t sin(t)

= ṽ(t) + ξ(t),
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Fig. 17. Oscillation-form of (ϕ–t curve) associated with Fig. 14 (Example 5.2) for (α1 = 1, 0 ≤ α2 ≤ 1).
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where

ṽ(t) =
(

(1 − α2)(1 + (3 − cos(t))2)

+ α2

(
1 + α2

2

)
(1 + sin(t) + sin2(t))

)

× sin
(
t + α2

π

2

)
and

ξ(t) = F 1,α2

M (t)ε(t) =
(

(1 − α2)(1 + (3 − cos(t))2)

+ α2

(
1 + α2

2

)
(1 + sin(t) + sin2(t))

)
ε(t).

Since

F 1,α2

M (t) =
(

(1 − α2)(1 + (3 − cos(t))2)

+ α2

(
1 + α2

2

)
(1 + sin(t) + sin2(t))

)

is a periodic bounded function of period 2π and ε(t)
is rapidly vanishing, we have

lim
t→+∞ ξ(t) = 0.

Taking into account the classical trigonometric rela-
tions we obtain

ṽ(t) =
(

(1 − α2)(1 + (3 − cos(t))2)

+ α2

(
1 + α2

2

)
(1 + sin(t) + sin2(t))

)

×
(
sin(t) cos

(
α2

π

2

)
+ sin

(
α2

π

2

)
cos(t)

)

= −
(

α2
2 + 3α2 − 2

8

)
sin

(
3t +

α2π

2

)

+ 3(α2 − 1) sin
(
2t +

α2π

2

)
− α2(α2 + 1)

4

× cos
(
2t +

α2π

2

)
+

3α2
2 − 39α2 + 42

4

× sin
(
t +

α2π

2

)
+

α2
2 + 3α2 − 2

8

× sin
(
t − α2π

2

)
+

[
α2(α2 + 1)

4
cos

(α2π

2

)

+ 3(α2 − 1) sin
(α2π

2

) ]

= P (t) + A, (53)
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where

P (t) = −
(

α2
2 + 3α2 − 2

8

)
sin

(
3t +

α2π

2

)

+ 3(α2 − 1) sin
(
2t +

α2π

2

)
− α2(α2 + 1)

4

× cos
(
2t +

α2π

2

)
+

3α2
2 − 39α2 + 42

4

× sin
(
t +

α2π

2

)
+

α2
2 + 3α2 − 2

8

× sin
(
t − α2π

2

)
,

which is a bounded periodic function in t with
period 2π and

A =
α2(α2 + 1)

4
cos

(α2π

2

)
+ 3(α2 − 1) sin

(α2π

2

)
,

is a constant. Then

v(t) = P (t) + A + ξ(t) (54)

this means that the voltage waveform converges to
a periodic function plus a constant, which can be
interpreted as connecting a battery of a constant
voltage in series with the periodic component. Now
setting

ϕ̃(t) =
∫ t

0
ṽ(τ)dτ

and taking into account relation (53) we obtain

ϕ̃(t) = At +
∫ t

0
P (τ)dτ

=
(

α2
2 + 3α2 − 2

24

)
cos

(
3t +

α2π

2

)

− 3(α2 − 1)
2

cos
(
2t +

α2π

2

)
− α2(α2 + 1)

8

× sin
(
2t +

α2π

2

)
+

−3α2
2 + 39α2 − 42

4

× cos
(
t +

α2π

2

)
+

−α2
2 − 3α2 + 2

8

× cos
(
t − α2π

2

)
+ At

+
[
5α2

2 − 48α2 + 53
6

cos
(α2π

2

)

+
α2(α2 + 1)

8
sin

(α2π

2

)]

= f(t) + At + B, (55)

where

f(t) =
(

α2
2 + 3α2 − 2

24

)
cos

(
3t +

α2π

2

)

− 3(α2 − 1)
2

cos
(
2t +

α2π

2

)
− α2(α2 + 1)

8

× sin
(
2t +

α2π

2

)
+

−3α2
2 + 39α2 − 42

4

× cos
(
t +

α2π

2

)
+

−α2
2 − 3α2 + 2

8

× cos
(
t − α2π

2

)
, (56)

which is a bounded periodic function in t with
period 2π, and

B =
5α2

2 − 48α2 + 53
6

cos
(α2π

2

)

+
α2(α2 + 1)

8
sin

(α2π

2

)
,

is a constant. Since the graphs of sine and cosine
functions are both symmetric with respect to the
axe of abscissas then the graph of f will be sym-
metric with respect to the axe of abscissas too, so
we have

max
t≥0

(f(t)) = −min
t≥0

(f(t)),

then

At + B − max
t≥0

(f(t))

≤ ϕ̃(t) ≤ At + B + max
t≥0

(f(t)), (57)

setting

Bmin = B − max
t≥0

(f(t))

and

Bmax = B + max
t≥0

(f(t)),

so

At + Bmin ≤ ϕ̃(t) ≤ At + Bmax, (58)

then the graph γϕ̃ of ϕ̃ oscillates around the straight
line

∆ : y = At + B,

as shown in Fig. 19, where its local minima lie in
the straight line

Tmin : y = At + Bmin,
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Fig. 19. The strip of oscillation of ϕ̃(t) bounded by the lines Tmin and Tmax for α1 = 1 and α2 = 0.5.

which is tangent of γϕ̃ in these minima, and its local
maxima lie in the straight line

Tmax : y = At + Bmax,

which is tangent of γϕ̃ in these maxima.

Figure 20 illustrates the evolution of the slope
of Tmin and Tmax for 0 ≤ α2 ≤ 1. We can calculate
Bmin and Bmax as follows

Bmin = ϕ̃(tmin) − Atmin (59)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

2

Sl
op

e

Fig. 20. Variation of the slope of the strip containing the flux oscillations for α1 = 1 and 0 ≤ α2 ≤ 1.
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and

Bmax = ϕ̃(tmax) − Atmax (60)

where tmin, tmax are the abscissas of the extrema
and can be calculated solving the equation

ṽ(t) = A, (61)

or equivalently

P (t) = 0. (62)

It is not easy to give the closed formula (function of
α2) for the solutions of this equation, so we are only
able to give numerical solutions for some values of
α2, the results are illustrated in Table 3.

In order to give a general formula for Bmin,
Bmax as functions of α2 we use the fourth degree
Lagrange polynomial interpolation based on the
value of Bmin, Bmax calculated for five values of α2

(α2 = 0, 0.2, 0.5, 0.8 and 1) then we obtain the
following approximate expressions for 0 ≤ α2 ≤ 1

Bmin ≈ −6.88α4
2 + 22.43α3

2 − 16.46α2
2

+ 0.08α2, (63)

Bmax ≈ −1.45α4
2 + 11.18α3

2 − 9.60α2
2

−18.97α2 + 20.66. (64)

Proposition 3. The graph γϕ̃ of ϕ̃ lies in a strip of
width

L̃ = (Bmax − Bmin) cos(arctan(A)).

Proof. Setting Q(−Bmax
A , 0) as the intersection

between Tmax and the axe of abscissas,
R(−Bmax

A ,−Bmax+Bmin) the point in Tmin of abscis-
sas −Bmax

A and S the intersection between the

Table 3. Numerical solutions of Eq. (61) for some values
of α2 (with k ∈ N).

α2 tmin Bmin tmax Bmax

0 2πk 0 2π(k + 1) 20.67
0.1 2πk − 0.24 −0.14 2πk + 3.01 18.68
0.2 2πk − 0.47 −0.47 2πk + 2.88 16.58
0.3 2πk − 0.67 −0.91 2πk + 2.74 14.40
0.4 2πk − 0.86 −1.34 2πk + 2.61 12.22
0.5 2πk − 1.03 −1.70 2πk + 2.47 10.09
0.6 2πk − 1.18 −1.93 2πk + 2.32 8.06
0.7 2πk − 1.31 −1.97 2πk + 2.16 6.17
0.8 2πk − 1.44 −1.81 2πk + 1.99 4.48
0.9 2πk − 1.54 −1.43 2πk + 1.79 3.02
1 2πk − π

2 −0.83 2πk + π
2 1.83

Fig. 21. Orthogonal distance between the lines bounding
the oscillation of ϕ̃(t) for α1 = 1 and 0 ≤ α2 ≤ 1.

orthogonal to Tmin at R and Tmax. The triangle QRS
will be orthogonal at S and RS will be the orthog-
onal distance between Tmax and Tmin. We have

R̂ = |arctan(A)|
and

cos(R̂) =
RS

QR

then

L̃ = RS = QR cos(R̂)

= (Bmax − Bmin) cos(arctan(A)). (65)

�

Proposition 4. The evolution of ϕ is practically
similar to that of ϕ̃(t) and the graph γϕ of ϕ lies
in a strip of a bounded width L which converges to

L̃ = (Bmax − Bmin) cos(arctan(A)).

Proof. Integrating both sides of (54) gives

ϕ(t) = At +
∫ t

0
P (τ)dτ +

∫ t

0
ξ(τ)dτ

= ϕ̃(t) +
∫ t

0
ξ(τ)dτ,

adding
∫ t
0 ξ(τ)dτ to both sides of (58) yields

At + Bmin +
∫ t

0
ξ(τ)dτ

≤ ϕ(t) ≤ At + Bmax +
∫ t

0
ξ(τ)dτ,
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this means that the graph of ϕ(t) oscillates in a strip
bounded by the lower curve Γmin of equation

ymin(t) = At + Bmin +
∫ t

0
ξ(τ)dτ

and the upper curve Γmax of equation

ymax(t) = At + Bmax +
∫ t

0
ξ(τ)dτ

differentiating both two equations yields

dymin(t)
dt

=
dymax(t)

dt
= A + ξ(t)

we have ξ(t) → 0 for t 	 0 so the slopes of the
tangents at Γmin and at Γmax converge to the con-
stant A, this means that Γmin and Γmax converges
towards two straight lines. On the other hand, the
distance between the point Q(t, ymin(t)) of Γmin and
the point R(t, ymax(t)) is

QR = ymax(t) − ymin(t) = Bmax − Bmin

then with similar procedure to the proof of Propo-
sition 3, we can show that the orthogonal distance
L between Γmin and Γmax converges to

L̃ = (Bmax − Bmin) cos(arctan(A)). �

Figure 22 illustrates the band of ϕ compared
with the band of ϕ̃ for α1 = 1 and α2 = 0.5.

5.3. Behavior of memfractance for
miscellaneous values of α1, α2

In this subsection, we illustrate the interpolated
characteristic of a memfractor between a mem-
ristor, a memcapacitor, a meminductor and a
second-order memristor, by varying both α1 and
α2 simultaneously with (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤
1). Figure 23 displays the time variation of volt-
age (v–t curve) which has a periodic waveform in
any case.

Figure 24 shows the hysteresis loop (Lissajous
curve) in the v–i plane for (0 ≤ α1 ≤ 1 and
0 ≤ α2 ≤ 1), when α1 = α2 = 0 (second-order
memristor case) the loop collapses to a single-valued
function, in this case we have

ϕ(t) = (1 + σ(t) + σ2(t))q(t)

= (1 + (1 − cos(t)) + (1 − cos(t))2) sin(t)

= cos2(t) sin(t) − 3 cos(t) sin(t) + 3 sin(t),
(66)
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t
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Fig. 22. The band of oscillation of ϕ(t) bounded by the curves Γmin : y(t) = at + bmin +
R t
0 ξ(τ )dτ and Γmax : y(t) =

at + bmax +
R t
0 ξ(τ )dτ , for α1 = 1 and α2 = 0.5.
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Fig. 23. Periodic waveform of (v–t curve) for (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1 obtained by solving (33) with Fα1,α2
M (t) =

α1(1−α2)(1+ (3− cos(t))2)+ α1α2(
α1+α2

2 )(1+ sin(t)+ sin2(t))+α2(1−α1)(1+ esin(t))+ (1−α1)(1−α2)(1+ (1− cos(t))+

sin2(t)).
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Fig. 24. Hysteresis loop (Lissajous curve) associated with Fig. 23 (Example 5.3) in the v−i plane for (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1).
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Fig. 25. Hysteresis loop (Lissajous curve) associated with Fig. 23 (Example 5.3) in the v–q plane for (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1
and α1 + α2 ≥ 1).
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Fig. 26. Oscillation-form of (ϕ–t curve) associated with Fig. 23 (Example 5.3) for (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1).
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differentiating (66) with respect to t gives

v(t) = 3 cos3(t) − 6 cos2(t) + cos(t) + 3

= 3i3(t) − 6i2(t) + i(t) + 3 (67)

which is a single valued function of i. Upon varying
α1 and α2, various forms of the loop are observed.

Figure 25 shows the hysteresis loop (Lissajous
curve) in the v–q plane for (0 ≤ α1 ≤ 1, 0 ≤
α2 ≤ 1), when α1 = α2 = 0 (second-order mem-
ristor case) the hysteresis loop is a double-valued
Lissajous curve in this case, we have

v(t) = 6 sin2(t)

− 3 ± (4 − 3 sin2(t))
√

1 − sin2(t) (68)

= 6q2(t) − 3 ± (4 − 3q2(t))
√

1 − q2(t), (69)

which is a double-valued function of q.
Figure 26 displays the time variation of flux

(ϕ−t curve) for (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1) which has
an oscillation form in a horizontal band for (α1 = 0
or α2 = 1) but the band of oscillation inclines in
the other cases.

These three subsections affirm the fact that any
state between meminductor, memristor, memcapac-
itor and second-order memristor can be modulated
by a generalized memfractor when choosing a conve-
nient fractional derivative of orders α1 and α2 such
that (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1).

6. Extending the Generalized
Ohm’s Law to the Periodic Table
of Circuit Elements

In this section, we extend the generalized Ohm’s
law (36) in order to embed the memfractor element
in the periodic table of circuit elements defined by
Fig. 27 and to link the symbols of local variables
(α1, α2) belonging to [0, 1] × [0, 1] to the symbols
of the global variables α and β which are stan-
dard symbols in the circuit theory community. Chua
[2012] has introduced the notion of (α, β) elements
which defines an infinite discrete family of circuit
elements, each one identified by its element code
(v(α), i(β)), where |α|, |β| are integers, and the sym-
bol v(α) (the symbol i(β) respectively) means the
αth derivative of the voltage v (the βth derivative
of the current i respectively) if α ≥ 0 (β ≥ 0 respec-
tively) and the |α|th time integral of the voltage
v (the |β|th time integral of the current i, respec-
tively) if α < 0 (β < 0 respectively).

This infinite family of circuit elements is essen-
tial for developing a rigorous mathematical theory
of nonlinear circuits and is not defined for the sake
of generality.

6.1. General Ohm’s law for electric
circuit elements

The term integer circuit elements is used henceforth
as a moniker for the circuit elements identified as
an integer pair (α, β) elements. The three classical
elements resistor, capacitor and inductor are iden-
tified as the (v(0), i(0)), (v(0), i(−1)) and (v(−1), i(0))
elements respectively for which we have the rela-
tions v = Ri, v = 1

C q and ϕ = Li, respectively or
equivalently

dv = Rdi, (70)

dv =
1
C

dq, (71)

dϕ = Ldi. (72)

Using the code element (v(α), i(β)) and taking into
account that 


v =

dϕ

dt
,

i =
dq

dt
,

(73)

Eqs. (70)–(72) can be represented by a single equa-
tion, namely

dv(α) = Mα,βdi(β), (74)

where

Mα,β =




R, if α = β = 0,

1
C

, if α = 0, β = −1,

L, if α = −1, β = 0.

The three circuit elements with memory mem-
ristor, memcapacitor and meminductor (bottom
square of Fig. 4) are identified as the (v(−1), i(−1)),
(v(−1), i(−2)) and (v(−2), i(−1)) elements respectively
for which we have the relations

dϕ = RMdq, (75)

dϕ = C−1
M dσ, (76)

dρ = LMdq, (77)

respectively.
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Fig. 27. Periodic table of circuit elements embedded in the R
2 plane.

Using the code element (v(α), i(β)), these equa-
tions can be represented by the single Eq. (74)
where

Mα,β =




RM , if α = β = −1,

C−1
M , if α = −1, β = −2,

LM , if α = −2, β = −1.

The three circuit elements with second-order
memory: second-order memristor, second-order
memcapacitor, second-order meminductor and the
circuit element with third-order memory: third-
order memristor (upper square of Fig. 4) are identi-
fied as the (v(−2), i(−2)), (v(−2), i(−3)), (v(−3), i(−2))
and (v(−3), i(−3)) elements respectively for which we
give the relations

dρ = R2Mdσ, (78)

dρ = C−1
M dσ1, (79)

dρ1 = LMdσ, (80)

dρ1 = R3Mdσ1. (81)

Using again the code element (v(α), i(β)), these
equations can be represented by the single Eq. (74)

where

Mα,β =




R2M , if α = β = −2,

C−1
2M , if α = −2, β = −3,

L2M , if α = −3, β = −2,

R3M , if α = β = −3.

Multiplying both sides of (74) by 1
dt yields

d

dt
v(α) = Mα,β d

dt
i(β), (82)

which is equivalent to

v(α+1) = Mα,βi(β+1) (83)

and taking into account the relations (73) we obtain

ϕ(α+2) = Mα,βq(β+2). (84)

Setting 


α1 = α + 1,

α2 = β + 1,

Fα1,α2 = Mα,β,

(85)

we recover our generalized constitutive rela-
tions (20) and (21), where in this case α1, α2 are
integer numbers for which the fractional derivative
becomes a conventional derivative.
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In the same manner, setting


α1 = α + 2,

α2 = β + 2,

Fα1,α2

M = Mα,β,

(86)

we recover (36) and (32).

6.2. Extending generalized Ohm’s
law

If we assume α1 = α + 2, α2 = β + 2 belonging in
R, then the relation (74) (in term of conventional
derivatives) which corresponds to the integers val-
ues of α1, α2 becomes a special case of (32) (in terms
of fractional derivatives which are a generalization
of the conventional derivatives).

Replacing (α1, α2) in (32) by (α + 2, β + 2)
and Fα1,α2

M by Mα,β yields

Dα+2
t ϕ(t) = Mα,β(t)Dβ+2

t q(t), (87)

taking into account the relations (12) (with assump-
tions t0 = 0, q(t0) = 0 and ϕ(t0) = 0) and the
relation (5), Eq. (87) can be written as follows

Dα+1
t v(t) = Mα,β(t)Dβ+1

t i(t), (88)

taking into account the relation (6) we obtain

d

dt
(Dα

t v(t)) = Mα,β(t)
d

dt
(Dβ

t i(t)). (89)

Multiplying both sides of (89) by dt yields

d(Dα
t v(t)) = Mα,β(t)d(Dβ

t i(t)). (90)

Remark 6.1. In the same way replacing (α1, α2)
in (21) by (α + 1, β + 1) and Fα1,α2

M by Mα,β we
obtain the same equations (87)–(90).

Using the enlargement of notation code (α, β)
to real values of α, β, we define an infinite contin-
ued family of circuit elements. We call this fam-
ily: fractional circuit elements family. Hence the
periodic table of circuit elements introduced by
Chua [2012] is embedded in the Euclidean plane R

2

with the standard orthonormal basis (
→
i ,

→
j ) where

→
i = −−→

RL,
→
j = −−→

RC, the origin R(0, 0) is the
resistor, C(0,−1) is the capacitor and L(−1, 0) is
the inductor (Fig. 27). In this representation, each
element (α, β) can be viewed as a point of coordi-
nate (α, β) and therefore can be written as (α, β) =

α
→
i +β

→
j = −(α

−→
RL + β

−→
RC) where the abscissa α

indicates the dynamic order of the element in the
direction of inductance and the ordinate β indi-
cates the dynamic order of the element in the direc-
tion of capacitance. When α = β the element
(α, β) behaves in a certain way like a resistance.
We can observe (Fig. 24) that for α1 = α2 = 0 (i.e.
α = β = −2), α1 = α2 = 0.2 (i.e. α = β = −1.8),
α1 = α2 = 0.5 (i.e. α = β = −1.5) and α1 = α2 =
0.8 (i.e. α = β = −1.2) the dynamic of the (α, β)
element is similar to that of the resistor, further-
more its hysteresis loop (Lissajous curve) in the v–i
plane is punched or encapsulated on a single-valued
function but for α1 = 0.2, α2 = 0.8 (i.e. α = −1.8,
β = −1.2) and α1 = 0.8, α2 = 0.2 (i.e. α = −1.2,
β = −1.8) its dynamic is completely different from
that of the resistor.

Remark 6.2. The Euclidean distance of any frac-
tional element Mα,β from the resistor which is the
origin is

d(R,Mα,β) = ‖
−−−−→
RMα,β‖ =

√
α2 + β2.

Using the complexity metric χ [Chua, 2012] the dis-
tance of the element Mα,β from the resistor is

d(R,Mα,β) = χ(α, β) = |α| + |β|,
the second distance may be more useful than the
first one because in the integer case the complexity
metric measures not just the distance of (α, β) ele-
ment from the resistor, but also the minimum num-
ber of capacitors (or inductors) needed to build an
(α, β) element using off-the-shelf components.

Remark 6.3. For a given pair (α, β) the correspond-
ing fractional circuit element Mα,β is localized
inside of the square formed by the four integer
circuit elements (E(α), E(β)), (E(α) + 1, E(β)),
(E(α), E(β) + 1) and (E(α) + 1, E(β) + 1), where
for any real x, the function E(x) denotes the integer
part of x.

7. Conclusion

In this paper, we have used fractional calculus in
order to generalize and provide a mathematical
frame for circuit elements with memory: memfrac-
tance. We have emphasized that the memfractance
is a general paradigm for unifying and enlarging the
family of memristive, memcapacitive and memin-
ductive elements. The motivation and significance
of this paper is that there may exist future nano-
electronics devices that are more realistically mod-
eled with memfractance elements.
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We have generalized the definition of frac-
tance which was first introduced in 1983, and
after that, introduced the paradigm of memfrac-
tance which is fitted for circuit elements with
memory such as memristor, meminductor, memca-
pacitor and second-order memristor first introduced
here. We have defined a new element called mem-
fractor which possesses interpolated characteristics
between those four circuit elements.

We have then generalized Ohm’s law to mem-
fractor and proved it. A particular, albeit wide-
ranging, case of memfractance: the interpolated
memfractance has been carefully studied through
several numerical illustrative examples. Special
attention has been devoted to the interpolated char-
acteristic of a memfractor lying between memristor
and memcapacitor which exhibits an unexpected
new behavior of time variation of flux (ϕ–t curve).
This phenomenon has been studied very carefully
by the means of rigorous proofs.

Finally, following Chua’s recent work in which
an infinite discrete family of circuit elements: the
(α, β) element is introduced in the scope of devel-
oping a rigorous mathematical theory of nonlinear
circuits, we extend the previous generalized Ohm’s
law in order to embed memfractors elements into
this periodic table. For this aim, we define an infi-
nite continued family of circuit elements including
circuit elements with memory (such as second-order
memcapacitor and meminductor and third-order
memristor), with a special metric. We call this fam-
ily: fractional circuit element family.
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