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ABSTRACT

We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit
Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope
(VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels
over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed
a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-
based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian
framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general
and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE
observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of
various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method
also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We
analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are
located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile.

Key words. methods: data analysis – methods: statistical

1. Introduction

A number of important questions in observational cosmology
require large statistical samples of galaxies with measured prop-
erties, such as those relating to dark energy or galaxy evolu-
tion. With the advent of optical and infrared large telescopes and
wide-field imagers, millions of images of high-quality data have
been produced in the past 10 years. The number will continue
to expand with the new large telescopes and surveys in prepa-
ration. For example, the ground-based Large Synoptic Survey
Telescope (Ivezic et al. 2008) and the European Space Agency
Euclid space mission (Mellier 2012) will each produce petabytes
of data of wide-field imaging over the whole sky. Such quan-
tities of data require advanced methods and efficient software
dedicated to the automatic search for galaxies in these wide
deep field images of the sky. Various tools have been devel-
oped during the last decade and have been applied efficiently to
these extragalactic fields. The most popular is Source Extractor
(SExtractor; Bertin & Arnouts 1996), which has been used for
most large surveys, including Hubble Space Telescope (HST)
deep imaging.

However, imaging alone does not provide all of the an-
swers in observational cosmology. Spectroscopic information
is also required to measure precise redshifts and other im-
portant physical information derived from line diagnostics.
To date, most spectroscopic observations have been targeted

? The software and its documentation are available on the MUSE sci-
ence web service (muse-vlt.eu/science).

observations using multi-object spectrographs on targets se-
lected from imaging surveys. However, with the start of oper-
ation of the Multi Unit Spectroscopic Explorer (MUSE) at the
Very Large Telescope (VLT), the context is changing.

MUSE is the new panoramic field spectrograph that was re-
cently commissioned at the VLT (Bacon et al. 2014). It has a
field of view of 1×1 arcmin2 sampled at 0.2 arcsec, a simultane-
ous spectral range of 4650 Å to 9300 Å, a spectral resolution of
3000, and the highest throughput of all VLT spectrographs in the
optical range. MUSE produces large hyperspectral data cubes of
324 million voxels, corresponding to 300 × 300 × 3600 pixels
along the α, δ, λ axes. Its unique capabilities of providing three-
dimensional (3D) deep field observations was demonstrated in
early observations of Hubble Deep Field-South (HDFS) Bacon
et al. (2015), where 27 h of observations were accumulated in
this single field. A first analysis of the corresponding data cube
led Bacon et al. (2015) to an increase in the number of spectro-
scopic redshifts already known in this field of an order of mag-
nitude. In addition, 26 very faint (IAB magnitude <30) Lyα emit-
ters without a HST counterpart in the deep broadband imaging
were discovered.

As shown by these discoveries, MUSE is particularly sensi-
tive to line emission objects. In the most extreme cases, these
galaxies have no detected continuum and thus do not appear in
broadband images. The corresponding sources just pop up as a
small aggregate in the data cube of a few voxels at low signal-
to-noise ratio (S/N). With no a priori information on their loca-
tion and wavelength, this makes it challenging to find them in
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the 324 million voxels contained in a single MUSE data cube.
Moreover, these faint emission line galaxies co-exist in the deep
field with brighter and spatially resolved galaxies at lower red-
shifts. Sources often appear blended in the broadband images,
although they can be clearly distinguished in the data cube ow-
ing to their specific spectral signature.

For all of these reasons, it is obvious that detection tech-
niques developed for 2D imaging data cannot deal with the in-
trinsic 3D information content of data cubes, which means that
other methods need to be investigated. Large data cubes in as-
tronomy are not new. Radio telescopes have produced such data
cubes for a long time, and thus methods to find sources in these
data cubes have been developed. In the recent literature, differ-
ent source-detection algorithms have been proposed for finding
spectral line sources in previous large surveys, including the HI
Parkes All-Sky Survey (HIPASS; Meyer et al. 2004), and the
Austrian Square Kilometer Array Pathfinder (ASKAP; DeBoer
et al. 2009). See Koribalski (2012) and Popping et al. (2012)
for overviews on spectral-line source detection. The source-
detection method developed for the HIPASS survey is composed
of two combined algorithms: MULTIFIND, which is based on a
flux threshold approach, and TOPHAT, which consists of apply-
ing a top-hat filter in the spectral domain. These two algorithms
produce a large catalog of detected sources that must be checked
by multistage processing. By removing multiple detections of
the same object or spurious detections, the final catalog con-
tains one thirtieth of the sources proposed by MULTIFIND and
TOPHAT. The number of false detections produced by the auto-
matic algorithms MUTIFIND and TOPHAT is prohibitive for the
MUSE application. Whiting (2012) developed another general
source finder, DUCHAMP, for the detection of sources with one
low-extended emission line in the 3D data cubes of the ASKAP
survey. This algorithm searches areas of the data cube where the
emission is above a given flux threshold. DUCHAMP appears to
perform for source detection at peak S/N < 3, and a DUCHAMP
performance evaluation can be found in Westmeier et al. (2012).
We applied DUCHAMP to a MUSE data cube. DUCHAMP was
designed for the detection of sources with a single emission line,
while the MUSE data cube contains sources with large spectral
variability, including a complex continuum with several spectral
features. For such sources, DUCHAMP returns as many detected
sources as modes in the spectrum, and is thus not appropriate for
the MUSE data cube content.

The aim of this study was to develop a new method for
galaxy detection in MUSE deep field data cubes. This method
needed to be general enough (i.e., using minimal a priori knowl-
edge) to detect all sorts of objects that can be expected in these
deep fields, including very faint emission line objects such as
Lyα emitters in the HDFS data cube. Our method is based on an
object approach that avoids the need to set constraints for merg-
ing pixels. A 3D matched filter was first applied to maximize
the S/N of the faint emission line galaxies, and a false alarm
control criterion for the object proposition was derived. The pro-
posed approach was developed to model the galaxies in spatial
and spectral dimensions, and to provide a way to estimate the
source configuration from the data. This has led to a fully au-
tomatic detection algorithm that needs a few input parameters,
such as the desired false alarm probability. The detailed statis-
tical model is described in Meillier et al. (2015b). In this paper
we provide the outlines of the method and the astrophysical in-
terpretations of the different steps of the algorithm.

The paper is organized as follows. The problem formula-
tion and the model of the galaxy configuration are described
in Sect. 2. The preprocessing steps are detailed in Sect. 3. In

Sects. 4 and 5, we present the detection method and the sum-
mary of the algorithm. We apply the detection method to the
MUSE view of the HDFS and we discuss some strengths and
limitations of the approach in Sect. 6.

2. Problem formulation and requirements

Detecting faint and compact emission line galaxies is a complex
signal-processing problem that is a combination of estimation
and detection. Little a priori information is available on these
galaxies, e.g., their location and redshift are not known, nor their
shape, light profile, and spectral distribution. Thus we need to
implement a strategy to estimate these unknowns. In the follow-
ing, we detail the choice of the method that was developed to
address this challenge.

2.1. Requirements

The proposed method should meet the following requirements:

1. It should have the best possible completion rate, while pro-
ducing a limited number of false detections.

2. Sources are modeled as 3D objects, so the method must be
object based.

3. The method should be nonparametric, i.e., it must be able to
extract galaxies in large data fields regardless of the number,
shape, spectral features, or spatial distribution of the sources.

4. The method should be robust, in case of imperfect input data.
Real data are never perfect and often depart from the usual
assumption of independent, normal noise properties. The al-
gorithm should be able to cope with such nonideal datasets.

5. The number of input parameters for the algorithm should be
limited. When there are too many input parameters, which
are possibly not independent, it becomes difficult to explore
all of the parameter space. This might bias the result as the
user might have to select a given set of parameters a priori.

6. The complete process should be executed in a reasonable
computation time.

2.2. Choice of method

Existing methods that have been specifically developed for tar-
get detection in hyperspectral images (see Nasrabadi 2014 for
a review of hyperspectral target detection methods) are handled
pixel-wise and often rely on template matching. Among the few
object-based methods in the literature, marked-point processes
were examined. These allow the geometry of objects to be de-
tected, the possible relationships between the objects, and the
adequacy of the model for the data to be taken into account.
This object process depends on parameters that define the model
of the sources that are not known and that need to be estimated.
The Bayesian approach consists of considering these parameters
as random variables. To find the maximum a posteriori estimate,
their joint posterior distribution must be written. The Bayes the-
orem allows the definition of this posterior distribution propor-
tional to a data fidelity term (i.e., the likelihood function) and
the prior distribution of the parameters. A crucial point is the
compromise between the influence of the chosen priors and the
data. If the influence of the priors is too strong, then the posterior
distribution gives low importance to the data. A noninformative
prior can be chosen to give more influence to the data for the
parameter estimation.
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2.3. Modeling the galaxy configuration

A point process defined in a 2D space is a random process
where its realization is a configuration of points. This can be
used to model the spatial distribution of many physical phenom-
ena, including astronomical systems (see Neyman & Scott 1952;
Scargle & Babu 2003; and Beisbart et al. 2002, for detailed ex-
amples). In our case, the spatial distribution of the galaxies in
the two spatial dimensions of the MUSE data cube can be repre-
sented by a configuration of points, i.e., it can be interpreted as
a realization of a point process. If the points are uniformly dis-
tributed in the space, then the point process is said to be homoge-
neous. In contrast, if the points are mainly located in certain re-
gions of the space, then the process is said to be inhomogeneous,
and the function f (·), which is known as the intensity function,
describes this probability. Information about the areas that are
likely to contain galaxies can be extracted from the data and in-
cluded in this intensity function. Setting this intensity function
is equivalent to defining the regions of the data cube where we
will favor the search for galaxies.

If the point process represents the spatial distribution of the
galaxies in the data, we need to add some information to describe
the physical characteristics of these galaxies (e.g., shape, spec-
trum, intensity). The marked-point process is an extension of the
point process that associates with each point a list of marks that
transform a point into an object. These marks can be geometric,
to describe the shape of the objects, or parametric, to model the
intensity of the galaxies.

We needed a simple model that fits the majority of the ob-
served galaxies to solve the estimation problem. An elliptical
shape with a Sérsic profile (Sersic 1963) was used to fit the sur-
face brightness profiles. A Sérsic profile is a general model for
the decrease in intensity of the galaxies. Peng et al. (2002) pro-
vided a more complex model through their 2D fitting algorithm
GALFIT. However, in our case the observed data are deep fields
that contain galaxies of relatively small spatial extension.

To define a galaxy as an object ui, the following marks
should be added:

– length of the ellipse axes ai and bi (without differentiating
between major and minor axes);

– orientation of the ellipse θi (the angle between the horizontal
and the first axis);

– index ni of the Sérsic profile, which describes the decrease
in intensity

I(r) ∝ exp
(
−

( r
α

) 1
ni

)
,

where α is a scale parameter that depends on the size of
the ellipse (and consequently on a and b) to always pre-
serve 95% of the energy of the Sérsic profile in the elliptical
support;

– spectrum wi, which is evaluated a posteriori from the final
estimated configuration.

We note that the model of the galaxy is parametric (as an ellipse
for the shape, and a Sérsic profile for the intensity), although the
estimation of the parameters a, b, θ, and n is data driven. There
is no parametric description for the spectral mark as we have no
a priori information concerning the spectral composition of the
observed galaxies.

2.4. Observation model and parameter estimation

With the marked-point process, we associate an observation
model that explains the data. The data cube is decomposed into
the contribution of the galaxy configuration and a random part
related to the noise. This noise is the result of measurement
noise, sky photon noise, and sky subtraction residuals. The pho-
ton noise related to the galaxies is negligible. The noise is also
assumed to be spectrally independent; only source contributions
are convolved by the point spread function (PSF). The noise
is finally defined as an additive spatially white Gaussian noise
where the mean and variance parameters (mλ, σ

2
λ) are unknown

and should be estimated for each wavelength λ.
To summarize the estimation problem, the unknown param-

eters to be estimated are

– noise parameters: (mλ, σ
2
λ) at each λ;

– object process marks: the number of galaxies n, their po-
sitions, their shapes (ai, bi, θi, ni) for 1 ≤ i ≤ n, and their
spectra.

The Bayesian approach leads to the optimizing of the poste-
rior density function of these unknown parameters. This func-
tion is proportional to the data fidelity term, which is defined
by the Gaussian likelihood function deduced from the obser-
vation model, and to the priors on the unknown parameters.
Noninformative priors are used, except for the configuration
prior, which includes some hard penalization on the overlapping
ratio. This penalization excludes all of the configuration of ob-
jects that do not respect the Rayleigh criterion.

3. Preprocessing

3.1. Need for cube preprocessing

As indicated in paragraph 2.3, the intensity function f (·) of the
point process can be defined from the data to favor some regions
of the cube for the detection of galaxies. We note that the main
motivation of this study was the detection of distant emission
line galaxies of low spatial extension. The bright extended galax-
ies and those that contain a continuous spectral component can
be easily detected on the white image. The point process used
in this paper focuses on the detection of emission line galaxies,
although no information on the faintest ones can be extracted
from the data without preprocessing as their S/N is very low.
We propose defining a preprocessing that increases the S/N of
such sources and that provides an intensity function for the point
process.

3.2. Matched filter

The optimal filter for increasing the S/N by one signal (here as
the 3D response of the galaxies) is the matched filter. The distant
emission line galaxies can be seen as 3D point sources before
the spreading by the PSF. As the emission line is not exactly
a point in the spectral dimension, being a few pixels large, the
response of such sources is close to the PSF with a larger spectral
component.

In the case of the MUSE data, the 3D PSF is spatially and
spectrally separable; detailed study of this PSF can be found in
Serre et al. (2010) and Villeneuve et al. (2011). We use here a
simplified model of the 3D PSF where both the spatial and the
spectral components of the PSF are considered spatially invari-
ant but change with the wavelength. Consequently, the spatial
component of the matched filter is a 3D data cube where each
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Fig. 1. Impact of the matched filter on the spectrum of a simulated faint
emission line galaxy (top) embedded in Gaussian noise with a variance
on the order of the object intensity. The result of the matched filter (bot-
tom) highlights the emission line that is completely invisible in the noisy
version of the spectrum (middle).

frame is the spatial response of the MUSE instrument at a given
wavelength. The spectral component is summarized in a matrix
where each column contains the spectral response of the MUSE
instrument at the considered wavelength. We note that it has been
artificially enlarged to take into account the spectral width of an
emission line. The performance of this matched filter is illus-
trated in Fig. 1.

This filtering is applied to the data cube to highlight the pres-
ence of 3D signatures that are close to the PSF. We now need a
detector that automatically decides whether each spectrum con-
sidered belongs to an emission line galaxy. We note that even if
the matched filter is designed for emission line galaxies of low
extension, other galaxies with powerful enough signatures will
not be penalized too much.

3.3. Max-test

The detector is based on a binary hypothesis testing procedure
that is applied to each spectrum of the data cube. Before the
matched filter, two cases can be distinguished:{
H0 : noise only
H1 : contribution of a source and noise.

Under the null hypothesis, the considered spectrum contains
only noise. Under the alternative, an object is located at this po-
sition on at least a few consecutive spectral bands. As illustrated
in Fig. 1, the principal characteristics of emission line galaxies
are highlighted by the matched filter. Consequently, to decide be-
tween the two assumptions, we will test the maximum value of
the filtered spectrum. This test is called the max-test, and refers
to the work of Arias-Castro et al. (2011),

T = max
λ

(Y f
λ(p, q))

H0
≶
H1

η(pFA), (1)

where Y f (p, q) is the filtered spectrum at position (p, q), and
Y f
λ(p, q) is its λth component. The threshold value η(pFA) de-

pends on the false-alarm probability defined for the max-test. To
set this threshold value we need to know the distribution of the
test under the null hypothesis. The 3D correlation introduced by
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Fig. 2. Empirical probability density p(T |H0) of the max-test under
the null hypothesis (top) and its cumulative density function (bottom),
which is also equal to 1 − pFA, where pFA is the false-alarm probability.
The variable T represents the values that can be taken by the max-test
under theH0 hypothesis.

the matched filtering leads to a nontractable expression of the
test under the null hypothesis. If the statistical noise distribu-
tion is symmetric and zero-mean, under the null hypothesis the
distribution of the maximum value can be deduced from the dis-
tribution of the minimum value, for two reasons:

– they are the same, except their signs;
– because the source contributions are positive, the minimum

value is not contaminated by the galaxies.

Figure 2 shows the empirical probability density and the cumu-
lative density function of the max-test under the null hypothesis.
The empirically probability density of the maximum value is ob-
tained from the minimum value of the matched filter spectra (it
can be seen as a normalized histogram) because the noise dis-
tribution is symmetric. The cumulative distribution function is
derived from this probability density function. We note that if
the noise distribution is perfectly known, a Monte Carlo sam-
pling of the maximum value of a noise spectrum can be used to
derive the probability density and the corresponding cumulative
distribution function. The minimum distribution is a good ap-
proximation of the statistical distribution of the test T (Eq. (1))
under the null hypothesis. This method is nonparametric, so no
assumption is made about the distribution of data other than the
symmetry of the noise before the filtering, which has a certain
advantage compared to other estimation methods. It also has the
advantage of taking into account the 3D correlation (spatial and
spectral) of the data, which come from the interpolation process
(see Sect. 6.2).

We note that the empirical distribution is obtained under sta-
tionarity of the noise assumption, so for this preprocessing we
need to normalize each band of the data cube at the same mean
and variance values. An estimate of the variance is provided with
the MUSE data, and an estimate of the noise mean value at each
wavelength can be obtained by performing a σ-clipping analy-
sis. If the estimate of the noise variance is not available with the
data cube, it can also be obtained by the σ-clipping analysis. The
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Fig. 3. Classification of the pixels according to the max-test for a false-
alarm probability pFA = 0.5%. Black pixels belong to class C3, red
pixels to classC2, and white pixels are local maxima of red areas of class
C1. This simulated 100 × 100 × 3600 data cube contains 50 galaxies
with the same strong S/N.

procedure that results from the matched filter and the max-test
leads to the same results obtained by the constrained likelihood
ratio approach developed by Paris et al. (2013).

3.4. The proposition map

Applying the max-test to the whole cube finally produces a bi-
nary map where the pixels can be separated into a class of noisy
pixels and a class of pixels that probably belong to a galaxy, with
a false-alarm probability pFA. Typically, there are three classes:
class C3 contains each pixel that is lower than the test statistics
threshold, i.e., the class of the noisy pixels; the other pixels are
in class C2, except for the local maxima, which are in class C1.
Only pixels in class C1 are proposed to be at the center of the
observed galaxies. Moving the accepted centers into class C2 is
accepted, but not into class C3.

The intensity function f (·) of the point process that models
the distribution of the galaxy centers is defined as a step function
that can be represented as a 2D map, referred to as the “propo-
sition map” in the following. Figure 3 is an example of a propo-
sition map calculated for a data cube that contains 50 bright
sources. During the object proposition process, only white pixels
are proposed to be galaxy centers. A black pixel cannot contain
an object center.

The object centers are proposed during the birth moves ac-
cording to this intensity measure, by drawing (1) a pixel uni-
formly selected in this class; and (2) the continuous position uni-
formly distributed over the pixel. This way of proposing galaxy
centers can be interpreted as a type of super-resolution since it is
not limited to the pixel grid.

3.5. Benefits and risks induced by the proposition map

There are two benefits provided by using this proposition map in
the detection process: first, it reduces the number of object con-
figurations to explore and consequently the computation time,
and second, the map provides the first error control criterion for
each proposed center position of each object. The probability of
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Fig. 4. Spectral information on the location of the maximum value of
each spectrum of the simulated data cube.

making an error is limited by the false-alarm probability pFA set
by the user. For the case presented in Fig. 3, the white pixels
obtained by applying the matched filter and the max-test corre-
spond exactly to the centers of the 50 synthetic objects placed
in the data cube, except for one at position (54, 12), which is
typically a false alarm. The posterior density function to be op-
timized does not include regularization of the galaxy intensities.
This preprocessing step replaces it by favoring the proposition
of objects in the most probable areas.

In return, the proposition map does not allow source detec-
tion in the areas belonging to noise class C3. This can lead to
missed detection, in particular for the very faint galaxies. A com-
promise between the number of false alarms and the detection
power must be set according to the application considered.

3.6. Additional information provided by the max-test

Further information provided by the max-test includes the loca-
tion of the emission line in the spectrum:

λmax = argmax
λ

(Y f
λ(p, q)). (2)

Assuming that a galaxy has a uniform spectral response over its
spatial support, the support of the galaxy should be found in the
map produced by the argmax-test. In the case of partially super-
imposed galaxies, the large spectral variability of the observed
sources is expected to be strong enough to make the separation
between the two objects possible. In Fig. 4, all 50 objects have
the same S/N and, providing that the overlapping ratio respects
the Rayleigh criterion, the contributions of two close galaxies
are visible on the argmax map. Currently, the spectral informa-
tion provided by this map is only used to locate the maximum
value of the spectrum, i.e., the location of the possible emission
line.

4. Detection method

4.1. Bayesian model

Given the observation model in which the observations are de-
composed into the galaxy contribution and the Gaussian addi-
tive noise, the likelihood function can be written as a function
of many unknown parameters. In the Bayesian approach, we de-
fine an augmented optimization objective that incorporates the
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prior distributions over the unknown parameters that must be es-
timated. This objective function is the joint posterior distribution
of the unknown parameters. The maximum a posteriori estimate
of these parameters corresponds to the mode of the posterior
distribution.

Interested readers can refer to Meillier et al. (2015b) for a
detailed description of the priors, the posterior distribution, and
the optimization process.

4.2. Optimization problem
Given the marginalized posterior distribution, we want to esti-
mate the unknown remaining parameters: m, σ2, and X, where
m = [m1, · · · ,mλ, · · · ,mΛ] is the mean of the noise evaluated at
each wavelength, σ2 = [σ2

1, · · · , σ
2
λ, · · · , σ

2
Λ

] is the variance of
the noise, and X is one realization of the marked-point process.
From the posterior distribution, the conditional posterior distri-
bution of each noise parameter (m, σ2) can be deduced given
the data and the other parameters. These densities are well de-
fined and can be easily sampled by any numerical software. The
case for the object configuration is very different, as it is non-
parametric (i.e., the number of sources is unknown), and an es-
timate cannot be analytically extracted from the posterior distri-
bution. We need to use a sampling algorithm to generate samples
and to construct a sample distribution that mimics the posterior
distribution of all of these unknown parameters. To address this
point, Green (1995) proposed the reversible jump Monte Carlo
by Markov chain (RJMCMC) algorithm that answers the vari-
able dimension problem. For our case, two kinds of samplers
are implemented in the iterative RJMCMC algorithm: the Gibbs
sampler proposed by Geman & Geman (1984) for parameters
that have a well-defined conditional posterior density and the
Metropolis-Hastings-Green sampler proposed by Green (1995)
for the object configuration.

4.3. Sampling scheme

The principle of the RJMCMC sampling procedure is based
on the construction of a Markov chain of a set of parameters,
here m, σ2, and X, which will evolve iteratively by proposing
a perturbation to one or more elements of the chain. This per-
turbation, called “move” in this paper, can be directly accepted
(Gibbs sampler) or can go through an acceptance-rejection step
(the Metropolis-Hastings-Green sampler). The block diagram of
one iteration is shown in Fig. 5, where m∗, σ2∗, and X∗ refer to
the proposed values of the different parameters. Figure 5 illus-
trates the conditional dependence of the parameters:

– if the object configuration is modified (i.e., a new realization
of the marked-point process is generated), the noise parame-
ters are set to their current values, m and σ2, and the impact
of the modification X∗ is evaluated with these values;

– if the modification concerns the noise parameters, their
new values are sampled conditional to the unchanged
configuration X.

We note that the posterior density is evaluated at each iteration.
When the object configuration is modified, i.e., a new real-

ization of the marked-point process is sampled, three different
modifications can occur:

– an object can be added to the current configuration (birth
move);

– an object of the current configuration can be deleted (death
move);

– an object of the current configuration can be modified.

Introduction Problem formulation Detection method Errors control Application Conclusion

Detection and estimation algorithm

! Initialization: empty configuration, empirical mean and variance of the data.

! At each iteration:

CURRENT
STATE

X , m, �2

OR

NEW REALIZATION
OF THE MPP

X⇤, m, �2

OR

PARAMETERS
SAMPLING X , m⇤, �2⇤

NEW
STATE

X⇤, m⇤, �2⇤

! Maximum a posteriori estimation

13 / 32

Fig. 5. Iterative procedure of the RJMCMC algorithm. The current state
is represented by m, σ2, and X, whereas m∗, σ2∗, and X∗ refer to the
modified state.

(p, q)

(p∗,q∗)

TRANSLATION

(p, q)
θ
θ∗

ROTATION (p, q)

SHAPE MODIFICATION

Fig. 6. Illustration of the geometric modifications (in violet) that can be
applied to one object of the current configuration (in black).

An illustration of the different modifications that can be applied
to an object of the current configuration is given in Fig. 6. Details
of the birth, death, and modification moves can be found in
Appendices A.1−A.3.

4.4. Estimation of the object configuration

There is no theoretical property to set the number of RJMCMC
iterations and to determine the convergence of such an algo-
rithm. In our case, the number of RJMCMC iterations is auto-
matically calibrated according to the evolution of the rates of
birth and death moves. If no more birth and death moves are
accepted by the iterative procedure during 5000 iterations, then
we consider that the algorithm converges to an acceptable solu-
tion. As the posterior density is evaluated at each iteration, the
selection of the configuration that corresponds to the maximum
a posteriori estimate is easy. We let kmax be the iteration index of
the maximum value of the posterior distribution. Then the kth

max
element of the Markov chains {m}k, {σ2}k, and {X}k are extracted
as the maximum a posteriori estimates.

5. Summary of the algorithm

5.1. Algorithm structure

The main part of the detection is based on the RJMCMC iter-
ative algorithm described in the previous subsection. Its main
limitation is its execution time, which strongly depends on the
size of the dataset and the number of objects to be detected. To
reduce this time, two parallel preprocessing steps were added to
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Fig. 7. Structure of the detection process. The detection block refers to the RJMCMC iterative process described in Fig. 5, and the preprocessing
block is detailed in Fig. 8. The two entries LSF and FSF refer to the line-spread function and the field-spread function, which are the spectral and
spatial components of the MUSE point-spread function.

the method; the first aims to speed up the detection by initializ-
ing the configuration of objects with the most obvious galaxies in
the data cube and the second is designed to favor the proposition
of objects in the most probable areas of the data cube. The first
preprocessing step will be described and illustrated in Sect. 6.3
and the preprocessing for the full data is detailed in Sect. 3.

The intensity function of the marked-point process used to
model the configuration of galaxies is based on the max-test
(Sect. 3), which highlights the presence of emission line galax-
ies, although the observations show large spectral variability be-
tween the objects detected. For the stars located in the field of
view and the galaxies where the spectrum is composed of a con-
tinuum, the matched filter and the max-test are not well adapted.
The detection of these bright objects can be performed on the
white image (see Sect. 6.3). In the current version of the algo-
rithm, we wanted to still use the marked-point process to perform
the detection of these very bright galaxies. This allows, in partic-
ular, uniform modeling of the galaxies to be preserved regardless
of their spectral characteristics. Other source detection methods
might be considered to be used directly on the white image (e.g.,
SExtractor; Bertin & Arnouts 1996), provided that they return a
spatial intensity profile for each detected object.

Finally the global structure of the algorithm is presented in
Fig. 7. The algorithm inputs are the data cube, the associated
variance cube, the false-alarm probability, and the minimum and
maximum values for the ellipse axes. We note that the false-
alarm probability and the lengths of the ellipse axes are the only
parameters set by the user, because they depend on the appli-
cation and the observation field considered. The size of the ob-
served galaxies is not the same if there are only distant galaxies,
or if close galaxies are located in the field of view. The PSF
and the white images are evaluated directly from the data cube.
Finally, the output of the algorithm is a catalog of detected galax-
ies with their locations and estimated parameters (i.e., full width
at half maximum, Sérsic index, detected on white image or not,
position of the emission line).

5.2. Implementation

SELFI has been coded as a Python package. The SELFI package
uses the following packages: AstroPy1, NumPy2, and SciPy3.

1 http://www.astropy.org/
2 http://www.numpy.org/
3 http://www.scipy.org/

AstroPy was used for FITS file handling and the world coordi-
nate system; NumPy for array-object manipulation, linear alge-
bra, and random number operations; and SciPy for special func-
tions, convolution, norm computation, and image preprocessing.

SELFI has been designed with a multi-object approach. The
process starts with the ingestion of the MUSE data cube fits file
in a Python cube object, which gives access to the data and
variance NumPy arrays, and the associated world coordinate
system. Then, all of the preprocessing steps (i.e., S/N, whiten-
ing, matched filtering computation) are developed as methods
that use and create new cube objects. To minimize CPU time
when feasible, the data cube is processed in parallel as a set of
monochromatic images that are sent to subprocessors. At each
preprocessing step, the user can save the resulting cube objects
as FITS files and check them with a data cube viewer.

The minimization algorithm is split up into several Python
classes to manage the a posteriori density function, Sérsic ob-
jects, Bayesian model, and MCMC iterative process. The pro-
cess can be initialized from a 3D cube, and also from a 2D im-
age, e.g., with the source detection in the white light image4. The
minimization code makes heavy use of numpy array manipula-
tion without looking at the world coordinates. This returns a list
of Python source objects. A source object contains the input pa-
rameters, the location of the source in degrees, an image of the
ellipse Sérsic profile, and the integrated spectrum of the detected
source. It can be saved as a FITS file. The process can also use a
list of source objects as input and be rerun.

6. Application to the MUSE HDFS field

In the following, we present application of the method to the
MUSE HDFS observations. These observations have the advan-
tage that they are very deep and they benefit from high-resolution
deep HST images that provide documented catalogs of sources
in the HDFS field. These catalogs are used to assess the detec-
tion in the MUSE HDFS field with SELFI. The field contains a
variety of sources, from bright stars to very faint Lyα emitters,
and is thus representative of typical deep field observations with
MUSE.

4 The white light image is derived from the data cube by simple aver-
aging along the wavelength direction.
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6.1. MUSE HDFS field

The HDFS observations were performed with the HST in 1998
and reported in Williams et al. (2000). It is one of the deep-
est fields ever observed in the optical-near infrared wavelength
range. The WFPC2 observations Casertano et al. (2000) reached
a 10σ limiting AB magnitude in the F606W filter at 28.3, and
27.7 in the F814W filter. The HDFS was observed with the
MUSE instrument during the last commissioning run of MUSE
in late July 2014. The MUSE observations covered a field of
view of ∼1 × 1 arcmin2, which corresponded to 20% of the total
WFPC2 field. A total of 27 h integration was accumulated. The
detailed observations and data reduction processes, together with
a first census of the field and a source catalog, were published in
Bacon et al. (2015). The corresponding catalog and data cube
are also available online5.

The HDFS hyperspectral cube contains 326×331 spatial pix-
els (or spaxels) and 3641 spectral planes spanning a wavelength
range from 4750 Å to 9300 Å. The data cube is formatted in
the astronomical standard FITS format (Hanisch et al. 2001),
and contains a primary header and two extensions: the primary
header has the world coordinate system information, and the first
and second extensions contain the data and their estimated vari-
ance arrays, respectively. With a total of nearly 400 million vox-
els, the HDFS data cube information content is large enough to
validate the computing efficiency of the proposed method.

The spatial resolution of the MUSE HDFS observations was
derived from the MUSE data cube itself, using the bright star
in the field. We used the Moffat approximation given by Bacon
et al. (2015). We note that the resolution changes with wave-
length, as shown in Fig. 2 of Bacon et al. (2015).

From the HST WFPC2 images catalog of Casertano et al.
(2000), a subset of 586 sources was located within the MUSE
field of view. An aperture summed spectrum was obtained at the
location of each of these HST sources and a visual search for
emission or absorption lines was performed. Redshift was then
inferred by inspection of the spectrum and line identification.
In most cases, a specific feature or line combination (e.g. Lyα
asymmetry or [OII] resolved doublet) leads to a redshift with a
high confidence level. For more details on source identification
and redshift determination, see Sect. 4 of Bacon et al. (2015). A
large fraction of these sources were also detected in the MUSE
white light image, although only a fraction of them have spec-
tral features (e.g., emission or absorption lines) that allow correct
redshift identification. Bacon et al. (2015) obtained secure red-
shifts for 163 sources. In addition, they found 26 Lyα emitters
that were too faint to be detected in the WFPC2 HST broadband
images. Most of these emission line only galaxies were detected
by visual inspection of the data cube monochromatic planes us-
ing the SAOImage DS9 data cube viewer6. This catalog is used
later as the reference for the performance analysis of SELFI.

6.2. Preprocessing

Since the publication of Bacon et al. (2015), some improvements
in data reduction have resulted in better flat fielding, and subse-
quently improved sky subtraction. We thus used the latest ver-
sion (1.24) of the HDFS data cube7, which has fewer systematics
and is better matched to source detection.

5 http://muse-vlt.eu/science
6 http://ds9.si.edu
7 This data cube or a later version will be available later on the MUSE
science web page.

Owing to the dithering process, the edges of the field are less
exposed than the main part. The consequence is that the corre-
sponding variance is much higher there. However, our method
assumes that the noise variance is invariant within the field
of view in each monochromatic plane. We therefore spatially
trimmed the original HDFS cube to remove these low S/N edges.
The resulting data cube is 311 × 311 × 3641 in size, which cor-
responds to a 62.2 × 62.2 arcsec2 field of view. We note that the
wavelength range (4750, 9300 Å) was preserved.

Although version 1.24 of the HDFS data cube is better than
the original version 1.0 used in Bacon et al. (2015), it still con-
tains low spatial frequency residual systematics that are prob-
lematic for the detection algorithm. The presence of these sys-
tematics lies in opposition to the noise stationarity assumptions.
They might then be detected by SELFI, which would lead to an
excess of false alarms.

We then apply the matched filter process to the resulting data
cube, as described in Sect. 3.2. First, the variance data cube is
used to compute the S/N data cube, which is then whitened to
zero mean and unity variance for each wavelength plane using a
σ-clipping estimation8. The correctly matched filter is then ap-
plied using the spatial and spectral PSF information. A simple
model of the spectral PSF based on a step function convolved
with a Gaussian was used. We note that this does not take into
account the possible small variation within the field of view, but
it is accurate enough for its use in the matched filter.

Under the null hypothesis, the matched filter does not change
the statistical properties of the resulting data cube, and thus the
resulting enhanced S/N data cube should still have zero mean
and unity variance. However, this was not the case because of the
correlated noise characteristics of the variance estimator used in
the pipeline. This is due to the interpolation process that is used
to build the regularly sampled data cube at the end of the data-
reduction process. We therefore applied another whitening pro-
cess to this data cube using a σ-clipping estimation of the mean
and variance at each wavelength plane. The full preprocessing is
detailed in Fig. 8.

As can be seen in Fig. 9, the matched filter data cube now
has a much higher S/N than the original dataset. We also note
the systematics visible as the low S/N extended signal aligned
with the image columns or rows.

6.3. Source detection in the white light image

Given the size of the data cube to explore, the convergence of the
algorithm can be prohibitively long. To speed up the process, we
first use the algorithm to detect the sources present in the white
light image.

The aim of the preprocessing is identical to that presented in
the previous section, although it is applied to only one plane in-
stead of the 3641 wavelength layers. For each pixel of the white
light image, two cases are considered{
H0 : N(0, 1) (noise only)
H1 : N(a, 1), a > 0 (contribution of a source and noise)

where N(0, 1) is the normal density function. The white light
image is simply thresholded by testing the validity of the null

8 Data are clipped to remove strong artifacts and pixels belonging to
sources, and the mean and the variance are estimated from the clipped
data. Very faint sources probably remain in the clipped data, but their
small contribution compared to the size of the dataset should not affect
strongly the estimation of the noise.
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Fig. 8. Details of the preprocessing steps, from the original MUSE data to the normalized matched filtered cube.
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Fig. 9. Left: original S/N reconstructed image summed over the 7000 to 7100 Å wavelength range. Right: corresponding match filtered recon-
structed white light image.

hypothesis to produce the proposition map: the p-value9 of each
pixel of the white light image is evaluated and compared to a
level α that corresponds to the desired false alarm probability
level. In the case of the white light image, the p-value is eval-
uated from the normal distribution: under H0, y ∼ N(0, 1). If
the p-value is greater than the threshold α then the considered
pixel is assumed to be derived from the H0 hypothesis. This is
equivalent to comparing the observed value yobs to the thresh-
old η such as Pr(y > η|H0) = α. With the adopted threshold
parameter of η = 3.7, which corresponds to a false-alarm proba-
bility of α = 0.001%, a proposition map with 142 candidates is
produced (Fig. 10, left panel).

The brightest star in the field is identified for two reasons:

– its position and its light distribution are known because the
spatial PSF was estimated from this star;

– the Sérsic profile does not fit its Moffat light distribution cor-
rectly, which leads to high residuals in the vicinity of the star.
To minimize the fitting error, the light distribution of this star
is directly fixed to the spatial PSF of the data cube.

The detection algorithm is then launched with the set of parame-
ters given in the Appendix. The process converged after 5029 it-
erations; a final number of 67 sources were detected (Fig. 10,
right panel). The full process took only 8 min on our work-
station10. In the next step, these white light detected sources
are used as the initial configuration, and their spatial shape and

9 The p-value p(yobs) is defined as the probability, under the null hy-
pothesis, of obtaining a value at least equal to the value yobs actually
observed: p(yobs) = Pr(y > yobs|H0).
10 Workstation 32 cores Intel(R) Xeon(R) CPU E5-4640 0 @ 2.40 GHz
and 512 Gb RAM.

location are fixed to their original values. Only their total spec-
trum is used in the minimization process.

6.4. Source detection in the data cube

Similar to the white light detection scheme, the max-test
(Sect. 3.3) is used on the matched filtered data cube to pro-
vide a list of source candidates. As described in the next section,
we used a false-alarm probability of 1.5%, which corresponds
to a threshold of 4.1. Here, 178 candidate sources were identi-
fied in addition to the 67 white light sources detected previously.
The maximum peak emission flux and the corresponding wave-
lengths derived from the matched filtered data cube are shown in
Fig. 11.

The algorithm converged after 9341 iterations and 43 min
computing time. A total of 245 sources were detected. We note
that of the 1384 birth events proposed by the algorithm, only 178
were accepted. The localization of the detected sources is shown
in Fig. 13.

6.5. Fine tuning of the detection parameters

The probability of false alarms used as the input of the algorithm
was defined as a probability of false detection by spaxel, and
there is no formal way to match this probability with the source
false-detection probability. We also note that this probability is
only valid within the model assumption. For example, while the
model assumes a symmetric noise distribution, the data cube still
suffers from some systematics and is partly correlated.

To select the value of the threshold that allows the detection
of as many sources as possible while at the same time limiting
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Fig. 11. Information maps to illustrate the detection process in the data cube. Left: maximum map obtained by taking the peak flux for each
spectrum of the matched filtered data cube. Right: peak wavelengths map. Candidate areas are colored according to the wavelength of their
emission peak.

the number of false detections, we ran the source detection in
the cube with a range of input threshold parameters. As shown
in Fig. 12, the number of detections increased almost linearly
when the threshold η was decreased from 5 to 4, or equiva-
lently the false-alarm probability pFA increased from 0.1% to
3%. Below η = 4 or above pFA = 3%, the number of detec-
tions increased exponentially. At a threshold value of η of 3.4,
nearly 500 sources were detected, although most of them were
false detections clustered around regions of higher systematics
in the data cube. In the particular case of the HDFS data, we
empirically selected a threshold value of 4.1 for the detailed de-
tection analysis of the source, because we have a known source
catalog that allows us to determine the quality of the detection
performed by SELFI. The correspondence between the threshold
value and the false-alarm probability for the max-test (Eq. (1))
is obtained from the distribution of the minimum value of each
spectrum (see paragraph 3.3). This value of 4.1 corresponds to
a false-alarm probability of 1.5% for the max-test applied to the

HDFS data. This threshold value should not be used naively for
other data cubes; it is preferable to set the false-alarm probabil-
ity and then to evaluate the corresponding threshold value from
the estimated max-test distribution.

6.6. Analysis of the detection results

Using source location, we cross matched the resulting catalog
with the reference catalog of Bacon et al. (2015) using a search
radius of 1 arcsec. This lead to the following results:

– From the 189 objects of the reference catalog with secure
redshift identified in the MUSE data cube sources, 163 were
found by SELFI (green markers in Fig. 13), while 26 were
missed (red markers in Fig. 13). This gives a success rate of
86%.
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Fig. 12. Number of source detections found by the algorithm as a func-
tion of the false-alarm probability, or the equivalent of the input thresh-
old parameter.

– There were 53 additional sources found by SELFI that match
the locations of the HST source catalog Casertano et al.
(2000) (white markers in Fig. 13).

– There were 29 sources detected by SELFI that cannot be
matched with MUSE or HST sources (blue markers in
Fig. 13).

We first investigated the 26 sources with secured redshift in the
reference catalog that were missed by the algorithm. This anal-
ysis reveals a mix of causes that led to the failure of detection.
Three sources in the reference catalog were probably spurious
detections and are not yet present in the used version (1.24) of
the data cube. Three sources were faint continuum galaxies that
were identified through their absorption lines. One galaxy was
truncated by the edge of the field. Seven galaxies were blended
with another source at MUSE spatial resolution, but were iden-
tified as a different source owing to the HST high-resolution im-
ages and their spectral signature. Five galaxies were missed by
SELFI because they were located too close to a bright object, al-
though they were not blended. The seven remaining sources all
had a low S/N and were probably missed because of the detec-
tion threshold selected.

If we remove the spurious detections from the original cata-
log and leave out the three galaxies detected only by their con-
tinuum, the one truncated at the edge of the field of view, and the
seven galaxies too blended at MUSE spatial resolution, we are
left with five sources that were not found because of the prox-
imity of a bright object, and seven low S/N galaxies. This now
gives a success rate of 91%.

We also investigated each of the 29 candidate sources and
sorted them between spurious and real detections. Among these
candidates, most of them (21) were false detections, and four
were galaxies with complex morphology that were split into
two sources by the algorithm. Four new sources were identi-
fied: three potential Lyα emitters at redshifts 3.1, 3.4 (Fig. 15),
and 5.2, and one faint [OII] emitter was also found (Fig. 14).
We note that all four of the new detected objects have no HST
counterpart. With 21 false detections over a total of 245 sources,
SELFI achieves a 9% false-detection rate.

6.7. Performance of the algorithm

With a success rate and a false-detection rate of 91% and 9%, re-
spectively, with respect to the reference catalog, SELFI achieves
an overall good performance on this dataset. There are, however,

a number of limitations to the algorithm that arise from the anal-
ysis of the results.

With only ∼40% of the 586 HST sources detected, SELFI
does not perform very well in continuum source detection. We
note that a fraction of these sources are either too faint to be
visible in the MUSE white light image or are blended at MUSE
spatial resolution. However, as shown in Fig. 13, a number of
sources clearly visible in the MUSE white light image were not
detected. This could have been solved by lowering the detec-
tion threshold, although this would be at the expense of a much
higher false-detection rate. The limited performance of SELFI
in white light object detection is not considered critical given
that other software like SExactror (Bertin & Arnouts 1996) have
been optimized for this work.

The failure of the algorithm to detect sources in the vicinity
of brighter resolved galaxies is more problematic (e.g., Fig. 16,
top panel), and also the splitting of extended sources into a num-
ber of smaller sources (e.g., Fig. 16, bottom panel). In these
two cases, the problem is clearly related to the Sérsic elliptical
source parametrization that was too simplistic to fit the complex
morphology of spatially resolved galaxies. When a faint source
lies in the vicinity of such an object, the intrinsic error in the
source model is strong enough to prevent the detection of the
faint source.

We now investigate the SELFI performance in the regime
it was developed for, i.e., the detection of emission line galax-
ies with faint continuum. Restricting our reference catalog to
emission line objects with secured redshift and AB F814 mag-
nitude >26 led to a subset of 105 galaxies, including the 26 de-
tected Lyα emitters without HST counterparts. The correspond-
ing success rate of SELFI is then 84% (88 sources) and 88%
(23 sources) for the very faint Lyα emitters. In total, SELFI de-
tected 26 faint Lyα emitters without HST counterparts if we in-
clude the three new faint Lyα emitters detected by the algorithm.

As can be seen in Figs. 14 and 15, some source centers are
not very accurate. There might be different explanations for this
phenomenon:

– The galaxy light profile is modeled by a Sérsic function sam-
pled on the pixel grid. In the case of faint galaxies, their
light profile can be distorted by strong noise at some spectral
bands of high variance. As the estimation of the light pro-
file is carried out on all of the bands, the approximation by a
Sérsic function can be influenced by the problematic bands.

– The proximity of a bright poorly modeled extended source
might cause translation of neighbor sources to compensate
for eventual modeling residues.

– If the elliptical shape associated with the Sérsic profile is
not sufficiently precise (e.g., incorrect ellipticity, orientation
error), translation moves can be accepted by the algorithm as
an improvement in the data modeling and cause a shift of the
center compared to the actual position.

7. Conclusions

The SELFI Bayesian method is part of a long-term effort to de-
velop algorithms and software to be used for source detection
in MUSE deep field data cubes (Herenz 2015; Cantalupo 2015;
Bourguignon et al. 2012; Chatelain et al. 2011; Paris et al. 2011).
Given the variety and density of sources found in these fields,
we have designed a method that is optimized for the detection
of faint compact emission line sources. An important character-
istic of the method is that it is source based rather than spectra

A140, page 11 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527724&pdf_id=12


A&A 588, A140 (2016)

22h32m52.00s54.00s56.00s58.00s

RA (J2000)

12.0"

34'00.0"

48.0"

36.0"

-60°33'24.0"

D
e
c 

(J
2

0
0

0
)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Flu
x
 10

−
2
0
erg

s −
1
cm

−
2

−
1

Fig. 13. Localization and identification of sources overlaid on the MUSE white light image. Matched sources with secured redshifts (green circles)
and HST (white circles) in the reference catalog. New candidate sources (blue circles) and missed sources from the reference catalog (red circles).

based. This avoids the difficult and always error-prone part of
spectra concatenation of merging the individual spaxel detec-
tions into single sources. It also maximizes the signal for the
faint sources that otherwise have too low a S/N in an individ-
ual spaxel. We also tried to minimize the number of priors and
to make the source model as generic as possible. This method
then detected all of the different source categories that can be
expected in MUSE deep fields.

This method was tested with success on the HDFS MUSE
data cube. SELFI retrieved 91% of the sources with secure red-
shift identified by experts. It must be noted that while most of
the identified sources in the reference catalog were based on the
HST detection source catalog, SELFI did not make use of this
strong prior and worked only on the MUSE data cube. SELFI
also detected extremely faint sources (magnitude >30) with no
HST counterpart: 23 of 26 candidate Lyα emitters with no HST
counterpart were confirmed by SELFI; in addition, 3 new can-
didate Lyα emitters were detected. SELFI also detected the first
[OII] emitter without a HST counterpart.

Another key performance parameter of the method is the
false-detection rate. With only 9% false detections for the HDFS,
SELFI performs well. It is not yet possible to use the
method blindly, but with such a false-detection rate it becomes

manageable to deal with the candidate source checking and val-
idation process.

This method also has some clear limitations. Regarding the
data, it assumes that the variance is a function of wavelength, but
is also uniform over the field of view. For typical deep field ob-
servations, where the sky variance dominates the total variance
with respect to the correct variance of the sources, this assump-
tion is perfectly valid. However, for mosaic builds from various
exposure times, or dithered exposures that have lower S/N at the
edge, like the HDFS, this will no longer be valid and will im-
pose a limit on the data cube for the regions with homogeneous
exposure time and/or to process the field in chunks.

The other limitation comes from the elliptical shape and
Sérsic profile model, which is good enough for small galaxies,
but is not accurate enough to fit the more complex light distribu-
tion of extended galaxies. Of course these bright extended galax-
ies are not the subject of the search performed by SELFI, and it
was never intended to provide an accurate fit of their light dis-
tribution. However, as seen in Sect. 6.7, in some cases the fitting
error prevented the finding of faint sources located in the vicinity
of these bright objects. More generally, the method has difficulty
with source crowding, as is often the case in deep observations
obtained at ground-based spatial resolution. As it is currently de-
signed, SELFI will fail to disentangle low overlapping sources if

A140, page 12 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527724&pdf_id=13


C. Meillier et al.: SELFI – the MUSE Source Emission Line FInder

5000 6000 7000 8000 9000
2

1

0

1

2

3

4

5

6

8000 8010 8020

Fig. 14. New z = 1.15 [OII]3727 emitter found by the algorithm. Top
panels, from left to right: white light, HST F814, and [OII] narrowband
images. The image dimension is 5 × 5 arcsec2. Black circle: source
location in reference catalog. The bright source at the top is the ID#577
z = 5.8 Lyα emitter without a HST counterpart, as already identified in
the reference catalog. Red circle: location of a new source. Central pan-
els, from left to right: SELFI max and wavelengths maps (see Sect. 6.4)
and [OII] narrowband image derived from the matched filtered data
cube. Bottom panels: integrated spectrum, as given by the algorithm.
Left: full spectra (smoothed with a Gaussian of 5 pixels FWHM); right:
(un-smoothed) zoomed over the [OII] doublet.

they are too superimposed, and even if their spectral signatures
are very different. Deblending of sources in the MUSE data cube
is an important but difficult task. This will need different algo-
rithms and will be the subject of a separate study.

Looking back at the requirements set in Sect. 2.1, we have
confirmed the good completion rate (91%) and the low number
of false detections (9%). The modeling of the source as a 3D
object (requirement 2) was achieved, although its 3D shape is
limited to the 2D × 1D distributions. In reality, the spectral pro-
file will change in a galaxy owing to the different composition,
kinematics, and state of the gas and the stars. For faint compact
sources, however, this approximation is justified. The method is
not fully nonparametric (requirement 3) because of the Sérsic
model and the elliptical shape of the light distribution, although
the number of parameters is limited. More importantly, the non-
parametric spectral distribution is preserved in the model. This
method was made more robust against imperfect data (require-
ment 4) by developing advanced preprocessing of the data cube.
There are many parameters in the algorithm, but only one key
parameter controls the false number (requirement 5). Finally, the
full process ran in less than 1 h on a multi-core workstation for
the full MUSE data cube (requirement 6).

SELFI was designed to be modular, and two future improve-
ments can already be mentioned. In this first version of SELFI,
we chose to model all of the source light profiles using Sérsic
functions. Now we see that this is not accurate enough to fit the
extended source profiles. The model used for the light distribu-
tion of the sources can be easily modified in SELFI code to better
fit the source profiles. Another point of improvement is related
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Fig. 15. New z = 3.4 Lyα emitter found by the algorithm. Red circle:
location of a new source. Central panels, from left to right: SELFI max
and wavelengths maps (see Sect. 6.4) and Lyα narrowband image de-
rived from the matched filtered data cube. Bottom panels: integrated
spectrum, as given by the algorithm. Left: full spectra (smoothed with
a Gaussian of 5 pixels FWHM); right: (un-smoothed) zoomed over the
Lyα emission line.

Fig. 16. Top panels, from left to right: white light, HST F814, and Lyα
narrowband images. Image size is 10 × 10 arcsec2. Black circle: source
location in reference catalog. Red circle: location of undetected source.
Bottom panels, from left to right: white light, HST F814, and [OII] nar-
rowband images. Black circle: source location in reference catalog. Red
circle: location of additional spurious source found by the algorithm.

to the preprocessing of the data that builds the proposition map.
In this first version, the map was elaborated according to an in-
dividual error control: for each spectrum, we decide if there was
only noise or if there was a contribution of a source with respect
to a false-alarm probability without taking into account the other
detections. In a recent study (Meillier et al. 2015a), we proposed
another method that allows the control of a global error crite-
rion: the false-discovery rate in the list of pixels detected. This
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kind of approach can be developed in parallel with the current
preprocessing.

We have made the software and its documentation available
on the public MUSE science web service11.

Acknowledgements. R. Bacon acknowledges support from the ERC advanced
grant 339659-MUSICOS. We would like to thank Johan Richard for his help in
testing and validating the method.
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Appendix A: RJMCMC algorithm

This Appendix details the different moves used in the RJMCMC
sampling of the object configuration.

A.1. Birth move

The birth move consists of adding a new object to the con-
figuration. This increases the dimensionality of the estimation
problem, and consequently the computational complexity of
the algorithm. It is of interest to reduce the number of useless
propositions, e.g., in areas that contain only background noise.
The proposition map built on the same criterion as the marked-
point process intensity allows these propositions to be reduced.
The birth move consists of a few steps:

1. Selection of a spatial pixel position (pint, qint) on the propo-
sition map (respecting the intensity of the point process).
We note that the position of the center is proposed contin-
uously on the pixel grid. The proposed position is obtained
by adding a random position (∆p,∆q) ∼ U ([0, 1[×[0, 1[),
then (p, q) = (pint + ∆p, qint + ∆q).

2. Proposition of the geometric marks and the Sérsic index ac-
cording to the uniform priors defined in paragraph 2.3.

3. Addition of the corresponding elliptical object to the current
configuration to form the proposition.

4. Acceptance or rejection of the object.
5. Update of the new configuration.

During the third step, if the proposed object does not respect the
constraints included in the marked-point process density, such
as the overlapping criterion, the birth move is aborted and the
configuration remains unchanged (the posterior value is set to
the previous one).

A.2. Death move

The death move consists of deleting an object from the current
configuration. This can be useful when an incorrect object has
been proposed and accepted because its contribution to the
posterior density was sufficiently important at the corresponding

iteration. It can also be accepted in the case of a very faint object
where the detection depends on the quality of the noise param-
eter estimation. The death move is applied using the following
procedure:

1. Selection of an object uniformly in the current configuration.
2. Suppression of this object in the proposed configuration.
3. Acceptance or rejection of the object.
4. Update of the new configuration.

We note that if the user selects a very low false-alarm probability,
only very bright galaxies can be detected and the proposition
map and the intensity of the marked-point process is restricted
to areas of the cube that contain strong signals. In this case, the
death acceptation rate should be close to 0.

A.3. Simple modifications of one object

The current configuration can be modified without changing the
dimension. A modification to the shape, the position, or the ori-
entation can be applied to one object of the configuration. This
allows an object to be changed so that its shape or position best
represents the data. The procedure is quite similar to the birth
and the death moves:

1. Selection of an object uniformly in the current configuration.
2. Proposition of the new object by applying a uniform dis-

tributed modification on the position (translation), the orien-
tation (rotation), or the axis (shape change). When modifying
an object, the Sérsic index is systematically sampled accord-
ing to the uniform distribution defined in paragraph 2.3.

3. Suppression of the selected object in the proposed
configuration.

4. Addition of the new object (the modified one).
5. Acceptance or rejection of the object.
6. Update of the new configuration.

The new axis, position, or orientation is uniformly selected
in a +/−20% interval around the value of the selected object.
Examples of modifications are shown in Fig. 6.
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