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Abstract

In a regression context where a response variable Y ∈ R is recorded with a covariate X ∈ Rp,
two situations can occur simultaneously in some applications: (a) we are interested in the
tail of the conditional distribution and not on the central part of the distribution and (b)
the number p of regressors is large. Up to our knowledge, these two situations have only
been considered separately in the literature. The aim of this paper is to propose a new
dimension reduction approach adapted to the tail of the distribution and to introduce an
extreme conditional quantile estimator. A simulation experiment and an illustration on a real
data set were presented.
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1 Introduction

This work takes place in a regression context where a real response variable Y is recorded with a
random vector X ∈ E ⊂ Rp of explanatory variables. In the literature, several ways for examining
how the regressor X influence the distribution of Y have been considered. The most common ap-
proach consists to summarize the relationship between Y and X by the regression function E(Y |X)

which is the conditional expectation of Y given X. Several estimators of the regression function
are available, the probably most known being the kernel estimator introduced independently by
Nadaraya [26] and Watson [30]. In the same spirit, one can also mention the estimator introduced
by Gasser and Müller [18]. Another way to understand the link between Y and X is to use a
conditional quantile of fixed order 1−α ∈ (0, 1). For instance, Koenker and Basset [23] introduced
the notion of quantile regression assuming that the conditional quantile of Y given X is a linear
combination of the explanatory variables. This approach presents the advantage to be more robust
against outliers than the regression function. Concerning the estimation of conditional quantile,
local linear approaches were considered by Yu and Jones [34] while a fully nonparametric estimator
can be found in the paper of Chaudhuri [3].
In many applications such as climatology, finance, insurance to name a few, two situations can
occur simultaneously in a regression context.

(a) We are interested in the tail distribution of Y given X instead of the central part of the
conditional distribution. In this case, regression function and conditional quantile of fixed order
1− α are clearly irrelevant tools.
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(b) The dimension p of the regressor is large. In this situation, inference on the conditional
distribution of Y given X becomes difficult since the space is sparsely populated by data points.
This is the well known curse of dimensionality problem.
A motivating example is the study of the influence of various pollutants (sulphur dioxide, nitrogen
dioxide, carbon monoxide, . . . ) and weather conditions (temperature, humidity, . . . ) on extreme
values of ozone concentration (see Section 6). Another example can be found in hydrology where
the understanding of the influence of the geographical position and the altitude on return periods
of large amount of rain is a problem of primary interest (see Gardes and Girard [15]). Despite
this large range of applications, the situations (a) and (b) mentioned before have been considered
separately in the literature.

To make inference on the tail distribution of Y given X, one solution is to to use a conditional
quantile of order 1− αn where αn → 0 as the sample size goes to infinity. Such a quantile is said
to be extreme. Estimation of extreme conditional quantiles has been considered for instance by
Daouia et al. ([7] and [8]), Gardes and Girard [16], Davison and Ramesh [9] among many others.

To deal with high dimensional covariates, one classical way consists in assuming the existence of
a p×q full rank matrix B (with q < p) such that in the study of the relationship between Y and X,
the random vector X ∈ Rp can be replaced by B>X ∈ Rq without loss of information. More pre-
cisely, it is assumed thatX and Y are independent conditionally to B>X (in symbolsX |= Y |B>X).
Recall that, for a given random vector Z, X |= Y |Z if the distribution of Y given (X,Z) is equal to
the one of Y given Z (or equivalently if for all real-valued measurable functions h1(·) and h2(·) such
that h1(X) and h2(Y ) are integrable, E(h1(X)h2(Y )|Z) = E(h1(X)|Z)E(h2(Y )|Z)). For a com-
prehensive discussion on conditional independence see Basu and Pereira [2]. Hence, if X |= Y |B>X,
the distribution of Y given X is equal to the one of Y given B>X. In the literature, this model
is referred to the multiple-index model (single-index model if q = 1) and the subspace spanned
by the columns of B is called the Dimension Reduction (DR) subspace. Among the contributions
on the estimation of the DR subspace, one can cite the Sliced Inverse Regression (SIR) method
introduced by Li [24], the Slice Average Variance Estimation (SAVE) method proposed by Cook
and Weisberg [6] and the Principal Hessian Directions (PHD) method (see Li [25]). The existence
of a DR subspace is assumed by many authors in order to study the link between Y and the
explanatory variables X. For instance, to estimate conditional quantiles of fixed order, Wu et
al. [32] use a single-index model while a combination of SIR and kernel estimation is considered
by Gannoun et al. [13].

Up to our knowledge, the use of adapted dimension reduction methods for estimating extreme
conditional quantiles has not been considered yet in the literature. This is the purpose of the
present paper which can be divided into three main parts. 1) We adapt the classical definition of
conditional independence to an extreme value context. More specifically, we introduce the notion of
Tail Conditional Independence of Y and X given Z which, roughly speaking, consists in assuming
that the tail distribution of Y given (X,Z) is equivalent to the one of Y given Z. This new defini-
tion permits us to deal with situations where the covariate dimension can be reduced only in the
tail of the distribution. 2) We assume the existence of a p× q full rank matrix B such that Y and
X are tail conditionally independent given B>X. The subspace spanned by the columns of B is
called the Tail Dimension Reduction (TDR) subspace. We then proposed a kernel based estimator
of extreme conditional quantiles by taking into account the existence of the TDR subspace and as-
suming that the matrix B is known. 3) We propose a procedure for the estimation of the matrix B.
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The paper is organized as follows. The notion of Tail Conditional Independence is defined
rigorously in Section 2. In Section 3, assuming the existence of a TDR subspace, the estimation of
extreme conditional quantiles is addressed and the theoretical asymptotic behavior of the proposed
estimator is established. The estimation of the TDR subspace is considered in Section 4. The finite
sample properties of the proposed estimators is investigated through a simulation study in Section 5
and on a real data set in Section 6. Section 7 collects the proofs.

2 Tail conditional independence

Let (X,Y, Z) ∈ Rp × R × Rq be a random vector defined on a probability space (Ω,F ,P). The
goal of this section is to introduce the notion of tail conditional independence (TCI) of Y and X
given Z. First, let us give some notations used in the rest of the paper. For any random variable
W : (Ω,F ,P) 7→ (Rm,B(Rm)) where m ∈ N∗, let supp(W ) be the support of its distribution. We
denote by P(·|W = ·) : F × supp(W ) 7→ [0, 1] a regular version of the conditional expectation
E(I{·}|W ) where the dot denotes any element of F and I{·} is the indicator function. Finally, the
conditional quantile of Y given W of order α ∈ [0, 1] is the measurable function Q(α|W = ·) :=

inf{y ∈ R; P(Y > y|W = ·) ≤ α} where R denotes the extended real number line. The TCI
property is defined below.

Definition 1. The random variable Y is tail conditionally independent of X given Z (in symbols
Y ∼|= X|Z) if for all ε > 0 there exists κ > 0 such that for all δ ∈ (0, κ],

P
[∣∣∣∣P(Y > Yδ(Z)|X,Z)

P(Y > Yδ(Z)|Z)
− 1

∣∣∣∣ ≤ ε] = 1, (1)

where for δ > 0, Yδ(Z = ·) is a measurable function defined on supp(Z) and given by Yδ(Z = ·) :=

Q(0|Z = ·)− δ if Q(0|Z = ·) < +∞ and Yδ(Z = ·) := δ−1 if Q(0|Z = ·) = +∞.

Note that, as a direct consequence of (1), if Y ∼|= X|Z then Q(0|X,Z) = Q(0|Z) a.s. that is to say
that the distributions of Y given (X,Z) and Y given Z share the same right endpoint.
For a better understanding of Definition 1, one can remark that if Y ∼|= X|Z, there exists a Borel
set A ∈ B(Rp)⊗ B(Rq) with P[(X,Z) ∈ A] = 1 such that for all (x, z) ∈ A,

lim
y↑Q(0,Z=z)

P(Y > y|X = x, Z = z)

P(Y > y|Z = z)
= 1. (2)

Hence, if Y ∼|= X|Z, the tail of the conditional distribution of Y given (X,Z) is equivalent to the
one of Y given Z and thus, to make inference on the tail of Y given (X,Z), only the knowledge of
Z is required.
The TCI property is obviously less restrictive than the classical conditional independence property
since the last one assumes that P(Y > y|X,Z) = P(Y > y|Z) a.s. for all y ∈ R. Note also that
the conditional independence property is symmetric (i.e. X |= Y |Z ⇔ Y |= X|Z) but not the tail
conditional independence property.

As it is the case for the conditional independence property, the TCI property can be characterized
in different equivalent ways. This is the purpose of the next result.
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Theorem 1. The following statements are equivalent:
(i) Y ∼|= X|Z.
(ii) For all ε > 0 there exists κ > 0 such that for all δ ∈ (0, κ] and for all non-zero bounded and
positive measurable function h(·),

P
[∣∣∣∣ E(I{Y >Yδ(Z)}h(X)|Z)

P(Y > Yδ(Z)|Z)E(h(X)|Z)
− 1

∣∣∣∣ ≤ ε] = 1.

(iii) For all δ > 0, P(Y > Yδ(Z)|X,Z) = sδ(Z)(1 + ηδ(X,Z)) a.s., where sδ : supp(Z) 7→ R and
ηδ : supp(X,Z) 7→ R are two measurable functions and, for all ε ∈ (0, 1), there exists κ > 0 such
that for all δ ∈ (0, κ], P[|ηδ(X,Z)| ≤ ε] = 1.

Note that uniform convergence in (1) (i.e. the fact that κ does not depend on the values of the
random vector (X,Z)) is essential to prove the second and third statements in Theorem 1. Further-
more, since the conditional expectation is almost surely unique, Theorem 1 can not be established
if we ask that (2) holds everywhere.
The second statement gives us another way to understand the TCI property. It entails that
for all bounded and positive measurable function h(·), there exists a Borel set A ∈ B(Rq) with
P(Z ∈ A) = 1 such that for all z ∈ A, E

(
I{Y >y}h(X)

∣∣Z = z
)
∼ P (Y > y|Z = z)E (h(X)|Z = z)

as y ↑ Q(0|Z = z). In the particular situation considered later where Z = B>X with B a full rank
p× q matrix (q < p), this property will be the starting point of the estimation of B.
The third statement is a very useful tool for anyone who wants to propose conditional distributions
of Y given (X,Z) satisfying Definition 1. Some examples are given hereafter.

Example 1. Let µ1(·|(X,Z) = ·) : B(R)× supp(X,Z) 7→ ([0, 1],B([0, 1])) and µ2(·|Z = ·) : B(R)×
supp(Z) 7→ ([0, 1],B([0, 1])) be two functions such that for all (x, z) ∈ supp(X,Z), µ1(·|(X,Z) =

(x, z)) and µ2(·|Z = z) are two probability measures on (R,B(R)) and, for all A ∈ B(R), the
functions µ1(A|(X,Z) = ·) and µ2(A|Z = ·) are measurable. We assume in addition that uniformly
on (x, z) ∈ supp(X,Z),

lim
δ→0

µ1(Iδ(z)|(X,Z) = (x, z))

µ2(Iδ(z)|Z = z)
= 0.

where Iδ(z) = [Yδ(Z = z),∞). Regardless the distribution of (X,Z), if the conditional distribution
of Y given (X,Z) is the mixture distribution defined by

P(Y ∈ ·|X,Z) = θ(Z)µ1(·|X,Z) + (1− θ(Z))µ2(·|Z) a.s.,

where θ(·) is a [0, 1)−valued measurable function, then, from Theorem 1 point (iii), it is easy to
see that Y ∼|= X|Z.

Example 2. Consider the semi-parametric model

P(Y > y|X) = y− exp(b>0 X)L(y|X) a.s.,

where b0 ∈ Rp and L(·|X = ·) : R × supp(X) 7→ (0,∞) is a function such that for all t > 0 and
x ∈ supp(X), L(ty|X = x)/L(y|X = x) → 1 as y → ∞. Note that this model was introduced
by Wang and Tsai [29] where a maximum likelihood method to estimate b0 is considered. If we
assume that L(y|X = x) converges to c(b>0 x) uniformly on x ∈ supp(X) as y →∞ where c(·) is a
positive and measurable function then, using the third statement of Theorem 1, it is easy to check
that Y ∼|= X|b

>
0 X.
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3 Extreme quantile estimation under a TDR model

Let (X,Y ) ∈ Rp×R be a random vector defined on the probability space (Ω,F ,P). In what follows,
the distribution of (X,Y ) is assumed to be absolutely continuous with respect to the Lebesgue
measure. A probability distribution function of X is denoted by fX(·) and its support is given by
supp(X) := {x ∈ Rp; fX(x) > 0} which is assumed to be an open set.
The aim of this section is to propose an estimator of the conditional quantile Q(α|X) when α is
closed to 0 (extreme conditional quantile) and when the dimension p of the covariate X is large
(p ≥ 3). To reach this goal, the existence of a tail dimension reduction (TDR) subspace is assumed.
The definition of such a subspace is given in the next paragraph. The estimator and its asymptotic
properties are given in the second paragraph.

3.1 Tail dimension reduction (TDR) subspace

Using the notion of tail conditional independence presented in the previous section, we give the
definition of a TDR subspace. In what follows, for a full rank p× q matrix B with q < p, the space
spanned by the columns of B is denoted S(B).

Definition 2. If there exists a full rank p × q matrix B0 with q < p such that Y ∼|= X|B
>
0 X then

S(B0) is a Tail Dimension Reduction (TDR) subspace for Y given X.

The TDR subspace is an adaptation of the DR subspace introduced by Li [24]. Roughly speaking,
if there exists a TDR subspace S(B0), the tail of the conditional distribution of Y given X can be
reasonably approximated by the tail of the conditional distribution of Y given B>0 X. Obviously,
for any random vector (X,Y ), S(Ip) = Rp is a TDR subspace and thus a TDR subspace is not
unique. Since our goal is to reduce the dimension, the notion of minimum TDR subspace is defined
below by analogy with the definition of the minimum DR subspace (see for instance [4]).

Definition 3. For a full rank matrix B0, the subspace S(B0) is a minimum TDR subspace if its
dimension is lower or equal than the dimension of any other TDR subspace.

Note that for any regular q × q matrix D, Y ∼|= X|B
>
0 X is equivalent to Y ∼|= X|(B0D)>X. Hence,

the matrix B0 is not uniquely defined. From now on, we assume that B0 belongs to the set B
defined in the following way: B ∈ B if B is given by the first normalized q linearly independent
columns of the projection matrix PB := B(B>B)−1B> on S(B). In this section, the matrix B0

is supposed to be known. Its estimation will be considered in Section 4. In the next paragraph,
an estimator of the conditional quantile Q(·|X) is proposed using the information that S(B0) is a
minimum TDR subspace.

3.2 Extreme quantile estimation

Given n independent copies (X1, Y1), . . . , (Xn, Yn) of the random vector (X,Y ), the aim of this
section is the estimation of the extreme conditional quantile Q(αn|X = x) for x ∈ supp(X) where
(αn) is a sequence in (0, 1) converging to 0 as n goes to infinity. Without assuming the existence
of a minimum TDR subspace, this question has already been investigated by several authors (see
for instance Araújo Santos et al. [1], Daouia et al. [7], Gardes and Girard [16] among many oth-
ers). Unfortunately, these estimators often fail to approximate correctly the extreme conditional
quantile in a large dimension setting (usually p ≥ 3) since in this situation, the space supp(X)
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is only sparsely populated by data points. As a consequence, only few points can be reasonably
considered to estimate Q(αn|X = x) and, unless the sample size is very large, classical estimators
become inefficient for large values of p.

The first step in the estimation of Q(αn|X = x) is often the estimation of the conditional survival
function P(Y > y|X = x) for large value of y. A classical way to reach this goal is to use a kernel
based estimator (see for instance Daouia et al. [7]). In this paper, taking into account the existence
of a minimum TDR subspace S(B0), a new kernel estimator of Q(αn|X = x) is proposed. The
basic idea is that the conditional survival function P(Y > y|X = x) can be approximated for y
large enough by P(Y > y|B>0 X = B>0 x). If B0 is known, we propose the following statistics as an
estimator of P(Y > y|X = x):

Ŝn(y|B0, x) :=

n∑
i=1

I{Yi>y}K
(
H−1
n B>0 (x−Xi)

)/ n∑
i=1

K
(
H−1
n B>0 (x−Xi)

)
. (3)

Here, Hn is a q × q positive definite matrix and K(·) is a probability distribution function on
Rq. From now on, we assume that K(·) is bounded with support the unit ball of Rq. Note that
Ŝn(y|B0, x) is the classical kernel estimator of P(Y > y|B>0 X = B>0 x) that is considered here as
an estimator of P(Y > y|X = x).
A first attempt to estimate Q(αn|X = x) is to use the generalized inverse of Ŝn(·|B0, x) leading to
the statistics

Q̂n(αn|B0, x) := inf{y; Ŝn(y|B0, x) ≤ αn}. (4)

Unfortunately, such an estimator fails to estimate an extreme quantile with an order αn as small
as we like. Indeed, it is shown in Proposition 4 that the condition n|Hn|αn → ∞, where |Hn|
stands for the determinant of Hn, is required to establish the consistency of (4). As a consequence,
Q(αn|X = x) cannot be consistently estimated by (4) when αn is too small. To overcome this
drawback, an additional information on the tail distribution of Y given X is necessary.

Regular varying condition. In the unconditional case, when dealing with the right-tail of a
real random variable Y , it is commonly assumed that Y belongs to the maximum domain of
attraction of an extreme value distribution (see Fisher and Tippett [11] and Gnedenko [19] for a
definition). According to de Haan and Ferreira [20, Theorem 1.1.6], this is equivalent to assume
the existence of a positive auxiliary function aY (·) and a parameter γY ∈ R such that for all u > 0,
[QY (uα)−QY (α)]/aY (α−1)→ LγY (1/u) as α→ 0 where QY (α) = inf{y; P(Y > y) ≤ α} and with
for all v ≥ 1 and s ∈ R, Ls(v) :=

∫ v
1
us−1du. The function QY (·) is then said to be of extended

regular variation.
The same kind of assumption is made in our conditional setting. We assume that for all x ∈
supp(X), the function Q(·|X = x) is of extended regular variation i.e. that there exist a positive
function a(·|x) : (0,∞) 7→ (0,∞) and a real-valued function γ(·) such that for all x ∈ supp(X)

and u > 0,

ERV(α, u|x) :=

∣∣∣∣Q(uα|X = x)−Q(α|X = x)

a(α−1|x)
− Lγ(x)(1/u)

∣∣∣∣→ 0, (5)

as α → 0. Note that this convergence holds locally uniformly on u ∈ (0,∞). The function γ(·)
is referred to as the conditional extreme value index function. The function a(·|x) is called the
auxiliary function and satisfied a(α−1|x)/Q(α|X = x) − γ+(x) → 0 as α goes to 0 where (·)+

and (·)− are the positive and negative part functions (see Fraga Alves et al. [12, Lemma 3.1]).
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Condition (5) is equivalent to assume that the distribution function P(Y ≤ ·|X = x) belongs to the
maximum domain of attraction of an extreme value distribution with extreme value index γ(x).
Condition (5) is also satisfied for the conditional quantile of Y given B>0 X as it is shown in the
following result.

Proposition 1. Let B0 be a full rank matrix such that S(B0) is a TDR subspace. If for all
x ∈ supp(X), the conditional quantile Q(·|X = x) satisfies (5), there exists a Borel set A ∈ B(Rp)
with P(X ∈ A) = 1, a positive function ã(·|B>0 x) and a real-valued function γ̃(·) such that for all
u > 0 and x ∈ A,

lim
α→0

Q(uα|B>0 X = B>0 x)−Q(α|B>0 X = B>0 x)

ã(α−1|B>0 x)
= Lγ̃(B>0 x)(1/u).

In addition, for all x ∈ A, γ(x) = γ̃(B>0 x) and ã(α−1|B>0 x)/a(α−1|x)→ 1 as α→ 0.

To estimate Q(βn|X = x) for an arbitrary sequence (βn) converging to 0, we start with (5) which
suggests the approximation Q(βn|X = x) ≈ Q(αn|X = x) + a(α−1

n |x)Lγ(x)(αn/βn). The sequence
(αn) is chosen not too small so that Q(αn|X = x) can be consistently estimated by the kernel
estimator Q̂n(αn|B0, x) defined in (4). Assuming as before that S(B0) is a TDR subspace for a
given full rank matrix B0, an estimator of Q(βn|X = x) is thus given by

Q̌n(βn|B0, x) := Q̂n(αn|B0, x) + ân(B0, x)Lγ̂n(B0,x)(αn/βn), (6)

where γ̂n(B0, x) and ân(B0, x) are consistent estimators of γ(x) and a(α−1
n |x). In this paper, the

estimator γ̂n(B0, x) is given by

γ̂n(B0, x) := γ̂n,+(B0, x) + γ̂n,−(B0, x)

= T (1)
αn (Q̂n(·|B0, x)) + Ψ←

(
max

{
[T (1)
αn (Q̂n(·|B0, x)]2

T (2)
αn (Q̂n(·|B0, x)

; Ψ(0)

})
. (7)

For ν ∈ (0, 1) and ϕ(·) a positive and bounded function on [ν, 1], Ψ(·) is the decreasing function
defined for s ≤ 0 by

Ψ(s) :=

(∫ 1

ν

ϕ(u)Ls(1/u)du

)2/∫ 1

ν

ϕ(u)L2
s(1/u)du ,

and Ψ←(t) = inf{s; Ψ(s) ≤ t} is the generalized inverse of Ψ(·). In addition, for all δ ∈ N, for
all non-increasing and right-continuous function U(·) and all α ∈ (0, 1), the quantity T (δ)

α (U) is
defined by

T (δ)
α (U) :=

∫ 1

ν

ϕ(u)

(
ln
U(uα)

U(α)

)δ
du

/(∫ 1

ν

ϕ(u)L0(1/u)du

)δ
.

Note that this estimator of γ(x) belongs to the class of estimators introduced in Gardes [14].
Concerning the estimation of a(α−1

n |x), we consider the statistics

ân(B0, x) = T̃αn
(
Q̂n(·|B0, x); γ̂n,−(B0, x)

)
, (8)

where T̃α(U, γ−) is given for all non-increasing and right-continuous function U(·), for all γ− ≤ 0

and for all α ∈ (0, 1) by

T̃α(U, γ−) := U(α)

∫ 1

ν

ϕ(u) ln
U(uα)

U(α)
du

/∫ 1

ν

ϕ(u)Lγ−(1/u)du .
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Note that the previous defined estimators depend on the choice of a parameter ν ∈ (0, 1) and a
positive and bounded function ϕ(·) on [ν, 1]. In order to not overload the notations, this dependence
has been omitted. The expressions of γ̂n(B0, x) and ân(B0, x) are motivated by the following result.

Proposition 2. Let x ∈ supp(X). If condition (5) holds then

lim
α→0
T (1)
α (Q(·|X = x)) = γ+(x), lim

α→0

[T (1)
α (Q(·|X = x))]2

T (2)
α (Q(·|X = x))

= Ψ(γ−(x)),

and lim
α→0

T̃α(Q(·|X = x), γ−(x))

a(α−1|x)
= 1.

The proof of this Proposition is a direct consequence of [14, Lemma 3]. Its proof is thus omitted.
The study of the asymptotic behavior of Q̌n(βn|B0, x) is done under the assumptions given below.

Condition on the TDR subspace. Recall that, from Theorem 1, S(B0) is a TDR sub-
space if and only if for all δ > 0 there exist two measurable functions sδ(·) and ηδ(·) such
that P(Y > Yδ(B>0 X)|X) = sδ(B

>
0 X)(1 + ηδ(X)) almost surely. As shown in the proof of

Theorem 1, (see equation (21)), the function ηδ(·) controls the rate of convergence of the ratio
P(Y > Yδ(B>0 X)|X)/P(Y > Yδ(B>0 X)|B>0 X) to 1. In the sequel, we assume that there exist
κ > 0 and a decreasing function η(·) converging to 0 at infinity such that for all δ ∈ (0, κ]

P
[
|ηδ(X)| ≤ η(δ−1)

]
= 1. (9)

Regularity condition. Since the distribution of X is absolutely continuous with respect to the
Lebesgue measure and that B0 is a full rank matrix, the random variable B>0 X is also absolutely
continuous with a probability distribution function fB>0 X(·) such that fB>0 X(B>0 x) > 0 for all
x ∈ supp(X). The following regularity condition on fB>0 X(·) is needed. For all (s, t) ∈ (supp(X))2,
there exists a constant c0 > 0 such that

|fB>0 X(B>0 s)− fB>0 X(B>0 t)| ≤ c0‖B>0 (s− t)‖∞, (10)

where ‖ · ‖ denotes any norm on Rq.

We can now state the main result of this paragraph. The following notations are used. For all
positive definite q × q matrix M and s ∈ Rq, let D(s,M) := {t ∈ Rq; ‖M−1(s − t)‖∞ ≤ 1}. For
v ≥ 1 and s ∈ R, let L̃s(v) :=

∫ v
1
us−1 lnu du. Finally, for all random variable W , let δα(W = ·)

be the measurable function defined for t ∈ supp(W ) and α ∈ (0, 1) by

δα(W = t) :=

{
Q(0|W = t)−Q(α|W = t) if Q(0|W = t) <∞,
1/Q(α|W = t) if Q(0|W = t) =∞.

(11)

Theorem 2. Assume that there exists a full rank matrix B0 such that S(B0) is a TDR sub-
space and suppose conditions (9) and (10) hold. Let (αn), (βn) and (Hn) be sequences such
that αn → 0, βn/αn → 0, n|Hn|αn → ∞, τn ln2(αn/βn) → 0 and τ−1

n ‖Hn‖∞ → 0, where
τn := (n|Hn|αn)−1/2[ln(n|Hn|αn)]1/2. If there exists ξ ∈ (0, 1) such that for all x ∈ supp(X),

max

{
sup

(t,ζ)∈An

∣∣∣∣P(Y > Q(ζ|B>0 X = B>0 x)|B>0 X = t)

ζ
− 1

∣∣∣∣ ; η
(
ξδ−1
αn (X = x)

)}
= O(τn), (12)
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where An := D(B>0 x,Hn) × [ξναn, ξ
−1αn], if τ−1

n ERV(αn, u|X = x) → 0 locally uniformly on
u ∈ (0,∞) and

lim
n→∞

τ−1
n max

{∣∣∣∣ a(α−1
n |x)

Q(αn|X = x)
− γ+(x)

∣∣∣∣ ;
ERV(αn, βn/αn|X = x)

L̃γ(x)(αn/βn)

}
= 0, (13)

then, there exists a Borel set A ∈ B(Rp) with P(X ∈ A) = 1 and such that for all x ∈ A,

Q̌(βn|B0, x)−Q(βn|X = x)

a(α−1
n |X = x)L̃γ(x)(αn/βn)

= OP(τn).

Remarks.
• Because of the definition (1) of the conditional tail independence, the convergence of the estima-
tor of the conditional quantile cannot be obtained for every x ∈ supp(X).
• In (12), two conditions are gathered:

The first one is a classical regularity condition of the function P(Y > y|B>0 X = ·) for large
values of y. This condition is essential in a conditional framework (see for instance Daouia et al. [7]
and Gardes [14]). A careful reading of the proof shows that this condition only need to be satisfied
for x ∈ A. This condition involves the conditional distribution of Y given B>0 X. In Lemma 3
(see appendix), it is shown that it can be replaced by a regularity condition on the conditional
distribution of Y given X which is often more convenient to check. Note also that the parameter
ν in the set An is the one used in the estimators (7) and (8) of γ(x) and a(α−1

n |x).
The second condition is required to deal with the TDR subspace. Roughly speaking, this condi-

tion ensures that the ratio P(Y > Yδ(B>0 X)|X)/P(Y > Yδ(B>0 X)|B>0 X) converges to 1 sufficiently
fast in order to obtain a consistent estimator of Q(αn|X = x) with rate of convergence τn.
• We would like now to show that if q < p (i.e if the dimension of the covariate can be reduced),
the new estimator Q̌n(βn|B0, x) is more efficient than the estimator Q̌n(βn|x) := Q̌n(βn|Ip, x)

which does not take into account the existence of the TDR subspace. Assume that conditions of
Theorem 2 are satisfied for sequences (αn), (βn) and a bandwidth matrix Hn = hnIq where (hn)

is a positive sequence tending to 0. Let Mn := h
q/p
n Ip. If there exists ξ ∈ (0, 1) such that

sup
(t,ζ)∈Ãn

∣∣∣∣P(Y > Q(ζ|X = x)|X = t)

ζ
− 1

∣∣∣∣ = O(τn),

where Ãn := D(x,Mn)× [ξαn, ξ
−1αn] and if τnh

q/p
n → 0 with τn := [nhqnαn/ ln(nhqnαn)]−1/2, then,

Q̌n(βn|x) computed with the bandwidth matrixMn and Q̌n(βn|B0, x) computed with Hn are both
consistent estimators of Q(αn|X = x) with the same rate of convergence τn. Since hn/h

q/p
n → 0

(when q < p), estimator Q̌n(βn|B0, x) shall performs better in practice because, to keep the same
rate of convergence, estimator Q̌n(βn|x) have to use observations located far away from the target
leading to an important bias. To illustrate this fact, let B0 = (1, 2)>/

√
5 and x0 = (1/2, 1/2)>.

Suppose that S(B0) is a TDR subspace and that one is interested in the estimation of a conditional
extreme quantile of Y given X = x0 for a random vector X = (X(1), X(2))> with X(1) and
X(2) independent and uniformly distributed on (0, 1). In this situation, the points of interest are
those located on the set {x = (x(1), x(2)); B>0 x = B>0 x0}. On Figure 1, observations among
n = 500 independent copies X1, . . . , Xn of X for which K(h−1

n B>0 (x0 −Xi)) > 0 (left panel) and
K(M−1

n (x0 − Xi)) > 0 (right panel) are represented for hn = 1/10. It clearly appears that the
observations used to compute Q̌n(·|B0, x) (right panel) are more relevant than the ones used in
Q̌n(·|x) (left panel).
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4 Estimation of the TDR subspace

In this section, a procedure to estimate the subspace S(B0) (i.e. the matrix B0) is proposed. In
what follows, it is assumed that supp(X) = Rp. In this case, we have the following result.

Proposition 3. If supp(X) = Rp then a minimum TDR subspace is unique.

The starting point for the estimation of B0 is a result showing that B0 can be seen as the solution
of a minimization problem. Let us first introduce some notations. For J ∈ N∗ and for any matrix
B ∈ B, let {Πj(B

>X), j = 1, . . . , J} be a random partition of supp(X). In the sequel, it is
assumed that for all B ∈ B and all j = 1, . . . , J , P(X ∈ Πj(B

>X)|B>X) > 0 a.s. (an example of
such a partition is given in section 5). Let us also introduce the function T : (0, 1) × B 7→ [0,∞]

defined by

T (α,B) :=

J∑
j=1

{
E
[
P({Y > Q(α|B>X)} ∩ {X ∈ Πj(B

>X)}|B>X)

αP(X ∈ Πj(B>X)|B>X)

]
− 1

}2

.

According to the second statement of Theorem 1, the quantity T (α,B0) is close to 0 for small
values of α. This argument suggests that an approximation of B0 can be obtained by minimizing
the function T (α,B) with α small. More precisely, introducing the notation

B̃0(α) := arg min
B∈B

T (α,B), (14)

we have the following result.

Theorem 3. Assume that there exists a full rank matrix B0 ∈ B such that S(B0) is a mini-
mum TDR subspace and that supp(X) = Rp. If for all κ > 0, there exists α0 ∈ (0, 1) such that for
all α ∈ (0, α0), P[δα(B>0 X) < κ] = 1 and if there exists a function L̃(·) : B 7→ [0,∞) such that for
all ε > 0, there exists α0 ∈ (0, 1) such that for all α ∈ (0, α0),

sup
B∈B

∣∣∣∣∣min

{∣∣∣∣P(Y > Q(α|B>X)|X)

α
− 1

∣∣∣∣ ;

∣∣∣∣P(Y > Q(α|B>X)|X)

α
− 1

∣∣∣∣−1
}
− L̃(B)

∣∣∣∣∣ ≤ ε, (15)

then ‖B̃0(α)−B0‖ → 0 as α→ 0 where ‖ · ‖ is any matrix norm.

The condition on the random variable δα(BT0 X) (which was defined in (11)) entails thatQ(α|B>0 X =

B>0 x) converges to the endpoint Q(0|B>0 X = B>0 x) uniformly on x ∈ supp(X) as α goes to 0.
Condition (15) ensures that, uniformly on B ∈ B, |α−1P(Y > Q(α|B>X)|X)−1| admits a positive
(possibly infinite) limit as α goes to 0.

Theorem 3 suggests to estimate B0 by replacing T (α,B) in (14) by a reasonable estimator with α
sufficiently small. To construct this estimator, let us introduce a sequence (αn) converging to 0
with the sample size. The sample analog of T (αn, B) is given by:

1

n2

J∑
j=1

{
n∑
i=1

(
Φn,j(B

>Xi)

αnpj(B>Xi)
− 1

)}2

, (16)

with for B ∈ B, z ∈ supp(B>X) and j ∈ {1, . . . , J}, pj(z) := P(X ∈ Πj(B
>X)|B>X = z)fB>X(z)

(where fB>X(·) is the probability density function of B>X) and

Φn,j(z)

fB>X(z)
:= P

(
{Y > Q(α|B>X = z)} ∩ {X ∈ Πj(B

>X)}|B>X = z
)
.

10



Obviously, in practice, the random variables Φn,j(B
>Xi) and pj(B>Xi) are not observed and need

to be replaced by their respective kernel estimators:

Φ̂n,j(B
>Xi) :=

∑
` 6=i

I{Y`>Q̂n,−i(αn|B>Xi)}I{X`∈Π
(j)
B (B>Xi)}

K(H−1
n B>(Xi −X`)),

where Q̂n,−i(αn|B>Xi) is the conditional quantile estimator defined in (4) computed without the
couple (Xi, Yi) and

p̂j(B
>Xi) :=

∑
6̀=i

I{X`∈Π
(j)
B (B>Xi)}

K
(
H−1
n B>(Xi −X`)

)
.

We can now introduce our estimator of B0:

B̂0,n(αn) := arg min
B∈B

T̂n(B), (17)

where T̂n(B) is obtained by replacing in (16) the unobserved random variables Φn,j(B
>Xi) and

pj(B
>Xi) by Φ̂n,j(B

>Xi) and p̂j(B>Xi).
An important task consists in showing the consistency of B̂0,n(αn) as an estimator of B0. A
possible way is to follow the lines of the proof of [22, Theorem 5.1] where an M -estimator of the
direction in a single-index model is proposed. This proof requires in particular to show the uniform
consistency on B ∈ B of the estimator T̂n(B) of T (B). This is of course an interesting but non-
trivial result that is beyond the scope of the present paper. In what follows, we only focus on the
finite-sample behavior of the TDR estimator B̂0,n(αn) and also of the plug-in conditional quantile
estimator Q̌n(βn|B̂0,n(αn), x).

5 Simulation study

5.1 A procedure for estimating the TDR subspace

Let (X,Y ) be a random vector and assume that there exists a full rank matrix B0 of rank q < p

such that S(B0) is a TDR subspace. The aim of this paragraph is to present a procedure that can
be used to compute the estimator (17) of the direction B0.
First, for B ∈ B and x ∈ supp(X), the partition {Πj(B

>X = B>x), j = 1, . . . , J} of supp(X)

is constructed in the following way: let D = [d1, . . . , dp] be a p × p orthogonal matrix such the
first q columns spanned S(B) (such a matrix is obtained by using the Gram-Schmidt process). Let
m(B>x) be the conditional marginal median of X given B>X = B>x. For ` ∈ {1, . . . , p − q},
introducing the half spaces

E`(B
>x) := {s ∈ Rp; d>`+qs > d>`+qm(B>x)}

and Ē`(B
>x) := {s ∈ Rp; d>`+qs ≤ d>`+qm(B>x)},

an element of the partition {Πj(B
>X = B>x), j = 1, . . . , J} is the intersection of p−q half spaces.

More specifically, an element of the partition is a set E∗1 ∩ . . . ∩E∗p−q where for ` ∈ {1, . . . , p− q},
E∗` ∈ {E`(B>x), Ē`(B

>x)}. There is thus J = 2p−q elements in the partition. Obviously, if
supp(X) = Rp, then, for all x ∈ Rp and for all j ∈ {1, . . . , J}, P(X ∈ Πj(B

>X)|B>X = B>x) > 0.
In practice, since the conditional marginal median m(B>x) is unknown, it is replaced by its empir-
ical estimator m̂n(B>x) := (m̂n,j(B

>x), j = 1, . . . , J)> where for j = 1, . . . , J , m̂n,j(B
>x) is the

empirical median of the j-th component of the observations falling in D(B>x,Hn). This choice of
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random partition ensures that, for all x ∈ supp(X), the number of available observations in each
element of D(B>x,Hn) ∩Πj(B

>X = B>x) is approximatively the same.

For a better view of the previously constructed partition, let us give an example. Let X =

(X(1), X(2))> be a random vector where X(1) and X(2) are independent and uniformly distributed
on [0, 1]. In Figure 2, the partition {Π1(B>X = B>x),Π2(B>X = B>x)} of supp(X) = [0, 1]2

is represented for B = (1, 2)>/
√

5 and x = (3/5, 1/5)>. Using n = 500 independent copies
of X and taking Hn = 50/n = 0.1, the conditional marginal median m(B>x) is estimated by
m̂n(B>x) = (0.416, 0.280)>.
Using the whole sample {X1, . . . , Xn} to compute the sample analog (16) of T (αn, B) is time-
consuming since the partition must be computed for each observations Xi, i = 1, . . . , n. We thus
choose to use only a subsample of size n0 := banc for a given a ∈ (0, 1) to compute (16). Extensive
simulation studies show that this procedure does not affect too much the quality of the obtained
estimator of B0 (see paragraph 5.3).

We are now in position to compute the estimator B̂0,n(αn) i.e. to find the matrix B ∈ B mini-
mizing the quantity T̂n(B). To solve this optimization problem, we choose to use the coordinate
search method (see for instance [21]). Starting with a matrix B0, this method tries to find a new
matrix B1 such that the value of the objective function at B1 is smaller than the one at B0. The
new matrix B1 is obtained by adding or subtracting the search distance δ to a single coordinate in
each row of B0. If such a matrix can be found then B0 is replaced by B1, the search distance δ is
increased and the previous procedure is repeated. If not, the previous procedure is repeated with
B0 and a smaller value of δ. More specifically, the coordinate search method used in this paper is
described below:

• Initialization: Take B(0) ∈ B, δ(0) > 0 and δtol > 0.
• Step k: let (e1, . . . , ep) be the canonical basis of Rp and, for i = 1, . . . , 2p, let ẽi := (−1)iedi/2e.
For (i1, . . . , iq) ∈ {1, . . . , 2p}q, compute the matrix B̃(i1,...,iq) ∈ B whose columns are the first q
linearly independent columns of the projection matrix on the set spanned by the columns of the
matrix B(k−1) + δ(k−1)Ẽ with Ẽ = [ẽi1 , . . . , ẽiq ]. Denoting by B(k) the set of the (2p)q matrices
B̃(i1,...,iq), (i1, . . . , iq) ∈ {1, . . . , 2p}q, there are two possibilities
− if T̂n(B(k−1)) ≤ min{T̂n(B), B ∈ B(k)}, then

B(k) = B(k−1) and δ(k) = δ(k−1)/2,

− if T̂n(B(k−1)) > min{T̂n(B), B ∈ B(k)}, then

B(k) = arg min
B∈B(k)

T̂n(B) and δ(k) = 2δ(k−1).

• If δ(k) > δtol, go to step k + 1, else, the algorithm is stopped.

The procedure of estimation presented here is used in paragraph 5.3 to estimate the TDR subspace.
The next paragraph is dedicated to the presentation of the models considered in the simulation
study.
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5.2 Model setting

In what follows, the p components of the random vector X are independent and distributed as a
Gaussian random variable with mean 1/2 and variance σ2. In this simulation study, the dimension
of the explanatory variable X is fixed to p = 4. The response Y is generated according to the
following models: for positive functions g0(·), g1(·), g2(·), for B0 ∈ R4 and B1 ∈ R4, the conditional
quantile of Y given X = x is given for α ∈ [0, 1] and x ∈ Rp by:

Model 1 − Q1(α|X = x) := [ln(1/(1− α))]
−g0(B>0 x) [

1 + g1(B>1 x) exp(−α−1)
]−1

.

Model 2 − Q2(α|X = x) := g2(B>0 x)− [ln(1/(1− α))]
g0(B>0 x) [

1 + g1(B>1 x) exp(−α−1)
]
.

Model 3 − Q3(α|X = x) := [ln(1/α)]
g0(B>0 x) [

1 + g1(B>1 x) exp(−α−1)
]−1

.

In the simulation process considered here, we take g0(·) := g̃(z; 1/3, 8/3) and g2(·) := g̃(z; 1, 10)

where for a < b and z ∈ R,

g̃(z; a, b) = aI(−∞,0)(z) +

(
a+ b

exp(2z)− 1

exp(6/
√

5)− 1

)
I[0,3/√5)(z) + (a+ b)I[3/√5,∞)(z).

Note that for all z ∈ R, g̃(z; a, b) ∈ [a, a + b]. The function g1(·) is defined for z ∈ R by
g1(z) = I(−∞,0)(z) + exp(5z)I[0,2)(z) + exp(10)I[2,∞)(z). Finally, we take B>0 := (2, 1, 0, 0)/

√
5

and B>1 := (0, 0, 1, 1). It can be shown (see appendix, Lemma 4) that for all these models, S(B0)

is a TDR subspace (and thus q = 1) and that condition (9) is satisfied. Obviously, in practice,
the dimension q of the minimum TDR subspace is unknown and need to be estimated. In a non
extreme-value context, some approaches for the estimation of q can be found in the literature (see
for instance [6] where a general permutation test is proposed and [5] for the use of information
criterion). The adaptation of these methods to an extreme-value context is beyond the scope of the
present paper. In what follows, we thus apply our methodology for the estimation of a TDR sub-
space of dimension 1.
As shown in the Appendix, denoting by S1(y|x) (resp. S2(y|x), S3(y|x)) the conditional survival
function P(Y > y|X = x) when (X,Y ) is distributed from Model 1 (resp. Model 2, Model 3), one
has for all x ∈ Rp and δ > 0 that

S1(δ−1|x) = δ1/g0(B>0 x)L1(δ−1|x), S2(g2(B>0 x)− δ|x) = S1(δ−1|x)

and S3(δ−1|x) = exp
[
−δ−1/g0(B>0 x)L3(δ−1|x)

]
,

where L1(y|x) and L3(y|x) converge to 1 as y →∞. Hence, from [20, Theorem 1.2.1], S1(·|x) is in
the maximum domain of attraction of Fréchet with positive extreme value index γ(x) = g0(B>0 x)

and, as a consequence, condition (5) is satisfied by Q1(·|X = x). Using again [20, Theorem 1.2.1],
S2(·|x) is in the maximum domain of attraction of Weibull with a negative extreme value index
γ(x) = −g0(B>0 x) and a right endpoint Q2(0|X = x) = g2(B>0 x). Finally, for all x ∈ Rp, S3(·|x) is
a Weibull-tail distribution (see for instance [17] for a definition). As a consequence, S3(·|x) belongs
to the Gumbel maximum domain of attraction and thus Q3(·|X = x) satisfies (5) with an extreme
value index equal to 0.

5.3 TDR subspace and conditional quantile estimation

In this paragraph, we are both interested in the performance of the TDR subspace estimator defined
in (17) and of the following large quantile estimators of Q(βn|X = x): (a) estimator Q̌n(βn|B0, x)
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in the (unrealistic) situation where the TDR direction B0 is known, (b) the more useful plug-in
estimator Q̌n(βn|B̂0,n(αn), x) and (c) the classical estimator Q̌n(βn|x) := Q̌n(βn|Ip, x) when the
existence of a TDR subspace is not taken into account.
To this aim, for each model introduced in paragraph 5.2, N = 100 samples of size n = 4000 are
generated and the conditional quantile order is taken as βn = 2/n.

To compute the TDR subspace estimator, we take αn = n−1/3 and a subsample of size n0 =

100. To appreciate the influence of the size n0, the estimation of B0 has been considered under
model 1 with σ = 1/5 for n0 ∈ {2, 4, . . . , 20, 25, 50, 75, 100, 150, 200, 250, 300}. In figure 3, the
empirical quantiles of order 0.05, 0.5 and 0.95 of ‖B̂0,n(αn) − B0‖F (where for all matrix B,
‖B‖F := [tr(B>B)]1/2 is the Frobenius norm) are represented as a function of n0. It appears
that for n0 > 75, the quality of the estimation does not clearly depends on n0. Recall also that
an initialization is required in the coordinate search method used to compute the TDR subspace
estimator. In this simulation study, the initial vector B(0) is randomly chosen. More specifically,
B(0) = (u1, . . . , up)/

√
u2

1 + . . .+ u2
p where u1, . . . , up are realizations of p independent random

variables uniformly distributed on [−1, 1]. The estimator B̂0,n(αn) of B0 is compared with the one
obtained by the SIR method. Recall that the SIR estimator, denoted B̂SIR

0,n , corresponds to the q
eigen vectors associated to the q largest eigen values of the matrix Σ̂−1

n Γ̂n with

Σ̂n :=
1

n

n∑
i=1

(
Xi −

1

n

n∑
i=1

Xi

)(
Xi −

1

n

n∑
i=1

Xi

)>

and Γ̂n :=

J∑
j=1

nj
n

 1

nj

∑
i:Yi∈Rj

Xi −
1

n

n∑
i=1

Xi

 1

nj

∑
i:Yi∈Rj

Xi −
1

n

n∑
i=1

Xi

> ,
where {R1, . . . , RJ} are non-overlapping slices that cover the range of Y and nj is the number of
Yi’s lying in Rj . To compute the SIR estimator, the R package dr (see [31]) was used with the
default method to construct the slices. The SIR method focus only on the central part of the
conditional distribution of Y given X and is thus not adapted for the estimation of the TDR sub-
space. The accuracy of the TDR direction estimators is measured by the Frobenius norm of their
difference with the true direction B0.

Concerning the conditional quantile estimators, we use the following hyperparameters: αn = n−1/3

and Hn = n−2/9. To compute the conditional tail index estimator (7) and the auxiliary function
estimator (8) we take ν = 0.02 and ϕ(·) = ln(1/·) (this choice was suggested in [14]). In order to
measure the quality of the estimations, we compute for each replication the error given by

EQ(B̌) :=
1

card(L)

∑
x∈L

(
ln

Q̌(βn|B̌, x)

Q(βn|X = x)

)2

,

where L is the set {(x1, . . . , x4); xi ∈ {1/4, 1/2, 3/4} for i = 1, . . . , 4} with card(L) = 34 = 81 and
B̌ ∈ {B̂0,n, B̂

SIR
0,n , Ip}. The results are gathered in Table 1. As expected, the extreme conditional

quantile estimator Q̌n(βn|B0, ·) is the best among the three statistics considered. Unfortunately,
this estimator can only be used in the ideal situation where B0 is known. Nevertheless, the
plug-in estimator Q̌n(βn|B̂0,n, ·) provides similar results and outperforms in each case the classical
estimator Q̌n(βn|Ip, ·) (for which the existence of a TDR subspace is not assumed). Note also that
the TDR estimator B̂0,n provides good estimation of the true direction B0 while, as expected, the
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SIR estimator B̂SIR
0,n is not able to find the true direction. It appears in fact that B̂SIR

0,n is often close
to the “central” direction B1 = (0, 0, 1, 1)>. For instance, when σ = 1/3, ‖B̂SIR

0,n − B1‖F = 0.016

for Model 1, ‖B̂SIR
0,n − B1‖F = 0.066 for Model 2 and ‖B̂SIR

0,n − B1‖F = 0.110 for Model 3. This
confirms the fact that classical dimension reduction methods are not adapted to the study of the
tail of the conditional distribution. Finally, note that the value of the standard deviation σ has an
influence on the estimation of B0. Except for Model 2, the performance of B̂0,n deteriorates as σ
decreases. One possible explanation is that when σ is small, the variance of γ̃(B>0 X) is also small
is thus the true direction is difficult to capture.

6 Data analysis

According to the world health organization, atmospheric pollutants may cause serious effects on
public health and on environment. One of the most dangerous pollutant is ozone. It is generated
in the air when others pollutants (called primary pollutants) react with atmospheric oxygen and
weather conditions (temperature, humidity, etc . . . ).
Our goal is to study the effect of some primary pollutants (namely particular matter with diam-
eter smaller than 10 microns (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2) and carbon
monoxide (CO)) on the daily maximum surface concentration of ozone in parts per billion (Y ).
We considered daily data collected in Chicago from 1987 to 2000. These data are available at
http://www.ihapss.jhsph.edu/data/data.htm and were considered by many authors for illus-
trate dimension reduction methods (see for instance [33] and [28]). The number of observations
is n = 4841. To compute the TDR estimator proposed in this paper we take hn = 0.15, αn = 0.05

and n0 = 100. Note that the coordinate search method was initialized with different vectors B(0),
all these initialization leading to very similar values of B̂0,n(αn).

First, the components of the covariate vector X are the daily maximum values of the pri-
mary pollutants PM10, SO2, NO2 and CO. For numerical convenience, the predictors values
are centered and normalized. We thus have p = 4 and, as in [33], we assume the existence of
a TDR subspace of dimension q = 1. The obtained estimator of the TDR direction is given
by: B̂0,n(αn) = (0.187,−0.045, 0.965,−0.179)

>. The direction obtained with the SIR method is
B̂SIR

0,n (αn) = (0.327,−0.085, 0.910,−0.238)
>. It appears that the SIR estimator is closed from our

TDR estimator (‖B̂0,n(αn) − B̂SIR
0,n (αn)‖F = 0.027). Hence, the influence of the daily maximum

values of the 4 primary pollutants on the ozone concentration seems to be the same in the central
part of the distribution and in the tail distribution of Y . As mentioned in [28], the level of ozone
concentration is mainly determined by NO2.

Next, we look at the influence of the daily median values of the primary pollutants on ozone
concentration. In this case, our TDR estimator is B̂0,n(αn) = (0.957,−0.051, 0.130,−0.254)

>,
while the SIR estimator is given by B̂SIR

0,n (αn) = (0.747,−0.254, 0.441,−0.429)
>. In this situation,

the directions estimated by SIR and by our proposed method are quite different ((‖B̂0,n(αn) −
B̂SIR

0,n (αn)‖F = 0.212). A possible interpretation is that large values of ozone concentration are
essentially associated with large values of daily median values of PM10 while an increase in mean
values of Y is associated with increasing values of PM10 and NO2. In Figure 4, the conditional
quantile estimators Q̌(1/n|B̂0,n(αn), xτ ) and Q̌(1/n|B̂SIR

0,n (αn), xτ ) are represented as a function
of τ ∈ [0.4, 0.65]. Here xτ := (xPM10

τ , xSO2
τ , xNO2

τ , xCO
τ )> where xPM10

τ is the empirical quantile of
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order 1 − τ of the daily median values of PM10 and so on . . . It appears that for τ around 0.5,
the estimators Q̌(1/n|B̂0,n(αn), xτ ) and Q̌(1/n|B̂SIR

0,n (αn), xτ ) are quite close but differ strongly for
small values of τ (corresponding to large values of the covariate PM10).

7 Proofs

7.1 Preliminary results

The first Lemma is a probability result that will be helpful in the proof Theorem 1.

Lemma 1. Let (Ω,F ,P) be a probability space. Let U be a positive random variable and V be a
Rq-valued random vector (U and V are both defined on (Ω,F ,P)). Denoting by σ(U) (resp. σ(V ))
the σ-algebra generated by U (resp. V ), it is assumed that σ(V ) ⊂ σ(U). If there exists θ ≥ 1 such
that for all F ∈ σ(U),∫

F

E(U |V )dP ≤ θ
∫
F

UdP
(

or

∫
F

E(U |V )dP ≥ θ−1

∫
F

UdP
)
, (18)

then E(U |V ) ≤ θU a.s. (or E(U |V ) ≥ θ−1U a.s.).

Proof − Assume that for all F ∈ σ(U)∫
F

E(U |V )dP ≤ θ
∫
F

UdP,

(the proof for the other case is similar). First, we suppose that U is a positive simple function. More
specifically, let {A1, . . . , Ak} be k disjoint elements of F with 0 < P(Ai) < 1 for all i ∈ {1, . . . , k}.
We assume that

U =

k∑
i=1

ciIAi + ck+1I(A1∪...∪Ak)C ,

where for all A ⊂ Ω, AC is the complement of A in Ω and ci > 0 for all i ∈ {1, . . . , k}. Since
σ(V ) ⊂ σ(U), one can assume without loss of generality that σ(V ) = σ({A1, . . . , A`}) with 1 ≤
` < k (the situation where ` = k, i.e. σ(U) = σ(V ) is trivial). It is then easy to check that

E(U |V ) =
∑̀
i=1

ciIAi + ξI(A1∪...∪A`)C ,

where

ξ :=

k∑
i=`+1

ci
P(Ai)

P[(A1 ∪ . . . ∪A`)C]
+ ck+1

P[(A1 ∪ . . . ∪Ak)C]

P[(A1 ∪ . . . ∪A`)C]
.

We thus have to show that for every i ∈ {`+ 1, . . . , k}, ξ ≤ θci and that, if P[(A1∪ . . .∪Ak)C] 6= 0,
ξ ≤ θck+1. From (18), for all F ∈ σ(U) = σ({A1, . . . , Ak}),

∑̀
i=1

ciP(Ai ∩ F ) + ξP[(A1 ∪ . . . ∪A`)C ∩ F ] ≤ θ
k∑
i=1

ciP(Ai ∩ F ) + ck+1P[(A1 ∪ . . . ∪Ak)C ∩ F ].

For j ∈ {`+ 1, . . . , k}, taking F = Aj in the previous inequality leads to ξ ≤ θcj since P(Aj) > 0.
Furthermore, taking F = (A1 ∪ . . .∪Ak)C entails that ξP[(A1 ∪ . . .∪Ak)C] ≤ θP[(A1 ∪ . . .∪Ak)C].
The result is thus proved for all positive simple functions. Since any positive measurable function
is the pointwise limit of an increasing sequence of positive simple function, we conclude the proof
by using the Lebesgue’s monotone convergence theorem.
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The next lemma is a technical result used in the proof of Theorem 4.

Lemma 2. Assume that there exists a full rank p×q matrix B0 such that S(B0) is a TDR subspace
for Y given X and that condition (5) holds. For x ∈ supp(X), let (yn(u|x)) be a sequence such
that [yn(u|x)−Q(uαn|X = x)]/a(α−1

n |X = x)→ 0 locally uniformly on u ∈ (0,∞). The following
statements hold almost everywhere for x ∈ supp(X):
(i) Let ν ∈ (0, 1). For all u ∈ [ν, 1], yn(u|x) = Q(β|B>0 X = B>0 x) with β ∈ [ξναn, ξ

−1αn] for
ξ < 1 as near as you like to 1.
(ii) Let u ∈ (0, 1) and ξ < 1 as near as we like to 1. If Q(0|X = x) < ∞ then Q(0|X =

x)− yn(u|x) ≤ ξ−1δαn(X = x) and if Q(0|X = x) = +∞ then [yn(u|x)]−1 ≤ ξ−1δαn(X = x).

Proof − We start by proving the first statement. From (5), one has for x ∈ supp(X) that
[yn(u|x) −Q(αn|X = x)]/a(α−1

n |X = x) − Lγ(x)(1/u) → 0 locally uniformly on u ∈ (0,∞). Now,
since S(B0) is a TDR subspace, [20, Lemma 1.2.12] entails that [Q(αn|X = x) − Q(αn|B>0 X =

B>0 x)]/a(α−1
n |X = x) converges to 0 almost everywhere for x ∈ supp(X). As a first conclusion,

yn(u|x) = Q(αn|B>0 X = B>0 x) + a(α−1
n |x)

[
Lγ(x)(1/u) + o(1)

]
,

locally uniformly on u ∈ (0,∞) and almost everywhere for x ∈ supp(X). From Lemma 1, the
distribution function of Y given B>0 X belongs to a maximum domain of attraction with an auxiliary
function equivalent to a(·|x). Thus, according to [20, Theorem 1.1.6], one can find ξ < 1 as close
as we like to 1 such that for all u ∈ [ν, 1], P(Y > yn(u|x)|B>0 X = B>0 x) ≥ νξαn. Hence,

yn(u|x) = Q
(
P(Y > yn(u|x)|B>0 X = B>0 x))|B>0 X = B>0 x

)
≤ Q(νξαn|B>0 X = B>0 x). (19)

Mimicking the proof of (19), we show that yn(u|x) ≥ Q(ξ−1αn|B>0 X = B>0 x) and thus conclude
the proof of the first statement.

Let us now focus on the second statement. Assume first that Q(0|X = x) < ∞ (this implies
that γ(x) ≤ 0). Using the first statement with B0 = Ip, one has for all u ≤ 1 and for ξ̃ as near
as we like to 1 that Q(0|X = x) − yn(u|x) ≤ Q(0|X = x) − Q(ξ̃−1αn|X = x). Now from [20,
Lemma 1.2.9], one has that δ−1

αn (X = x)a(α−1
n |X = x) → −γ(x) as n goes to infinity. Hence,

from (5), one can find ξ < 1 as near as we want to 1 such that

Q(0|X = x)− yn(u|x)

δαn(X = x)
≤ 1 +

Q(αn|X = x)−Q(ξ̃−1αn|X = x)

δαn(X = x)
≤ ξ−1.

Now, suppose that Q(0|X = x) = +∞ (and thus that γ(x) ≥ 0). Applying again the first statement
with B0 = Ip, one has for all u ≤ 1 that yn(u|x) ≥ Q(ξ̃−1αn|X = x) where ξ̃ < 1 is as close as we
want to 1. Since δαn(X = x)a(α−1

n |X = x) = a(α−1
n |X = x)/Q(αn|X = x) → γ(x) as n goes to

infinity, condition (5) entails that δαn(X = x)Q(ξ̃−1αn|X = x) = 1 + δαn(X = x)[Q(ξ̃−1αn|X =

x)−Q(αn|X = x)]→ ξ̃γ(x). Hence, one can find ξ < 1 as close as we want to 1 and such that for
n large enough, yn(u|x) ≥ ξδ−1

αn (X = x) and the proof is complete.

7.2 Proofs of main results

Proof of Theorem 1 − First, we prove that (i) implies (ii). Let ε > 0. There exists κ > 0 such
that for all δ ∈ (0, κ],

∆δ(X,Z) :=

∣∣∣∣P(Y > Yδ(Z)|X,Z)

P(Y > Yδ(Z)|Z)
− 1

∣∣∣∣ ≤ ε.
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Remarking that for all non-zero bounded and positive function h(·),

E
(
I{Y >Yδ(Z)}h(X)|Z

)
= E

[
h(X)E(I{Y >Yδ(Z)}|X,Z)

∣∣Z] .
it is easy to check that, almost surely,∣∣∣∣ E(I{Y >Yδ(Z)}h(X)|Z)

P(Y > Yδ(Z)|Z)E(h(X)|Z)
− 1

∣∣∣∣ ≤ E
[∣∣∣∣P(Y > Yδ(Z)|X,Z)

P(Y > Yδ(Z)|Z)
− 1

∣∣∣∣ h(X)

E(h(X)|Z)
|Z
]
≤ ε. (20)

Let us now show that (ii) implies (i). We thus assume that for all ε > 0, there exist κ > 0 such
that for all δ ∈ (0, κ], inequality (20) holds. Let A ∈ B(Rp) and B ∈ B(Rq), we have∫

{X∈A}∩{Z∈B}
P(Y > Yδ(Z)|Z)dP = E

{
E
[
I{X∈A}E(I{Y >Yδ(Z)}I{Z∈B}|Z)|Z

]}
=

∫
{Z∈B}

P(Y > Yδ(Z)|Z)P(X ∈ A|Z)dP

=

∫
{Z∈B}

P[{Y > Yδ(Z)} ∩ {X ∈ A}|Z]
P(X ∈ A|Z)P(X ∈ A|Z)

P[{Y > Yδ(Z)} ∩ {X ∈ A}|Z]
dP.

Let ε ∈ (0, 1). Applying inequality (20) with h(X) = IA(X) leads to∫
{X∈A}∩{Z∈B}

P(Y > Yδ(Z)|Z)dP ≤ 1

1− ε

∫
{Z∈B}

P[{Y > Yδ(Z)} ∩ {X ∈ A}|Z]dP

and ∫
{X∈A}∩{Z∈B}

P(Y > Yδ(Z)|Z)dP ≥ 1

1 + ε

∫
{Z∈B}

P[{Y > Yδ(Z)} ∩ {X ∈ A}|Z]dP.

Since ∫
{Z∈B}

P[{Y > Yδ(Z)} ∩ {X ∈ A}|Z]dP =

∫
{X∈A}∩{Z∈B}

P(Y > Yδ(Z)|X,Z)dP,

and by the monotone class theorem we thus have for all F ∈ σ(X,Z) that

1

1 + ε

∫
F

P(Y > Yδ(Z)|X,Z)dP ≤
∫
F

P(Y > Yδ(Z)|Z)dP ≤ 1

1− ε

∫
F

P(Y > Yδ(Z)|X,Z)dP.

We conclude the proof by applying Lemma 1 with U := P(Y > Yδ(Z)|X,Z) and V = Z.
Let us now prove that (i) is equivalent to (iii). Obviously, if (i) holds then (iii) also holds with
sδ(Z) = P(Y > Yδ(Z)|Z) and ηδ(X,Z) = P(Y > Yδ(Z)|X,Z)/P(Y > Yδ(Z)|Z)− 1.
To show that (iii) implies (i), first remark that the “tower property” of conditional expectations
entails that P(Y > Yδ(Z)|Z) = E [P(Y > Yδ(Z)|X,Z)|Z] = sδ(Z)[1 + E(ηδ(X,Z)|Z)] a.s. Hence

P(Y > Yδ(Z)|X,Z)

P(Y > Yδ(Z)|Z)
=

1 + ηδ(X,Z)

1 + E(ηδ(X,Z)|Z)
a.s. (21)

By assumption, for all ε ∈ (0, 1), there exists κ > 0 such that for all δ ∈ (0, κ],

P
[∣∣∣∣P(Y > Yδ(Z)|X,Z)

P(Y > Yδ(Z)|Z)
− 1

∣∣∣∣ ≤ 2ε

1− ε

]
= 1, (22)

which concludes the proof.
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Proof of Proposition 1 − First recall that since S(B0) is a TDR subspace, there exists a Borel
set A ∈ B(Rp) with P(X ∈ A) = 1 such that for all x ∈ A, Q(0|X = x) = Q(0|B>0 X = B>0 x).
Hence, for all x ∈ A, [20, Lemma 1.2.12] and the definition of the TDR subspace entail that the
distribution function P(Y ≤ ·|B>0 X = B>0 x) belongs to the maximum domain of attraction of an
extreme value distribution with extreme value index γ(x) or equivalently that for all u > 0 and
x ∈ A

lim
α→0

Q(uα|B>0 X = B>0 x)−Q(α|B>0 X = B>0 x)

a(α−1|x)
= Lγ(x)(1/u). (23)

As a consequence, from [20, Theorem 1.2.6],for all x ∈ A there exist positive functions c(·|B>0 x)

and d(·|B>0 x) (depending on x only through B>0 x) such that for all y ∈ (y0, Q(0|B>0 X = B>0 x)),

P(Y > y|B>0 X = B>0 x) = c(y|B>0 x) exp

{
−
∫ y

y0

ds

d(s|B>0 x)

}
,

with c(y|B>0 x) → c0 > 0 as y → Q(0|B>0 X = B>0 x). Now, let us introduce the differentiable
function

S0(y|B>0 x) := min

(
1, c0 exp

{
−
∫ y

y0

ds

d(s|B>0 x)

})
.

According to Remarks 1.2.7 and 1.2.8 in [20], the survival function S0(·|B>0 x) belongs to the
maximum domain of attraction of an extreme value distribution with extreme value index γ(x).
More precisely, taking ã(α−1|B>0 x) := d0(S←0 (α|B>0 x)) where S←0 (·|B>0 x)) is the generalized in-
verse of S←0 (·|B>0 x) (recall that for any non-increasing Φ(·), its generalized inverse is given by
Φ←(·) = inf{y; Φ(y) ≤ ·}) and where d0(·) := −S0(·|B>0 x)/S′0(·|B>0 x), one has for all u > 0

and x ∈ A
lim
α→0

S←0 (uα|B>0 x)− S←0 (α|B>0 x)

ã(α−1|B>0 x)
= Lγ(x)(1/u).

Since the left hand side in the previous limit only depends on x through B>0 x, same holds for the
right hand side. Hence there exists a real-valued function γ̃(·) such that γ(x) = γ̃(B>0 x) for all
x ∈ A. Finally, since P(Y > y|B>0 X = B>0 x)/S0(y|B>0 x) → 1 as y → Q(0|B>0 X = B>0 x), using
again [20, Lemma 1.2.12] entails that for all u > 0 and x ∈ A

lim
α→0

Q(uα|B>0 X = B>0 x)−Q(α|B>0 X = B>0 x)

ã(α−1|B>0 x)
= Lγ̃(B>0 x)(1/u). (24)

We conclude the proof by remarking that (23) and (24) lead to ã(α−1|B>0 x)/a(α−1|x) → 1 as α
goes to 0.

To prove Theorem 2, the following intermediate result is required. It deals with the asymptotic
properties of the conditional survival function estimator given in (3).

Proposition 4. Assume that there exists a full rank matrix B0 such that S(B0) is a TDR subspace
and suppose conditions (9) and (10) hold. Let (αn) and (Hn) be two sequences such that αn → 0,
n|Hn|αn → ∞ and τ−1

n ‖Hn‖∞ → 0 with τn := (n|Hn|αn)−1/2[ln(n|Hn|αn)]1/2. If there exists
ξ ∈ (0, 1) such that for all x ∈ supp(X),

max

{
sup

(t,β)∈An

∣∣∣∣P(Y > Q(β|B>0 X = B>0 x)|B>0 X = t)

β
− 1

∣∣∣∣ ; η
(
ξδ−1
αn (X = x)

)}
= O(τn), (25)

where An := D(B>0 x,Hn)× [ξναn, ξ
−1αn], and if τ−1

n ERV(αn, u|X = x)→ 0 locally uniformly on
u ∈ (0,∞) then, for all ν ∈ (0, 1), there exists a Borel set A ∈ B(Rp) with P(X ∈ A) = 1 such
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that for all x ∈ A and for all sequences (yn(u|x)) such that [yn(u|x)−Q(uαn|X = x)]/a(α−1
n |X =

x)→ 0 locally uniformly on u ∈ (0,∞).

sup
u∈[ν,1]

∣∣∣∣∣ Ŝn (yn(u|x)|B0, x)

P (Y > yn(u|x)|X = x)
− 1

∣∣∣∣∣ = OP(τn).

Before proving this result, remark that from [14, Lemma 5], Proposition 4 entails that

Q(αn|X = x)

a(α−1
n |X = x)

sup
u∈[ν,1]

∣∣∣∣∣ Q̂n(uαn|B0, x)

Q(uαn|X = x)
− 1

∣∣∣∣∣ = OP(τn), . (26)

Thus Q̂n(·|B0, x) is a consistent estimator of Q(·|X = x) but under a restrictive condition on the
order αn (namely, n|Hn|αn →∞).

Proof of Proposition 4 − First remark that Ŝn(yn(u|x)|B0, x) = Φ̂n(u|x)/[n|Hn|f̂n,B>0 X(B>0 x)],
where

f̂n,B>0 X(B>0 x) :=
1

n|Hn|

n∑
i=1

K
(
H−1
n B>0 (x−Xi)

)
and Φ̂n(u|x) :=

n∑
i=1

K
(
H−1
n B>0 (x−Xi)

)
I{Yi>yn(u|x)}.

Note that f̂n,B>0 X(·) is the classical kernel estimator of the probability distribution function
fB>0 X(·). Under (10) and since n|Hn| → ∞, it can be shown (see for instance Parzen [27]) that

f̂n,B>0 X(B>0 x)

fB>0 X(B>0 x)
− 1 = OP(‖Hn‖∞) +OP

(
(n|Hn|)−1/2

)
= oP(τn). (27)

Let us now focus on the statistics Φ̂n(u|x). According to [14, Lemma 6], letting µn(u|x) :=

E(Φ̂n(u|x)) and v2
n,x := ln(µn(1|x))/µn(1|x), if the following conditions are satisfied:

(C.1) There exists a positive constant CX such that K
(
H−1
n B>0 (x−Xi)

)
I{Yi>yn(u|x)} ≤ CX for

n large enough and all u ∈ [ν, 1],

(C.2) µn(ν|x)→∞ as n→∞ and there exists a positive constant Cµ such that for n large enough
µn(ν|x)/µn(1|x) ≥ Cµ,

(C.3)

sup

{∣∣∣∣ µn(u|x)

µn(u′|x)
− 1

∣∣∣∣ , u ∈ [ν, 1] with |u− u′| ≤ (µn(1|x))
−1/2

}
= O(vn,x),

then

sup
u∈[ν,1]

∣∣∣∣∣ Φ̂n(u|x)

µn(u|x)
− 1

∣∣∣∣∣ = OP(vn,x). (28)

Since K(·) is bounded, it is clear that (C.1) holds with CX = ‖K‖∞. To check (C.2) and (C.3),
the first step is the computation of µn(u|x). Since X is absolutely continuous with respect to the
Lebesgue measure and since B0 is a full rank matrix, the random vector B>0 X is also absolutely
continuous with support supp(B>0 X) = {B>0 x, x ∈ supp(X)}. Hence,

µn(u|x) = n

∫
supp(B>0 X)

K
(
H−1
n (B>0 x− t)

)
P(Y > yn(u|x)|B>0 X = t)fB>0 X(t)dt.
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Letting s = H−1
n (B>0 x− t) leads to

µn(u|x) = n|Hn|
∫
Uq
K(s)P

(
Y > yn(u|x)|B>0 X = B>0 x−Hns

)
fB>0 X(B>0 x−Hns)ds,

since, for n large enough, Uq ⊂ {H−1
n (B>0 x− t), t ∈ supp(B>0 X)} where Uq is the unit ball of Rq.

To sum up, since fB>0 X(B>0 x) > 0,

µn(u|x)

n|Hn|fB>0 X(B>0 x)P
(
Y > yn(u|x)|B>0 X = B>0 x

)
=

∫
Uq
K(s)

P
(
Y > yn(u|x)|B>0 X = B>0 x−Hns

)
P
(
Y > yn(u|x)|B>0 X = B>0 x

) fB>0 X(B>0 x−Hns)

fB>0 X(B>0 x)
ds.

Remarking that B>0 x−Hns = B>0 [x−B0(B>0 B0)−1Hns] ∈ supp(B>0 X) since supp(X) is an open
set, condition (10) entails that fB>0 X(B>0 x−Hns)/fB>0 X(B>0 x)−1 = O(‖Hn‖∞) = o(τn) uniformly
on s ∈ Uq and x ∈ supp(X). Moreover, using the first statement of Lemma 2, condition (12) entails
that

P
(
Y > yn(u|x)|B>0 X = B>0 x−Hns

)
P
(
Y > yn(u|x)|B>0 X = B>0 x

) = 1 +O(τn),

uniformly on s ∈ Uq. As a first consequence,

µn(u|x) ∼ n|Hn|fB>0 X(B>0 x)P
(
Y > yn(u|x)|B>0 X = B>0 x

)
.

First part of Lemma 2 entails that for all ν ∈ (0, 1), µn(ν|x) is proportional to n|Hn|αn →∞ and
that µn(ν|x)/µn(1|x) ≥ ν/2 for n large enough. Hence, condition (C.2) is satisfied. It also appears
in turn that vn,x is asymptotically proportional to τn for all x ∈ supp(X). It remains to show
(C.3). Let δn(u|x) := Q(0|X = x) − yn(u|x) if Q(0|X = x) < ∞ and δn(u|x) := [yn(u|x)]−1 if
Q(0|X = x) = +∞. From the second statement of Lemma 2, δn(u|x)→ 0 uniformly on u ∈ [ν, 1].
Hence, there exists Nx ∈ N such that for all n ≥ Nx, δn(u|x) ∈ (0, κ] where κ is such that (9)
holds. Using (21) with Z = B>0 X and under (9), one has for n ≥ Nx∣∣∣∣∣P

(
Y > yn(u|x)|B>0 X = B>0 x

)
P (Y > yn(u|x)|X = x)

− 1

∣∣∣∣∣ =

∣∣∣∣∣P
(
Y > Yδn(u|x)(B

>
0 x)|B>0 X = B>0 x

)
P
(
Y > Yδn(u|x)(B

>
0 x)|X = x

) − 1

∣∣∣∣∣
=

∣∣∣∣∣1 + E[ηδn(u|x)(X)|B>0 X = B>0 x]

1 + ηδn(u|x)(X = x)
− 1

∣∣∣∣∣
≤ 2η(δ−1

n (u|x))

1− η(δ−1
n (u|x))

.

Since η̄(·) is a decreasing function, the second statement of Lemma 2 leads to η(δ−1
n (u|x)) ≤

η
(
ξδ−1
αn (X = x)

)
= O(τn) for all x ∈ A. Hence, locally uniformly on u ∈ (0,∞),

µn(u|x)

n|Hn|fB>0 X(B>0 x)P (Y > yn(u|x)|X = x)
= 1 +O(τn). (29)

Since τ−1
n ERV(αn, u|X = x) → 0 locally uniformly, one can use [14, Lemma 3] entailing that for

u ∈ [ν, 1] and u′ ∈ [ν, 1] with |u− u′| ≤ (µn(1|x))−1/2 = o(τn)

α−1
n [P (Y > yn(u|x)|X = x)− P (Y > yn(u′|x)|X = x)]

=
1

L←γ(x)[Lγ(x)(1/u) + o(1)]
− 1

L←γ(x)[Lγ(x)(1/u′) + o(1)]
+ o(τn) (30)
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where the terms in little-o do not depend on u and u′ and L←γ(x)(v) := (1 + γ(x)v)1/γ(x). Since the
derivatives of 1/L←γ(x)(·) and Lγ(x)(1/·) are bounded, it easy to check that (30) is a big-o of τn and
thus, from (29), condition (C.3) is satisfied. Thus, the consistency result (28) is true. Using (29)
and since vn,x is asymptotically proportional to τn for all x ∈ supp(X), (28) can be rewritten as

sup
u∈[ν,1]

∣∣∣∣∣ Φ̂n(u|x)

n|Hn|fB>0 X(B>0 x)P (Y > yn(u|x)|X = x)
− 1

∣∣∣∣∣ = OP(τn). (31)

Collecting (27) and (31) concludes the proof.

Proof of Theorem 2 − First, the consistency of γ̂n(B0, x) is a direct consequence of [14, Theo-
rem 1]. Indeed, under the assumptions of Theorem 2, Proposition 4 holds and thus assumptions
of [14, Theorem 1] are satisfied leading to

γ̂n(B0, x)− γ(x) = OP(τn) and γ̂n,−(B0, x)− γ−(x) = OP(τn), (32)

almost everywhere for x ∈ supp(X). We are now interested in showing the consistency of the
estimator ân(B0, x). We have

ân(B0, x)

a(α−1
n |x)

=
Q̂n(αn|B0, x)

a(α−1
n |x)

T (1)
αn

(
Q̂n(·|B0, x)

)∫ 1

ν

ϕ(u)L0(1/u)du

/∫ 1

ν

ϕ(u)Lγ̂n,−(B0,x)(1/u)du .

Using the inequality |1− exp(x)| ≤ |x|+ x2 that holds for all x < ln(2), we have for all u ∈ (ν, 1),

∣∣Lγ̂n,−(B0,x)(1/u)− Lγ−(x)(1/u)
∣∣ ≤ ∫ 1/ν

1

vγ−(x)−1 |exp[(γ̂n,−(B0, x)− γ−(x)) ln(v)]− 1| dv

≤ |γ̂n,−(B0, x)− γ−(x)| L̃γ−(x)(1/ν)
(
1 + ln2(ν) |γ̂n,−(B0, x)− γ−(x)|

)
= OP(τn), (33)

from (32). It is then straightforward to check that∫ 1

ν

ϕ(u)Lγ̂n,−(B0,x)(1/u)du

/∫ 1

ν

ϕ(u)Lγn,−(x)(1/u)du = 1 +OP(τn).

As a consequence, since under the assumptions of Theorem 2, Q̂n(αn|B0, x)/Q(αn|X = x) =

1 +OP(τn), the estimator of a(·|x) is such that

ân(B0, x)

a(α−1
n |x)

=
Q(αn|X = x)

a(α−1
n |x)

T (1)
αn

(
Q̂n(·|B0, x)

) ∫ 1

ν
ϕ(u)L0(1/u)du∫ 1

ν
ϕ(u)Lγn,−(x)(1/u)du

(1 +OP(τn)).

A direct consequence of the result established in [14, eq. (30)] leads to

ân(B0, x) = a(α−1
n |x)(1 +OP(τn)). (34)

We are now in position to study the asymptotic behavior of Q̌n(·|B0, x). We start with

τ−1
n

a(α−1
n |X = x)L̃γ(x)(αn/βn)

∣∣Q̌n(βn|B0, x)−Q(βn|X = x)
∣∣

≤ 1

L̃γ(x)(αn/βn)

|Q̂n(αn|B0, x)−Q(αn|X = x)|
τna(α−1

n |x)

+ τ−1
n

ân(B0, x)

a(α−1
n |x)

|Lγ̂n(B0,x)(1/u)− Lγ(x)(1/u)|
L̃γ(x)(αn/βn)

+ τ−1
n

Lγ(x)(αn/βn)

L̃γ(x)(αn/βn)

∣∣∣∣ ân(B0, x)

a(α−1
n |x)

− 1

∣∣∣∣+
τ−1
n

L̃γ(x)(αn/βn)
ERV(αn, βn/αn|X = x)

=: T1,n(x) + T2,n(x) + T3,n(x) + T4,n(x).
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As a direct consequence of Proposition 4 (see (26)), T1,n(x) = OP(1/L̃γ(x)(αn/βn)) = OP(1) since,
as t→∞,

L̃s(t) ∼


ts ln(t)/s if s > 0,

ln2(t)/2 if s = 0,

1/s2 if s < 0.

Mimicking the proof of (33), since τn ln2(αn/βn) → 0 and using (34) lead to T2,n(x) = (1 +

OP(τn))OP[τ−1
n (γ̂n(B0, x)−γ(x))] = OP(1). Now, since for all s ∈ R, Ls(t)/L̃s(t) = O(1) as t→∞,

equation (34) entails that T3,n(x) = OP(1). Finally, since by assumption, τ−1
n ERV(αn, αn/βn|X =

x)/L̃γ(x)(αn/βn)→ 0, it is clear that T4,n(x) = OP(1) and the proof is complete.

Proof of Proposition 3 − Let B0 ∈ B and B1 ∈ B two p× q matrices of rank q with B0 6= B1.
Assume that S(B0) and S(B1) are minimum TDR subspaces. Let us first introduce the linear space
E := S(B0)∩S(B1). We assume that E = S(C) where C is a p×r matrix with r ∈ {0, . . . , q}. Note
that if r = q then B0 = B1 and the result is proved. From now on, we assume that r < q. There
thus exist two p× (q−r) matrices D0 and D1 such that S(B0) = S(D0, C) and S(B1) = S(D1, C).
Since S(B0) and S(B1) are TDR subspaces, there exists a Borel set A of Rp with P(X ∈ A) = 1

and such that for all x ∈ A,

lim
α→0

Q(α|B>0 X = B>0 x)

Q(α|B>1 X = B>1 x)
= 1.

Now, for a given x∗ ∈ A, let E∗ be the linear space given by {x ∈ Rp|B>0 x = B>0 x
∗}. It is clear

that for all x ∈ E∗, C>x = C>x∗ and thus that

lim
α→0

Q(α|B>0 X = D>0 x
∗ + C>x∗)

Q(α|B>1 X = D>1 x+ C>x∗)
= 1,

for all x ∈ E∗. Since P(X ∈ {D>1 x; x ∈ E∗}) = 1, it appears that, almost surely, the conditional
quantile Q(α|B>1 X = D>1 x+ C>x∗) is constant in D>1 x. As a consequence, for all x ∈ A

lim
α→0

Q(α|C>X = C>x)

Q(α|X = x)
= 1,

which is in contradiction with the fact that S(B0) is a minimum TDR subspace (since C is a matrix
of rank r < q).

Proof of Theorem 3 − First remark that for all x ∈ supp(X),

α−1P[Y > Q(α|B>0 X = B>0 x)|X = x] =
P[Y > Yδα,x(B>0 X = B>0 x)|X = x]

P[Y > Yδα,x(B>0 X = B>0 x)|B>0 X = B>0 x]
,

where, in order to not overload the notations, δα,x stands for δα(B>0 X = B>0 x). By assumption,
there exists a Borel set A ∈ B(Rp) with P(X ∈ A) = 1 such that for all x ∈ A and κ > 0, there
exists α0 ∈ (0, 1) such that for all α ∈ (0, α0), δα,x < κ. Hence, since S(B0) is a TDR subspace,
for all ε > 0, there exists α0 ∈ (0, 1) such that for α ∈ (0, α0),

P
[∣∣α−1P[Y > Q(α|B>0 X)|X]− 1

∣∣ < ε
]

= 1. (35)

Mimicking the proof of the second statement of Theorem 1 and introducing for all B ∈ B and
j ∈ {1, . . . , J} the quantity

∆(j)(α,B) :=
P[{Y > Q(α|B>X)} ∩ {X ∈ Π

(j)
B (B>X)}|B>X]

αP[X ∈ Π
(j)
B (B>X)|B>X]

− 1,
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one has that almost surely,

∆(j)(α,B0) = E

[(
P[Y > Q(α|B>0 X)|X]

α
− 1

) I{X∈Π
(j)
B0

(B>0 X)}

P[X ∈ Π
(j)
B0

(B>0 X)|B>0 X]

∣∣∣∣∣B>0 X
]
. (36)

Collecting (35) and (36) show that for all ε ∈ (0, 1), there exists α0 ∈ (0, 1) such that for α ∈ (0, α0],

T (α,B0) =

J∑
j=1

{
E[∆(j)(α,B0)]

}2

≤ Jε2. (37)

As a first conclusion, we have proved that T (α,B0) → 0 as α → 0. Now, since under the as-
sumptions of Theorem 3, a minimum TDR subspace is unique (see Proposition 3), and since
|α−1P(Y > Q(α|B>X)|X) − 1| converges to a limit in [0,∞] uniformly on B ∈ B as α → 0, it is
easy to check starting from (36) that for all ε > 0 and η > 0, there exists αε,η ∈ (0, 1) such that
for all α ∈ (0, αε,η],

sup
B∈B, ‖B−B0‖≥ε

T (α,B) > η.

Assume that ‖B̃0(α)− B0‖ does not converges to 0 as α → 0. One can thus find ε > 0 such that
for all α0 ∈ (0, 1), there exists α ∈ (0, α0] such that ‖B̃0(α) − B0‖ > ε. Hence, for all η > 0 and
for all α0 ∈ (0, αε,η], there exists α ∈ (0, α0] such that T (α, B̃0(α)) > η. This point is obviously in
contradiction with the fact that T (α, B̃0(α)) ≤ T (α,B0)→ 0, as α→ 0.
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Figure 1: Representation of n = 500 realizations of the random vector X = (X1, X2)>. The
straight line is the set {x = (x1, x2)>, B>0 x = B>0 x0}. The black points are the observations used
to compute the estimators Q̌n(·|x0) (left) and Q̌(DR)

n (·|B0, x0) (right).

26



x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x
x

x

x

x

x
x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x1

x
2

o

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x=(3/5,1/5)

o

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

m̂(Bx)

Figure 2: Representation of n = 500 realizations of the random vectorX = (X1, X2)>. The straight
line is the set {s ∈ R2, B>s = B>x = 1} with B = (1, 2)>/

√
5. The set Π1(B>X = B>x) is the

hatched area, the rest is the set Π2(B>X = B>x).

0 50 100 150 200 250 300

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

n0

F
ro

b
e
n
iu

s
 n

o
rm

0 50 100 150 200 250 300

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

n0

F
ro

b
e
n
iu

s
 n

o
rm

0 50 100 150 200 250 300

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

n0

F
ro

b
e
n
iu

s
 n

o
rm

0 50 100 150 200 250 300

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

n0

F
ro

b
e
n
iu

s
 n

o
rm

Figure 3: Under model 1 with σ = 1/5, the empirical quantiles and the empirical mean of the
N = 100 obtained values of ‖B̂0,n(αn)−B0‖F are represented as a function of n0. The two dashed
lines are the empirical quantiles of order 0.05 and 0.95, the dotted line is the median and the full
line is the empirical mean.
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Figure 4: For the air pollution dataset, estimators Q̌(1/n|B̂0,n(αn), xτ ) (full line)
Q̌(1/n|B̂SIR

0,n (αn), xτ ) (dashed line) of the conditional quantile of order 1/n of Y given X = xτ

as a function of τ .

‖B̂0,n −B0‖F ‖B̂SIR
0,n −B0‖F EQ(B̂0,n) EQ(B0) EQ(Ip)

Model 1
(1) 0.031 (0.100) 1.759 (0.048) 0.966 (1.787) 0.571 (0.411) 6.966 (2.801)
(2) 0.029 (0.025) 1.751 (0.058) 0.841 (0.491) 0.672 (0.540) 4.353 (0.900)
(3) 0.061 (0.053) 1.734 (0.082) 1.977 (1.304) 1.631 (1.333) 5.253 (0.377)

Model 2
(1) 0.082 (0.318) 1.511 (0.130) 0.232 (0.151) 0.199 (0.004) 0.252 (0.020)
(2) 0.006 (0.014) 1.375 (0.148) 0.070 (0.016) 0.063 (0.004) 0.847 (0.058)
(3) 0.005 (0.004) 1.167 (0.208) 0.059 (0.005) 0.057 (0.005) 0.461 (0.043)

Model 3
(1) 0.026 (0.089) 1.351 (0.050) 0.123 (0.303) 0.058 (0.043) 1.638 (0.396)
(2) 0.028 (0.030) 1.376 (0.063) 0.072 (0.039) 0.051 (0.031) 0.647 (0.170)
(3) 0.057 (0.050) 1.395 (0.101) 0.109 (0.049) 0.084 (0.053) 0.428 (0.070)

Table 1: Estimation of the TDR direction and large conditional quantile of order βn = 2/n under
models 1 to 3 with (1): σ = 1/3, (2): σ = 1/5 and (3): σ = 1/8. The given values are the empirical
means over the N = 100 replications (the standard deviation is between brackets).

Appendix − Additional results

The aim of the next result is to rephrase condition (12) appearing in Theorem 2 in term of the
conditional distribution of Y given X.

Lemma 3. Assume that there exists a full rank matrix B0 such that S(B0) is a TDR subspace
(i.e. for all δ > 0, P(Y > Yδ(B>0 X)|X) = sδ(B

>
0 X)(1 + ηδ(X)) a.s. where sδ(B>0 X = ·) and

ηδ(X = ·) are measurable functions) and that condition (5) hold. For (x, t) ∈ supp(X) × Rq and
ζ ∈ (0, 1), let

δ̃ζ(t, x) :=

{
Q(0|X = B0(B>0 B0)−1t)−Q(ζ|X = x) if Q(0|X = x) <∞,
1/Q(ζ|X = x) if Q(0|X = x) =∞.
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If (αn) and (Hn) are two sequences converging to 0 with n|Hn|αn → ∞, if there exists ξ ∈ (0, 1)

such that

max

{
sup

(t,ζ)∈An

∣∣∣∣∣ sδ̃ζ(t,x)(B
>
0 X = t)

sδ̃ζ(B>0 x,x)(B
>
0 X = B>0 x)

− 1

∣∣∣∣∣ ; η(ξδ−1
αn (X = x))

}
= O(τn),

where An = D(B>0 x,Hn) × [ξναn, ξ
−1αn] and if for all ε > 0, there exists N ∈ N such that for

n ≥ N ,
inf

t∈D(B>0 x,Hn)
Q(0|X = B0(B>0 B0)−1t) =∞ if Q(0|X = x) =∞,

sup
t∈D(B>0 x,Hn)

∣∣Q(0|X = B0(B>0 B0)−1t)−Q(0|X = x)
∣∣ /a(α−1

n |x) < ε if Q(0|X = x) <∞,

(38)
then, there exists a Borel set A ∈ B(Rp) with P(X ∈ A) = 1 such that for all x ∈ A,

sup
(t,ζ)∈An

∣∣∣∣P(Y > Q(ζ|B>0 X = B>0 x)|B>0 X = t)

ζ
− 1

∣∣∣∣ = O(τn).

Proof − We start with the fact that for all δ > 0 and t ∈ supp(B>0 X),

P(Y > Yδ(t)|B>0 X = t) = sδ(B
>
0 X = t)

{
1 + E[ηδ(X)|B>0 X = t]

}
.

For ζ ∈ (0, 1), let

δ̌0,ζ(t, x) :=

{
Q(0|X = B0(B>0 B0)−1t)−Q(ζ|B>0 X = B>0 x) if Q(0|X = x) <∞,
1/Q(ζ|B>0 X = B>0 x) if Q(0|X = x) =∞.

Since S(B0) is a TDR subspace one has that Q(0|B0(B>0 B0)−1t) = Q(0|B>0 X = B>0 x) almost
surely and thus,

P
(
Y > Q(ζ|B>0 X = B>0 x)|B>0 X = t

)
ζ

=
sδ̌0,ζ(t,x)(B

>
0 X = t)

sδ̌0,ζ(B>0 x,x)(B
>
0 X = B>0 x)

×
1 + E[ηδ̌0,ζ(t,x)(X)|B>0 X = t]

1 + E[ηδ̌0,ζ(B>0 x,x)(X)|B>0 X = B>0 x]
. (39)

Let us focus on the first factor of (39). Under (5) and since S(B0) is a TDR subspace, using [20,
Lemma 1.2.12], it is easy to check that there exists a Borel set A ∈ B(Rp) with P(X ∈ A) = 1

such that for all x ∈ A and uniformly on ζ ∈ [ξναn, ξ
−1αn],

Q(ζ|B>0 X = B>0 x) = Q(ζ|X = x) + a(α−1
n |x)

(
Q(ζ|B>0 X = B>0 x)−Q(ζ|X = x)

a(α−1
n |x)

)
= Q(ζ|X = x) + o(a(α−1

n |x)).

Hence, mimicking the proof of the first statement of Lemma 2, we know that there exists ξ̃ ∈ (0, 1)

such that Q(ζ|B>0 X = B>0 x) = Q(ζ̃|X = x) where ζ̃ ∈ [ξ̃ζ, ξ̃−1ζ]. Hence δ̌0,ζ(t, x) = δ̃ζ̃(t, x) and,
by assumption, one can find ξ ∈ (0, 1) such that

sup
(t,ζ)∈An

∣∣∣∣∣ sδ̌0,ζ(t,x)(B
>
0 X = t)

sδ̌0,ζ(B>0 x,x)(B
>
0 X = B>0 x)

− 1

∣∣∣∣∣ = O(τn), (40)

for all x ∈ A.
Let us now consider the second factor of (39). We have shown before that δ̌0,ζ(t, x) = δ̃ζ̃(t, x).
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Hence, if Q(0|X = x) <∞, under (38), one has for all t ∈ D(B>0 x,Hn) that δ̌0,ζ(t, x) = Q(0|X =

x) − [Q(ζ̃|X = x) − o(an(α−1
n |x))] and if Q(0|X = x) = ∞, δ̌0,ζ(t, x) = 1/Q(ζ̃|X = x). Using

the second statement of Lemma 2, one can find ξ ∈ (0, 1) such that δ̌0,ζ(t, x) ≤ ξ−1δαn(X = x)

uniformly on t ∈ D(B>0 x,Hn). Applying condition (9) and since η(ξδ−1
αn (X = x)) = O(τn), leads to

1 + E[ηδ̌0,β(t,x)(X)|B>0 X = t]

1 + E[ηδ̌0,β(B>0 x,x)(X)|B>0 X = B>0 x]
= O(τn). (41)

Collecting (39), (40) and (41) concludes the proof.

The aim of the following lemma is to study the distributions introduced in paragraph 5.2.

Lemma 4. Using same notations as in paragraph 5.2, one has for all x ∈ Rp and δ > 0,
(i) S1(δ−1|x) = sδ,1(B>0 X = B>0 x)[1 + ηδ,1(X = x)] with sδ,1(B>0 X = B>0 x) = δ1/g0(B>0 x) and for
δ ∈ [0, 1], |ηδ,1(X = x)| ≤ η̄1(δ−1) where η̄1(·) is a decreasing function converging to 0 at infinity
and defined for y > 1 by η̄1(y) = 1− y−1/3[ln(1/(1− δ−1/3)]−1[1 + exp(10− y1/3]−3.
(ii) S2(g2(B>0 x)− δ|x) = S1(δ−1|x).
(iii) S3(δ−1|x) = exp[−δ−1/g0(B>0 x)L3(δ−1|x)] where L3(·|x) converges to 1 at infinity. Further-
more, S3(δ−1|x) = sδ,3(B>0 X = B>0 x)[1+ηδ,3(X = x)] with sδ,3(B>0 X = B>0 x) = exp[−δ−1/g0(B>0 x)]

and for δ ∈ [0, 1], |ηδ,3(X = x)| ≤ η̄3(δ−1) where η̄3(·) is a decreasing function converging to 0 at
infinity and defined for y > 1 by η̄3(y) = 1− exp{y3[1− (1 + exp(10− exp(y1/3))3]}.

Proof − (i) First, remark that for α ∈ [0, 1] and x ∈ Rp, Q1(α|X = x) = α−g0(B>0 x)L̃1(α|x),
where L̃1(α|x) = αg0(B>0 x)[ln(1/(1−α)]−g0(B>0 x)[1+g1(B>0 x) exp(−α−1)]−1. Since the distribution
function of Y given X = x is continuous, Q1(S1(δ−1|x)|X = x) = δ−1 for all δ > 0 and thus,

S1(δ−1|x) = δ1/g0(B>0 x)[L̃1(S1(δ−1|x)|x)]1/g0(B>0 x). (42)

It is quite easy to check that on [0, 1], L̃1(·|x) is a decreasing function with L̃1(α|x)→ 1 as α→ 0.
Hence, (42) entails that for δ ∈ [0, 1], S1(δ−1|x) ≤ δ1/g0(B>0 x) ≤ δ1/3 since g0(B>0 x) ∈ [1/3, 3]. As
a consequence, for δ ∈ [0, 1],

|ηδ,1(X = x)| = 1− [L̃1(S1(δ−1|x)|x)]1/g0(B>0 x) ≤ 1− [L̃1(δ1/3|x)]3 ≤ η̄1(δ−1),

since g0(B>0 x) ∈ [1/3, 3] and g1(B>0 x) ∈ [1, exp(10)].
(ii) This is a direct consequence of the equality Q2(α|X = x) = g2(B>0 x)− [Q1(α|X = x)]−1.
(iii) Since the distribution function of Y given X = x is continuous, Q3(S3(δ−1|x)|X = x) = δ−1

for all δ > 0 and thus, S3(δ−1|x) = exp[−δ−1/g0(B>0 x)L̃3(S3(δ−1|x)|x)] with L̃3(α|x) = [1 +

g1(B>1 x) exp(−α−1)]1/g0(B>0 x). Obviously, L3(·|x) := L̃3(S3(·|x)|x) converges to 1 at infinity. Fur-
thermore, S3(δ−1|x) = exp[−δ−1/g0(B>0 x)][1 + ηδ,3(X = x)] with

ηδ,3(X = x) = exp
{
δ−1/g0(B>0 x)

[
1− L̃3(S3(δ−1|x)|x)

]}
− 1.

It is easy to check that on [0, 1], L̃3(·|x) is an increasing function larger than 1. Thus, for all
δ ∈ [0, 1), S3(δ−1|x) ≤ exp(−δ−1/g0(B>0 x)) ≤ exp(−δ−1/3) and hence,

|ηδ,3(X = x)| = 1− exp
{
δ−1/g0(B>0 x)

[
1− L̃3(S3(δ−1|x)|x)

]}
≤ 1− exp

{
δ−1/g0(B>0 x)

[
1− L̃3(exp(−δ−1/3)|x)

]}
≤ η̄3(δ−1),

using the facts that g0(B>0 x) ∈ [1/3, 3] and g1(B>1 x) ∈ [1, exp(10)].
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