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Isotropic Multiple Scattering Processes on
Hyperspheres

Nicolas Le Bihan, Florent Chatelain, and Jonathan H. Manton, IEEE fellow

Abstract

This paper presents several results about isotropic random walks and multiple scattering processes on hyperspheres Sp−1.
It allows one to derive the Fourier expansions on Sp−1 of these processes. A result of unimodality for the multiconvolution of
symmetrical probability density functions (pdf) on Sp−1 is also introduced. Such processes are then studied in the case where
the scattering distribution is von Mises Fisher (vMF). Asymptotic distributions for the multiconvolution of vMFs on Sp−1 are
obtained. Both Fourier expansion and asymptotic approximation allows us to compute estimation bounds for the parameters of
Compound Cox Processes (CCP) on Sp−1.

Index Terms

Isotropic random walk on Sp−1, Compound Cox Processes on Sp−1, von Mises-Fisher distribution, Fourier series expansion
on hyperspheres, multiple scattering, Cramer-Rao lower bounds.

I. INTRODUCTION

Mixtures of von Mises-Fisher (vMF) distributions are models used in applications ranging from MRI data analysis [1] to
radiation therapy beam direction clustering [2] and speaker clustering [3]. The finite mixture case was originally studied in [4]
for data clustering on hyperspheres. All the above mentioned contributions made use of EM algorithms for the estimation of
mixtures weights, vMF distribution parameters or number of mixture component.

In this paper, we consider particular countably infinite mixtures of directional distributions where the components of the
mixture are multiply convolved distribution of unit vector in Rp, i.e. elements of Sp−1, and where the weights are controlled
by a Cox process.

The proposed approach is valid for any dimension p, even though applications are mainly concerned with the case p = 3.
In particular, the problem of multiple scattering for waves (or particles) in a random medium can be studied with the random
processes presented in this work. As originally introduced in [5], compound/mixture processes model allow the description
of the output distribution of the direction of propagation of the wave in terms of a mixture of symmetrical distributions on
hyperspheres. Similar models are studied in [6], [7] where multiple scattering is described as a Compound Poisson Process
(CPP) on the rotation group SO(3). In [6], it is shown that this model allows to describe forward multiple scattering, and its
accuracy is high when the number of diffusion events is low. Thus, the CPP model describes the behavior of particles in a
scattering medium before the fully developed diffusive regime (known to be thoroughly described by the Brownian motion on
SO(3) and originally studied by Perrin [8]).

Convolution on the hypersphere have been studied for pdf modelling in engineering application [9]. Random walk models
on the sphere have been used to describe wave propagation in engineering litterature [10] and multiple scattering is a reccurent
issue in many engineering applications such as optics [11], communications [12] and antennas [13], [14]. The occurence of
random scatterers in a wide range of wavelengths makes the problem of multiple scattering relevent to many types of wave
propagation. Being able to analyse the distribution of the multiply scattered wave/particle is thus of critical importance. The
model studied in this paper aims at describing multiple scattering with a stochastic process and make use of results from
harmonic analysis on spheres to predict the behaviour of multiple scattering processes. In addition, stochastic process model
allows to infer on the medium the particle/wave has travelled through. In this paper, the harmonic expansions we have derived
allows one to numerically evaluate the lower bounds achievable for the estimation of medium parameters.

In this paper, we extend the CPP model to the case where the counting process is no longer a homogeneous Poisson process,
but rather a Cox process, i.e. a process with intensity being a positive random process itself. The family of processes considered
are thus Compound Cox Processes (CCP) on Sp−1. In contrast with [6], [7], the pdf of the random walk and the multiple
scattering process is here studied in detail for the general case of isotropic random scattering events and when these events
are von Mises Fisher distributed. Several results about multiconvolution, symmetry and unimodality of such pdfs on Sp−1

are introduced and used to provide Fourier series expansion of the pdf of a multiply scattered unit vector in Rp. In the von
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Mises Fisher case, we provide an asymptotic distribution of the process which is a mixture of vMF distributions. In addition,
we compute the Cramer Rao lower bounds (CRLB) for some parameters of the CCP model on Sp−1 in the case where the
counting process is either a Poisson process or a Cox process with distribution belonging to an exponential family (when its
intensity process is a Gamma process).

The contributions of the paper can be summarized as follows: the isotropic multiple scattering process is expressed using
multiple convolution on double cosets. An unimodality theorem is given for such multi-convolution of unimodal and symmetric
pdfs on Sp−1. Using harmonic analysis results on hyperspheres allows us to obtain the expression of the Fourier coefficients
(Legendre polynomial moments) of the pdf of a n-step isotropic random walk on Sp−1, which leads to the Fourier expansion
of this pdf. These results are extended to the multiple scattering process pdf when the occurence of scattering events is a Cox
process. In particular, the case when each random step follows a von Mises Fisher (vMF) law is studied in detail: asymptotic
approximations for vMF random walk and multiple scattering process on Sp−1 are given.

The remainder of this text is outlined as follows. Properties of the isotropic random walk on Sp−1 are given in II. Section
III presents the Compound Cox Process (CCP) model for the study of multiple scattering on hyperspheres, with emphasis on
the use of harmonic analysis on Sp−1 to provide characteristic function of the distribution after a time t. Section IV gives an
approximation result for multiconvolved vMF pdfs and its potential use for the estimation of the CCP parameters.

II. RANDOM WALK ON Sp−1

After reviewing some known facts about hyperspheres and functions taking values on hyperspheres, we introduce new results
for the homogeneous random walk on Sp−1.

A. General properties

In Rp, the hypersphere, denoted Sp−1, is the set of p dimensional vectors with unit length Sp−1 = {x ∈ Rp; ||x|| =
1}. Hyperspheres (sometimes simply called spheres) are well-known compact manifolds with positive curvature. They are
homogeneous spaces of importance in Lie group theory, especially because of their relation with the rotation group SO(p); as
they are the following quotients: Sp−1 ∼= SO(p)/SO(p − 1). Hyperspheres are Riemannian symmetric spaces for which the
Riemannian distance is simply the ”angle” between two elements, d(x,y) = | arccos(xTy)| for x,y ∈ Sp−1. In the sequel,
we will make use of the notation θx,y for the distance between x and y, which is comprised between 0 and π, to avoid any
ambiguity. Also, we will use the notation µTx = cos θx,µ as x and µ are unit vectors in Rp. Finally, this allows us to define
the tangent-normal decomposition of the random unit vector x:

x = tµ+
√

1− t2ξ, (1)

where t = µTx, and ξ belongs to the intersection of Sp−1 with the hyperplane through the origin normal to µ, denoted as
µ⊥ ∩ Sp−1, which equals Sp−2.

B. Mathematical problem statement

We consider the problem of modelling the distribution of the isotropic multiple scattering process on the sphere Sp−1 in Rp.
Each isotropic scattering event acts as a random rotation R ∈ SO(p) on the direction of propagation x ∈ Sp−1. The direction
after k ≥ 1 scattering events reads

xk = Rkxk−1 = Rk . . . R1x0,

where Rl is the rotation matrix associated with the lth scattering event. Let ξk be the direction of the normal part of xk with
respect to xk−1 as defined in (1). The isotropy assumption involves that ξk is uniformly distributed on x⊥k−1∩Sp−1. Moreover,
the scattering events are assumed to be mutually independent and independent of the initial direction x0. This involves the
first order Markov property on the chain of random directions x0, x1, . . . xn in Sp−1: xk given xk−1 is independent of xl
for 0 ≤ l ≤ k − 2.

The multiple scattering process considered in this paper is governed by the distribution of xt ≡ xN(t) ∈ Sp−1 where the
random number N(t) of scatterers/rotations after a time t is driven by a Poisson or more generally a Cox process.

C. Symmetrical pdfs on Sp−1

In this paper, we will consider probability density functions (pdf s) f of the direction vector x. These pdf s are elements from
L1(Sp−1,R) with the following additional constraints: positivity and

∫
Sp−1 f(x)dx = 1. In particular, we will be concerned

with pdf s that will only depend on the angular variable (the Riemannian distance introduced in II-A). An example of such pdf
is the von Mises Fisher [15] distribution that will be considered later in the paper. Before moving to this specific case, we
consider general symmetrical pdf s. In this case, the pdf f(x;µ) is only a function of the cosine xTµ, i.e. for all x ∈ Sp−1

f(x;µ) = g(µTx), (2)
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where the unit vector parameter µ ∈ Sp−1 characterizes the rotational axis [15, p. 179]. Without loss of generality, we can
assume in the sequel that µ is oriented such that E[µTx] ≥ 0. Consider the tangent-normal decomposition x = tµ+

√
1− t2ξ

defined in (1). The rotational symmetry constraint (2) directly implies that ξ is independent of t and uniformly distributed on
the space µ⊥ ∩ Sp−1. For symmetry reason, the first moment of area of this space is the null vector. Thus E[ξ] = 0, and the
mean of x expresses as

E[x] = ρµ, (3)

where the scalar ρ = E[µTx] = ||E[x]|| ∈ [0, 1] is called the mean resultant length [15, p. 164]. When ρ > 0, the mean
direction is uniquely defined as the rotational axis vector µ ∈ Sp−1. Note that the mean resultant length ρ is directly linked with
the dispersion of the directional distribution. A value of ρ close to 1 indicates a high concentration about the mean direction.

Based now on the higher moments of directional statistics, harmonic analysis on spheres provides us a way to derive a
characteristic function for pdfs taking values on Sp−1. In the symmetrical case (also known as the zonal case), the characteristic
function (i.e. the Fourier transform of f ) takes a simple form [16], [17] as an harmonic basis consists of the Legendre
polynomials. Given a pdf f ∈ L1(Sp−1,R) that is symmetrical about µ ∈ Sp−1, its characteristic function, denoted f̂`, for
` ≥ 0, is given by:

f̂` = E [P`(cos θx,µ)] , (4)

= E
[
P`(µ

Tx)
]
, (5)

=

∫
Sp−1

f(x;µ)P`(µ
Tx)dx (6)

where P`(µTx) are the Legendre polynomials of order ` in dimensions p taken at x with respect to µ, the symmetry axis of
f . Note that the Legendre polynomials P`(t) in dimensions p are the same as the ultraspherical or Gegenbauer polynomials
C

(p−2)/2
` (t) [18, pp. 771–802] renormalized such that P`(1) = 1. This yields

P`(t) =
[ Γ(`+ p− 2)

`!Γ(p− 2)︸ ︷︷ ︸
C

(p−2)/2
` (1)

]−1

C
(p−2)/2
` (t),

for all t ∈ [−1, 1], ` ≥ 0. This normalization ensures that |P`(t)| ≤ 1 for all |t| ≤ 1, thus |f̂`| ≤ 1. This family of polynomials
forms an orthogonal basis on the Hilbert space of square-integrable functions on Sp−1 that are rotationally symmetric about
µ:

〈P`, Pm〉 =

∫
Sp−1

P`(µ
Tx)Pm(µTx)dx = c−1

p,`δ`,m,

where δ`,m = 1 if ` = m, and 0 otherwise. The normalizing constants read

cp,` =
1

ωq−1

(2`+ p− 2)Γ(`+ p− 2)

`!Γ(p− 1)
, (7)

for all ` ≥ 0 with ωq−1 = 2 πp/2

Γ(p/2) the area of the (p− 1)-dimensional sphere Sp−1. Moreover, the Fourier expansion of any
p-dimensional rotationally symmetric and continuous pdf f(·;µ) can be written:

f(x;µ) =
∑
`≥0

cp,`f̂`P`(µ
Tx), (8)

for all x ∈ Sp−1. Note that the Fourier coefficients f̂`, also called Legendre polynomial moments, are scalar valued and that
is a consequence of the symmetry assumption.

D. Convolution of symmetrical pdfs on Sp−1

As already mentioned, we will focus on pdf s which are symmetrical and thus only depend on one angular variable. In
particular, this will come from the fact that we will consider isotropic random walks on Sp−1. As we will also assume the
random steps to be independent, we will end up considering multiple convolution of their associated density. Following [19],
we provide here a way to handle the convolution of symmetrical functions in the framework of integrable functions over double
cosets. First, recall that given a group G and two subgroups of G, denoted H and K, a double coset in G is an equivalence
class defined by the equivalence relation x ∼ y iff there exists h ∈ H and k ∈ K such that:

hxk = y. (9)

Given g ∈ G, the double coset HgK = {hgk | h ∈ H, k ∈ K} is therefore the orbit of the group action of H×K on g, where H
acts by left multiplication and K acts by right multiplication. The set of double cosets denoted as H\G/K contains all the orbits
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of the group action of H×K on G. Here, we will consider the case where G = SO(p) and H = K = SO(p−1), i.e. the double
cosets in SO(p−1)\SO(p)/SO(p−1). As explained in [19], this set of double cosets can be parametrized using the colatitude
measured with respect to the axis left invariant by the SO(p− 1) subgroup. The space L1(SO(p− 1)\SO(p)/SO(p− 1),R)
is the space of functions in L1(SO(p),R) that are invariant on double cosets KgK for g ∈ SO(p) and K ∼= SO(p− 1).

Thus, such functions can be thought as function g(xTµ) = g(cos θx) of the (co)latitude of the (p− 2)-dimensional sphere
defined by cos θx = xTµ where µ ∈ Sp−1 is the axis left invariant by the SO(p − 1) rotation subgroup (to be chosen
arbitrarily)1. This underlines that symmetrical pdfs about µ belong to this double coset space according to eq. (2).

The convolution product in L1(SO(p−1)\SO(p)/SO(p−1),R) is inherited from the convolution product in L1(SO(p),R)
and reads:

(f ?µ g) (x) =

∫
Sp−1

f(xTy)g(yTµ)dy, (10)

for all x ∈ Sp−1, where µ is again the axis left invariant by the rotation subgroup SO(p − 1). The notation ?µ is used to
recall that the (co)latitude is measured with respect to the axis µ left invariant by SO(p− 1).

Proposition II.1 (Convolution). Let f, g ∈ L1(SO(p− 1)\SO(p)/SO(p− 1),R), with µ standing for the axis left invariant
by the rotation subgroup SO(p− 1). The following properties hold for the convolution in the double coset space.

i) Stability. f ?µ g ∈ L1(SO(p− 1)\SO(p)/SO(p− 1),R), that is f ?µ g is a function of the only cosine µTx:

(f ?µ g) (x) ≡ (f ?µ g) (µTx), (11)

ii) Commutativity.

(f ?µ g) (x) = (g ?µ f) (x), (12)

iii) Fourier product. If f̂` and ĝ` are the respective `th-order Fourier coefficients of f and g, the Fourier coefficients of their
convolution product is given by:

̂(f ?µ g)` = f̂` ĝ`, (13)

for all ` ≥ 0.

Proof: Some proofs for the two first properties i) and ii) are given in [19, p. 237–239] for p = 3; they naturally extend
to the general case p ≥ 2. Property iii) is a direct consequence of the Funk-Hecke theorem [17, Theorem 7.8, p. 188].

These properties illustrate that the convolution product and its Fourier expansion behave nicely in this space. In particular,
property iii) of Prop. II.1 allows us to obtain the convolution theorem. Finally, some well-known results on symmetry and
unimodality in the real line can be extended to the convolution on the hypersphere.

Theorem II.2 (Unimodality of the convolution product). Let f, g ∈ L1(SO(p − 1)\SO(p)/SO(p − 1),R) be the pdfs of
two absolutely continuous unimodal and rotationally symmetric distributions on Sp−1 with the same mode which necessarily
equals their mean direction µ ∈ Sp−1. Then the convolved distribution f ?µ g, which is rotationally symmetric about µ or
equivalently belongs to L1(SO(p− 1)\SO(p)/SO(p− 1),R) according to Prop. II.1, is also unimodal with mode µ.

Proof: See Appendix A.

E. Random walk on Sp−1: directional distribution

As explained in II-B, the chain of random vectors x0, x1, . . . xn in Sp−1 obeys the Markov property since given all the past
directions x0, . . . ,xk−1, the current direction xk depends only on the previous one xk−1. As a consequence, each random
step xk−1 → xk, for all k ≥ 1, are independent. This defines a discrete time random walk on the hypersphere Sp−1. It is of
note that these steps are not necessarily identically distributed. However, an important case appears when they are isotropic,
so that all the step directions are equiprobable. Thus, the distribution of the kth-step direction xk is rotationally symmetric
about the previous one xk−1, for all k ≥ 1. According to (2), its conditional pdf expresses as

f(xk|xk−1) = gk,k−1(xTk−1xk), (14)

for all k ≥ 1. In the remainder, we assume that the initial direction x0 is fixed to a deterministic direction µ and that the
walk is isotropic, which means that the distributions that govern each step express as (14). The following proposition states

1A function h ∈ L1(SO(p−1)\SO(p)/SO(p−1),R) is defined on the rotation group SO(p). However, this function depends only on the cosine between
the axis left invariant by the SO(p− 1) subgroup and its rotated image. For any R ∈ SO(p), such a function can be expressed as h(R) = f(x) = g(µTx)
with x = Rµ, where the functions f and g are defined on Sp−1 and [−1, 1] respectively. This shows that a function in L1(SO(p−1)\SO(p)/SO(p−1),R)
can be identified as a function on Sp−1 or a function of the cosine µTx defined on [−1, 1]. By abuse of notation, we will confuse these functions in the
remainder.
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the link between the directional pdf after n steps of the isotropic random walk on Sp−1 with the convolution on the double
coset L1(SO(p− 1)\SO(p)/SO(p− 1),R) introduced in section II-D.

Theorem II.3. Given an isotropic n-step random walk on Sp−1, the pdf of xn ∈ Sp−1 is the n-fold convolution in L1(SO(p−
1)\SO(p)/SO(p− 1),R), where SO(p− 1) is the rotation subgroup such that µ is left invariant. It reads

f(xn;µ) = (gn,n−1 ?µ · · · ?µ g1,0) (xn) (15)

where f(xk|xk−1) = gk,k−1(xTk xk−1) can be identified as the conditional pdf of xk given xk−1.

Proof: The proof is conducted by induction. Since x0 = µ is a deterministic vector, the pdf of x1 is f(x1;µ) = g1,0(µTx1)
and belongs to L1(SO(p− 1)\SO(p)/SO(p− 1),R). Thus the base case holds for n = 1. Assume now that the pdf of xk−1,
for k > 1, is symmetrical with respect to µ, i.e. f(xk−1;µ) = gk−1(µTxk−1) ∈ L1(SO(p− 1)\SO(p)/SO(p− 1),R), and
is given by the following (k − 1)-fold convolution: fk−1(xk−1;µ) = (gk−1,k−2 ?µ · · · ?µ g1,0) (xk−1).

Due to the isotropic assumption, the conditional pdf f(xk|xk−1) = gk,k−1(xTk xk−1) also belongs to L1(SO(p−1)\SO(p)/SO(p−
1),R). Moreover, this conditional pdf allows us to express the density of xk as

f(xk;µ) =

∫
Sp−1

f(xk|xk−1)f(xk−1;µ)dxk−1,

=

∫
Sp−1

gk,k−1(xTk xk−1)gk−1(µTxk−1; )dxk−1.

According to (10), we recognize the following convolution on the double coset: f(xk;µ) = (gk,k−1 ?µ gk−1)(xk). Thus
f(xk;µ) is also symmetrical about µ according to property i) of Prop. II.1. As gk−1 is assumed to be a k−1-fold convolution,
it comes finally by associativity that f(xk;µ) = (gk,k−1 ?µ · · · ?µ g1,0) (xk), and the inductive step holds.

A direct consequence of Theorem II.3 is that the distribution of n-step random walk is rotationally symmetrical about the
initial direction µ since f(xn;µ) ∈ L1(SO(p−1)\SO(p)/SO(p−1),R). Furthermore, it allows us to express the characteristic
function of the random walk based on the Legendre polynomial moments of each step.

Corollary II.4 (Mean and Fourier Coefficient of the isotropic random walk). For all n ≥ 1, the mean of the n-step direction
xn ∈ Sp−1 expresses as

E[xn] =

(
n∏
k=1

ρk,k−1

)
µ, (16)

where ρk,k−1 = E[xTk−1xk|xk−1] is the mean resultant length for the conditional distribution f(xk|xk−1) = gk,k−1(xTk−1xk)
that governs the kth step xk−1 → xk.

More generally, for all n ≥ 1, ` ≥ 0, the `th order Fourier coefficient of the n-step distribution is

f̂⊗n` ≡ E[P`(µ
Txn)] =

n∏
k=1

ĝk,k−1`, (17)

where ĝk,k−1` = E[P`(x
T
k−1xk)|xk−1] denotes the Fourier coefficient for the conditional distribution f(xk|xk−1) = gk,k−1(xTk−1xk).

Proof: Eq. (17) is derived from the multiconvolution formula (15) and the iterative use of the convolution theorem (13)
given in Prop. II.1. Eq. (16) is derived from the mean of a rotationally symmetric distribution (3) and from (17) when ` = 1
since P1(t) = t for all p ≥ 2.

Eq. (16) shows that the mean direction of the n-step is the initial direction µ, while its mean resultant length reduces to the
product of the mean resultant lengths associated with each step:

ρn ≡ E[µTxn] =

n∏
k=1

ρk,k−1. (18)

This formula emphasizes that the directional dispersion increases with the number n of steps, since 0 ≤ ρk,k−1 ≤ 1 for all
k ≥ 1.

Based on the Fourier coefficient formulas, it becomes possible to obtain a Fourier expansion of the rotationally symmetric
random walk pdf.

Corollary II.5 (Fourier expansion of the isotropic random walk pdf). For all n ≥ 1, the Fourier expansion pdf of the n-step
direction xn ∈ Sp−1 reads

f(xn;µ) =
∑
`≥0

cp,`f̂
⊗n
` P`(µ

Tx), (19)

where the Fourier coefficients f̂⊗n` are given in (17), the normalizing constants cp,` being defined in (7).
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Proof: The distribution of xn is symmetric according to Theorem II.3, and the Fourier expansion formula (8) can be
applied.

It is important to note that when all the steps of the random walk are identically distributed, i.e. f(xk|xk−1) = g(xTk−1xk)
for all k ≥ 1, the Fourier coefficients reduces to

f̂⊗n` = (ĝ`)
n
, (20)

where ĝ` = E[P`(µ
Tx1)] is the Fourier coefficient of the distribution that governs a random walk step.

Finally, it is possible to derive sufficient conditions to ensure the unimodality of the isotropic random walk

Corollary II.6 (Unimodality of the isotropic random walk). Assume that the conditional directional distributions f(xk|xk−1) =
gk,k−1(xTk−1xk), which are rotationally symmetric, are also absolutely continuous (or equivalently that gk,k−1 is a continuous
function on [−1, 1]) and unimodal with a mode that necessarily equals their mean direction. Then, for all n ≥ 1, the pdf of
the n-step direction xn ∈ Sp−1 is also unimodal with a mode that equals the original direction µ ≡ x0.

Proof: This result is derived from the multiconvolution formula (15) and the iterative use of Theorem II.2.

III. MULTIPLE SCATTERING MODEL

The model presented in this section is motivated by the description of multiple scattering which occurs in a wide range
of applications in Physics and Engineering, including optical, microwave, acoustics or elastic waves [20] . We consider the
description of the distribution of the output direction of propagation of a particle/wave that propagated through a random
medium. This random medium is made of an homogeneous medium/matrix containing some inclusions of size of the same
order as the particle size (or wavelength of the wave). Inclusions have different physical properties inducing that a scattering
event happens each time the particle/wave encounters an inclusion (also named scatterer). The number and locations of the
scatterers is random and between two scattering events, the wave/particle propagates balisticaly. It is a classical approach to
consider that the time between two scattering events follows an exponential law. Such an assumption leads to Compound
Poisson Process models as described in [5], [6], [7], [21]. Here, we consider the more general case where the intensity of the
counting process is a random process itself. We will thus make use of Compound Cox Processes taking values on hyperspheres
to model multiple scattering.

A. Compound Cox process on Sp−1

Consider an initial vector x0 ≡ µ ∈ Sp−1. After a time t (the time spent propagating in the random medium), assume the
resulting vector xt ∈ Sp−1 is a mixture made of contributions of rotated versions of µ an arbitrary number of times n. The
weight of each contribution is simply the probability that the wave/particle encountered n scatterers during the period of time t,
i.e. P[N(t) = n]. N(t) is called the counting process. In the classical compound Poisson process [7], N(t) is an homogeneous
Poisson process and each individual weight is equal to e−λt(λt)n/n! where the constant λ is the Poisson intensity parameter.
This weight is obtained when the time between two rotations of the vector is chosen to have an exponential distribution with
parameter λ. The equivalent Poisson parameter λt = λt of N(t) consists of the mean number of rotation events in the elapsed
time t. In Physics, it is related to the mean free path ` like ` = c/λ where c is the celerity in the medium. Thus, ` is the mean
distance between two consecutive rotation events (see [6]).

Now, if the counting process N(t) is no more a homogeneous Poisson process, an alternative is to consider that the intensity
measure of N(t) is a random process Λ(t). N(t) is then called a mixed Poisson process, or a Cox process [22].

In this case, the distribution of N(t) is a mixed Poisson distribution which reads [23]:

P[N(t) = n] = Pn
[
fΛ(t)

]
(21)

=

∫ +∞

0

e−λtλnt
n!

fΛ(t)(λt)dλt (22)

where Pn
[
fΛ(t)

]
is called the Poisson transform of the mixing pdf fΛ(t) [23].

In the isotropic case, the steps associated with the scattering events are governed by rotationally symmetric distribution as
explained in section II-E. For the sake of simplicity, all these random steps are assumed to be identically distributed, and we
denote as f̂` ≡ ĝ` the `th order Fourier coefficient of the random step distribution, for all ` ≥ 0. This yields that the `th order
Fourier coefficient of the n-step random walk direction reduces to f̂⊗n` =

(
f̂`

)n
according to (20).

Conditioning by the number of scattering events, one gets the expression of the density of xt:

f(xt;µ) =P0 [fΛt ] δµ(xt)

+
∑
n≥1

Pn [fΛt ] f
⊗n(xt;µ), (23)
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where δµ(xt) denotes a mass located in the original direction µ ≡ x0 ∈ Sp−1, and f⊗n(xt;µ) denotes the n-step random
walk pdf with original direction µ.

The pdf f(xt;µ) thus consists of a mixture of n-fold convolutions of identical distributions according to Thm. II.3, for all
n > 0, plus a mass in µ which corresponds to direct paths.

Equation (23) covers several cases. If N(t) is a homogeneous Poisson process with intensity parameter λ, then Pn [fΛt(wt)] =
e−λt(λt)n

n! and this case was considered in [21], [6], [7]. If N(t) is a Cox process, an interesting case appears when its distribution
belongs to an exponential family. As explained in [24], this happens when Λ(t) is a stationary i.i.d. Gamma process , i.e.
Λt ∼ G(t; ξ, θ) ∼ G(ξt, θ) where ξ is the shape parameter and θ the scale parameter. The distribution of this process is thus:

fΛt(λt = x) =
θξt

Γ(ξt)
xξt−1e−θx, (24)

for all x > 0. It comes by direct calculation that in this case the Poisson transform is

Pn [fΛt ] =
Γ(n+ ξt)

n!Γ(ξt)

θξt

(θ + 1)n+ξt
(25)

which shows that when Λt is a Gamma process with scale parameter ξ and shape parameter θ, N(t) is a negative binomial
process. In fact, in such case, the weight coefficients in (23) follow a negative binomial law NB(rt, q) with stopping-time
parameter rt = ξt and success probability q = (θ + 1)−1.

B. Characteristic function of the multiple scattering process

The distribution of the multiple scattering process (23) consists of the mixture of a mass in µ for the direct paths and a
continuous distribution that consists of the n-fold random step convolutions for all n ≥ 1. This continuous distribution is the
conditional distribution of xt given there is at least one diffusion, i.e. N(t) > 0. Its pdf denoted as f⊗>0 reads f⊗>0(xt;µ) =
c0h
⊗>0(xt;µ) where c0 = (1− P0 [fΛt ])

−1 is the normalizing constant of the truncated distribution corresponding to the
event N(t) > 0 and h⊗>0 is the following unnormalized density

h⊗>0(xt;µ) =
∑
n≥1

Pn [fΛt ] f
⊗n(xt;µ). (26)

This pdf is rotationally symmetric about µ as a mixture of symmetric distributions. This shows that h⊗>0(xt;µ) admits a
Fourier expansion (8). Note also that when the distribution that governs the random steps is unimodal, the pdf of xt is unimodal
with mode µ as a mixture of unimodal distributions according to Corollary II.6.

Considering the Laplace transform of the mixing process Λt

LΛt [z] = E[e−zΛt ] =

∫ +∞

0

e−zλtfΛ(t)(λt)dλt,

we obtain the following expression of the Fourier coefficients.

Lemma 1. The Fourier coefficients of the continuous unnormalized density h⊗>0 express as

ĥ⊗>0
` = LΛt

[
1− f̂`

]
− LΛt [1] , (27)

for all ` ≥ 0, where f̂` is the Fourier coefficient of the isotropic and identically distributed random steps and where LΛt [1] =
P0 [fΛt ] = Pr(Nt = 0).

Proof: Based on the orthogonality property of the Legendre polynomials, it comes from (26) and the Fourier expansion
of each n-fold convolved pdf f⊗n (19), for n ≥ 1, that

ĥ⊗>0
` =

∑
n≥1

Pn [fΛt ] f̂
n
` , (28)

where |f̂`| ≤ 1 by construction. According to Fubini theorem, one can interchange the summation symbol with the Poisson
transform integral. This yields

ĥ⊗>0
` =

∫ +∞

0

e−λtfΛt(λt)
∑
n≥1

(
λtf̂`

)n
n!

dλt,

=

∫ +∞

0

e−λtfΛt(λt)
[
eλtf̂` − 1

]
dλt,

= LΛt

[
1− f̂`

]
− LΛt [1] ,
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for all ` ≥ 0. Note finally that the Laplace transform LΛt [z] is well-defined for all z ≥ 0 since Λt is a positive random variable.
Thus the Fubini theorem holds as 1− |f̂`| ≥ 0, and the Fourier coefficients are well defined.

Consider now the probability generating function of the Cox process Nt:

GNt [z] = E
[
zNt
]

=
∑
n≥0

Pn [fΛt ] z
n.

A classical result about mixed Poisson distribution, see for instance [24], [25], is that GNt can be easily derived from the
Laplace transform of the mixing distribution as

GNt [z] = LΛt [1− z] .

The Fourier coefficients given in Lemma 1 can thus be expressed in an equivalent way as

ĥ⊗>0
` = GNt

[
f̂`

]
−GNt [0] , (29)

where GNt [0] = LΛt [1] = P0 [fΛt ] = Pr(Nt = 0).
Finally, based on the Fourier expansion of the continuous function h⊗>0, we obtain the following results for the distribution

of xt.

Proposition III.1. The pdf of the direction xt in the multiple scattering process can be expanded as

f(xt;µ) =P0 [fΛt ] δµ(xt) +
∑
`≥0

cp,`ĥ⊗>0
`P`(µ

Txt), (30)

where the coefficients ĥ⊗>0
` are given in (27), or equivalently in (29).

Moreover, the Legendre polynomial moments read

E[P`(µ
Txt)] = GNt

[
f̂`

]
= LΛt

[
1− f̂`

]
, (31)

for all ` ≥ 0, where f̂` is the Fourier coefficient of the isotropic and identically distributed random steps.

Proof: It remains to show the Legendre polynomial moment formula (31). The distribution of xt is a linear mixture of
a mass in µ with probability P0 [fΛt ] = GNt [0] and a continuous distribution. As P`(µTµ) = P`(1) = 1, the contribution
of the mass in µ to the `th order Legendre moment reduces to its probability. By linearity, it comes that E

[
P`(µ

Txt)
]

=

GNt [0] + ĥ⊗>0
` = GNt

[
f̂`

]
according to (29).

It is important to note that the distribution of xt is not continuous due to the mass in µ. As written in (30), only the
continuous part admit a Fourier expansion in the pointwise convergence sense. However, all the Legendre polynomial moments
of the multiple scattering direction xt are well-defined and have tractable expressions given in (31).

One consequence is that the mean resultant length of the multiple scattering process xt express as ρt = E[µTxt] = GNt

[
f̂1

]
.

And due to the rotational symmetry, the mean of xt is

E[xt] = ρtµ = GNt

[
f̂1

]
µ.

Proposition III.1 allows us to express the Fourier coefficients and the Legendre polynomial moments in two particular cases
that we are especially interested in. First in the case of the homogeneous Poisson process where Λt = λt is a deterministic
constant, it comes that

ĥ⊗>0
` = e−λt

[
eλtf̂` − 1

]
,

E
[
P`(µ

Txt)
]

= e−λt[1−f̂`],
(32)

for all ` ≥ 0. Second, when Λt ∼ G(ξt, θ) is a Gamma process, i.e. that Nt ∼ NB(rt, q) is a Negative Binomial process
with rt = ξt and q = (θ + 1)−1, straightforward computations lead to

ĥ⊗>0
` = (1− q)rt

[(
1− qf̂`

)−rt
− 1

]
,

E
[
P`(µ

Txt)
]

=

(
1− q

1− qf̂`

)rt
,

(33)

for all ` ≥ 0.
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IV. VON MISES-FISHER RANDOM WALK AND MULTIPLE SCATTERING PROCESS ON Sp−1

A. von Mises-Fisher distribution on Sp−1

The von Mises-Fisher distribution [15, p. 167] is probably the most important distribution in the statistics of hyperspherical
data and plays a role on Sp−1 analogue to the role of the normal distribution on the real line. This distribution, denoted as
Mp(µ, κ), is defined by the following pdf for all x ∈ Sp−1

f(x;µ, κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
eκx

Tµ, (34)

where Iν(·) is the modified Bessel function [18, p. 374], µ ∈ Sp−1 corresponds to the mean direction and κ ≥ 0 is the
concentration parameter: the larger the value of κ, the more concentrated is the distribution about the mean direction µ.
Conversely, when κ = 0 the distribution reduces to the uniform distribution on Sp−1. Its mean resultant length takes the form:

ρ ≡ Ap(κ) =
Ip/2(κ)

Ip/2−1(κ)
, (35)

which reduces to

ρ ≡ A3(κ) = cothκ− 1

κ
,

when p = 3. Based on the pdf expression (34), it is straightforward to see that this distribution is rotationally symmetric
and unimodal with mode µ when κ > 0. Finally, as explained in [16], the characteristic function of the von Mises Fisher
distribution f(x;µ, κ) takes the form:

f̂`(κ) = E
[
P`(x

Tµ)
]

=
I`+ν(κ)

Iν(κ)
, (36)

where ν = p/2− 1, for κ > 0 and ` ≥ 0.

B. von Mises-Fisher random walk

One problem of characterizing more deeply and inferring efficiently the distribution of the nth-step direction xn is that,
except the Fourier series expansion (19), there is no simple closed form expression of the density of the multiply convolved
distribution (15).

However, when all the isotropic random walk steps are governed by unimodal distributions, Corollary II.6 says that the
n-step random walk direction xn is also governed by an unimodal rotationally symmetric distributions with mode the original
direction µ ≡ x0. This suggests that the distribution of xn can be well fitted by a standard unimodal rotationally symmetric
distributions with mode µ. Due to the properties of the vMF distributions presented in section IV-A, this family seems to be
a good candidate to fit the distribution of xn, for n ≥ 1. It leads to model the distribution of xn by a Mp(µ, κ̃n) distribution,
where κ̃n is an equivalent concentration parameter for the n-step direction.

Moreover, we consider now that all the random walk steps (14) are identically distributed according to a vMF distribution
with concentration parameter κ, that is

xk|xk−1 ∼Mp(xk−1, κ),

and the resulting random walk is called the vMF random walk with concentration parameter κ. This random walk is isotropic
and unimodal with mode µ ≡ x0 according to Corollary II.6. It is possible to obtain, in the high concentration case, a simple
vMF asymptotic distribution for the n-step direction.

Theorem IV.1. Consider the vMF random walk with concentration parameter κ. Then, in the large κ and small n ≥ 1 case,
i.e. when n/κ→ 0, xn is asymptotically distributed as Mp(µ, κ̃n) where

κ̃n =
κ− 1/2

n
+ 1/2 (37)

is the equivalent concentration parameter. The asymptotic distribution yields a third-order approximation of the Fourier
coefficients

f̂⊗n` = f̃n` +O

((n
κ

)3
)
, as

n

κ
→ 0,

for any ` ≥ 0, where f̂⊗n` is the `th-order Fourier coefficient of the xn distribution, while f̃n` denotes the `th-order Fourier
coefficient of the asymptotic distribution Mp(µ, κ̃n).

Proof: Both Mp(µ, κ̃n) and the distribution of xn are rotationally symmetric about µ. Thus it is sufficient to show the
asymptotic equivalence of their tangent part about µ ∈ Sp−1. The tangent part is bounded in [−1, 1], which ensures that its
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moments are well-defined and also belong to [−1, 1]. Thus its distribution is uniquely defined by its moments, see for instance
[26, Theorem 30.1, p. 388]. As the family of Legendre polynomials form a polynomial basis, we can conclude by the method
of moments that the distributions are asymptotically equivalent if their Fourier coefficients are asymptotically equivalent.

For n ≥ 1, we obtain from (20) and (36), and from (36) and (37) respectively, that

f̂⊗n` =

(
I`+ν(κ)

Iν(κ)

)n
, f̃n` =

I`+ν(κ̃n)

Iν(κ̃n)
.

Using now the following asymptotic expansion of the modified Bessel function for large κ [18, p. 377]:

Iν(κ) =
eκ√
2πκ

[
1− 4ν2 − 1

8κ
+

(4ν2 − 1)(4ν2 − 9)

2!(8κ)2
+O

(
1

κ3

)]
,

yields that, for any ` ≥ 0,

f̂⊗n
` =1− `n(`+ 2ν)

2κ
+
`n(`+ 2ν)(n`2 + 2nν`− 2)

8κ2
+O

(
n3

κ3

)
,

and that

f̃n` =1− `n(`+ 2ν)

2κ
+
`n(`+ 2ν)(n`2 + 2nν`− 2)

8κ2
+O

(
n3

κ3

)
.

This shows that f̂⊗n` = f̃n` +O (( nκ
)

3
)

as n
κ tends to zero, for any ` ≥ 0, which concludes the proof.

Note that the expression (37) of the equivalent concentration parameter has been derived in [21] by matching the mean
resultant length in the asymptotic case. Theorem IV.1 shows that a similar result extends to all the Legendre polynomial
moments, and thus to the distribution.

To appreciate the accuracy of the vMF approximation given by Theorem IV.1, Fig. 1 compares the distribution pdfs and
quantiles of the random walk tangent part t = µTxn with the asymptotic one for n = 10 steps on the p = 3 dimensional
sphere. As explained in [15, p. 168–170], the pdf of the tangent part t can be derived from the symmetric directional pdf
f(x) = g(µTx) on Sp−1 as

fp(t) = ωp−1B

(
p− 1

2
,

1

2

)−1

g(t) (1− t2)
p−3
2 ,

for all −1 ≤ t ≤ 1, where B(·, ·) is the classical Beta function. In dimensions p = 3, the Fourier expansion (19) leads to the
following simple expression for the projected distribution density, i.e. the tangent part pdf

f3(t) =
∑
`≥0

2`+ 1

2
ĝ`P`(t),

for all −1 ≤ t ≤ 1, with ĝ` the Fourier coefficient of the directional distribution pdf g. According to (20) and (36), ĝ` =

f̂⊗n` =
(
I1/2+`(κ)

I1/2(κ)

)n
for the n-step random walk on S2. This Fourier expansion allows us to numerically evaluate the exact

projected pdf. The empirical quantiles are estimated from 107 Monte-Carlo runs.
As expected, Fig. 1(a) shows that for low concentration, the asymptotic distribution diverges from the real one. However for

high enough concentration, Figs 1(b) and especially 1(c) show the accuracy of the asymptotic approximation. In practice, when
p = 3 the asymptotic distribution gives a reasonable approximation when κ̃n ≈ κ

n ≥ 10 and is accurate when κ̃n ≈ κ
n ≥ 50.

C. VMF multiple scattering process

The number of scattering events N(t), which corresponds to the number of steps in the vMF random walk, is now assumed
to be distributed as a Cox process with mixing variable Λ(t): N(t)|Λ(t) ∼ P(Λt).

1) Asymptotic approximation of the vMF multiple scattering process: Based on the vMF asymptotic distribution for the
vMF random walk given in Thm. IV.1, it is possible to obtain an asymptotic distribution for the vMF scattering process

Proposition IV.2. Assume that there exists a > 0 such that E[Λ(t)a] < +∞. In the large κ case, an asymptotic expression
for the pdf of the direction xt given in (30) for the vMF multiple scattering process is given by the following linear mixture

f̃(xt;µ, κ) = P0 [fΛt ] δµ(xt) +
∑
n≥1

Pn [fΛt ] f(xt;µ, κ̃n), (38)

where f(xt;µ, κ̃n) is the pdf of the vMF distribution Mp(µ, κ̃n) given in Thm. IV.1.
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Fig. 1. Comparisons of the exact and asymptotic projected distributions for the n = 10 steps vMF random walk on S2 (i.e. p = 3) with concentration
parameter κ. Top row: κ = 10, middle row: κ = 100, bottom row: κ = 1000. Left column: pdfs for the exact (blue cross) and asymptotic (green circles)
distributions. Right column: empirical qq-plots for the exact distribution quantiles vs the asymptotic ones (107 samples).
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Moreover, this yields the following approximation of the Fourier coefficients:

ĥ⊗>0
` = h̃⊗>0

` +O

((
1

κ

) 3a
a+3

)
,

where ĥ⊗>0
` is the `th-order Fourier coefficient of the continuous part of the xt distribution given in (28), while h̃⊗>0

` denotes
the `th-order Fourier coefficient of the continuous part of the asymptotic distribution.

Proof: The asymptotic pdf is obtained by plugging the vMF asymptotic distributions given in Thm. IV.1 in the multiple
scattering mixture pdf given in (23). To show that the distributions are asymptotically equivalent, it is sufficient to show that
their Fourier coefficients are asymptotically equivalent.

The expression of the `th order Fourier coefficient of the continuous part of the density of xt given in (28) can be splitted
in two terms:

ĥ⊗>0
` =

mκ∑
n=1

Pn [fΛt ] f̂
⊗n
` +

∑
n>mκ

Pn [fΛt ] f̂
⊗n
` , (39)

According to Thm IV.1, f̂⊗n` = f̃n` + O
((

mκ
κ

)3)
, for all n ≤ mκ, thus the finite sum in the right-hand side of (39) can

be dominated as
mκ∑
n=1

Pn [fΛt ] f̂
⊗n
` =

mκ∑
n=1

Pn [fΛt ] f̃
n
` +

mκ∑
n=1

Pn [fΛt ]×O
((mκ

κ

)3
)
,

=

mκ∑
n=1

Pn [fΛt ] f̃
n
` +O

((mκ

κ

)3
)
, (40)

since
∑mκ
n=1 Pn [fΛt ] ≤

∑
n≥1 Pn [fΛt ] ≤ 1.

The second series in the right-hand side of (39) can be expressed as∑
n>mκ

Pn [fΛt ] f̂
⊗n
` =

∑
n>mκ

Pn [fΛt ] f̃
n
` +

∑
n>mκ

Pn [fΛt ]
(
f̂⊗n` − f̃n`

)
, (41)

with ∣∣∣∣∣ ∑
n>mκ

Pn [fΛt ]
(
f̂⊗n` − f̃n`

)∣∣∣∣∣ ≤ ∑
n>mκ

Pn [fΛt ]
(∣∣∣f̂⊗n` ∣∣∣+

∣∣∣f̃n` ∣∣∣) ≤ 2
∑
n>mκ

Pn [fΛt ] = 2 Pr (Nt > mκ),

where Nt is the Cox process counting the scattering events whose mixing intensity variable is Λt. A classical result about
mixed Poisson distribution [27] yields that

Pr (Nt > mκ) =

∫ +∞

0

e−λt
λmκt
mκ!

Pr (Λt > λt)dλt.

Because Λt is a positive random variable, the Markov inequality ensures that for a > 0

Pr (Λt > λt) ≤
E[Λat ]

λat
, for all λt > 0.

As a consequence,

Pr (Nt > mκ) ≤ E[Λat ]

∫ +∞

0

e−λt
λmκ−at

mκ!
dλt = E[Λat ]

Γ (mκ − a+ 1)

Γ (mκ + 1)
,

thus for large mκ, Pr (Nt > mκ) = O
((

1
mκ

)a)
, according to both the Stirling formula and the assumption that E[Λat ] < +∞.

Eq. (41) can then be rewritten as ∑
n>mκ

Pn [fΛt ] f̂
⊗n
` =

∑
n>mκ

Pn [fΛt ] f̃
n
` +O

((
1

mκ

)a)
. (42)

Plugging now (40) and (42) in (39) yields that

ĥ⊗>0
` = h̃⊗>0

` +O

((mκ

κ

)3
)

+O

((
1

mκ

)a)
,

where h̃⊗>0
` =

∑
n≥1 Pn [fΛt ] f̃

n
` is the `th order Fourier coefficient of

∑
n≥1 Pn [fΛt ] f(xt;µ, κ̃n) due to the orthogonality

of the Legendre polynomials. Finally, setting mκ = bκγc with γ = 3
3+a ∈ (0, 1) gives the expected result. This concludes the

proof.
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Note that when all the moments of the intensity variable Λt exist - this is the case for the Poisson process (Λt is deterministic)
or the negative binomial process (Λt obeys a Gamma distribution) - the asymptotic approximation given in Prop. IV.2 yields
an almost third order approximation of the Fourier coefficient for high concentration parameter κ.

From a practical point of view, it is also interesting to note that the asymptotic pdf approximation given in Prop. IV.2 may
give a numerically simpler way to evaluate the pdf in the vMF case than the Fourier expansion (30). In fact, this mixture
expression gives a series expansion with positive terms and weights. In addition, the mixture model offers a very simple way
to draw some random variables asymptotically distributed according to the vMF multiple scattering process for large enough
concentration parameter κ.

2) Estimation bounds: From the estimation theory perspective, it is of special interest to quantify the amount of information
that the observed process carries about its distribution. In a parametric framework, the information about the parameters that
govern the distribution is measured by the Fisher information matrix. Inverting the Fisher information provides now the Cramer-
Rao lower bound (CRLB). This is a lower bound on the variance of any unbiased estimators of the parameters to be estimated.
In addition, standard maximum likelihood estimators (MLEs) are known to be asymptotically unbiased and efficient under
mild regularity conditions. This means that their large sample asymptotic variances approximately equal the CRLB.

The pdf expression of the multiple scattering process given in Prop. III.1, makes now possible to compute the Fisher
information, and therefore the CRLB. However the Fisher information matrix requires to determine the covariance of the first-
order derivatives with respect to the process parameters (or equivalently the negative expectations of second-order derivatives)
of the log pdf. Closed-form expressions for both the Fisher information or the CRLB are difficult to obtain as this log pdf
has no simple tractable expression. In such situation, it is very usual to approximate the expectations by using Monte Carlo
methods. This allows one to numerically evaluate the CRLB based on the pdf Fourier expansion (30) for the vMF multiple
scattering process. Moreover, in the high concentration case, i.e. for large κ, the vMF mixture representation given in Prop.
IV.2 yields another simple way to approximate the CRLB with Monte Carlo methods.

The vMF concentration parameter κ > 0 and the mean resultant length ρ ∈ (0, 1) of the vMF random steps are related by
a one to one transformation ρ = Ap(κ) given in (35). Therefore the random steps are reparametrized in the remainder by the
scalar ρ. This yields a simple interpretation: the closer is ρ to 1, the more concentrated is the distribution, the closer to 0, the

more uniform distribution. The CRLB for the parameter ρ reduces to [A′p(κ)]
2

I(κ) where I(κ) is the Fisher information for κ.
When the number N(t) of scattering events is a Poisson process, the intensity variable of the compound Cox process Λt

is a deterministic value Λt = λt. The distribution of the multiple scattering process xt is then parametrized by the vector
(ρ, λt). Figs 2(a) and 2(b) depict the CRLBs for the parameters ρ and λt respectively as a function of κ = A−1

p (ρ) when the
dimension is p = 3. The value of the Poisson intensity is set to λt = 10. One can see that the CRLBs quickly increase when
the concentration decreases. In fact, in the limit case where ρ tends to zero (or equivalently, κ tends to zero), the distribution
of xt converges to an uniform distribution on Sp−1 and the model is not identifiable anymore. For larger values of ρ (i.e. for
high κ), good estimation performances can be reached. Moreover there is little gain possible for the parameter λt that governs
the number N(t) of scattering events when ρ continues to converge to 1. Finally, one can see that the CRLBs computed for
the high concentration asymptotic distribution of xt given in Prop. IV.2 are in good agreement with the exact one when ρ is
close to 1.
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Fig. 2. CRLBs vs κ = A−1
p (ρ) for the Poisson multiple scattering process (λt = 10, p = 3). Blue curve: exact distribution of xt. Green curve: high

concentration asymptotic distribution of xt.)

Similar results are shown in Fig. 3 when the mean resultant length is set to a fixed value ρ = 0.99 (i.e. κ ≈ 100) while
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the intensity λt of the Poisson process varies. Fig. 3(a) shows that for too high λt, the model becomes hardly identifiable
(in this case the distribution of xt converges to an uniform distribution). When ρ is fixed and for small enough λt, the high
concentration asymptotic CRLB is in good agreement with the exact one.
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Fig. 3. CRLBs vs λt for the Poisson multiple scattering process (ρ = 0.99). Blue curve: exact distribution of xt. Green curve: high concentration asymptotic
distribution of xt.)

To conclude, we consider the more general case where the intensity is distributed as a Gamma process Λt ∼ G(ξt, θ), thus
N(t) is a Negative Binomial process paramaterized by the vector (ρ, θ, ξt). Figs 4(a)), 4(b) and 4(c) depict the CRLBs for
the parameters ρ, θ, and ξt respectively as a function of κ = A−1

p (ρ) when the dimension is p = 3. The parameters are set to
θ = 1 and ξt = 10. Similar conclusoins to the one reported for Fig. 2 can be drawn.

The CRLBs presented for both Poisson and Negative Binomial cases outline the accuracy of the multiple scattering process
model when the number of scattering events is low, which indicates its appropriateness and usefulness in forward scattering
regimes occuring well before the full diffusion regime.

V. CONCLUSION

In this paper, we have studied multiple isotropic random walks and scattering processes on hyperspheres and obtained
Fourier expansions for their pdfs. The case where the random steps follow a von Mises Fisher law on Sp−1 has been detailed
and asymptotic approximation for multi-convoltion of such densities have been introduced. The obtained expressions allow to
numerically compute lower estimation bounds for the parameters of multiple scattering processes. These bounds should be of
interest for future studies of estimation techniques (Method of moments, Bayesian, etc.) for such processes. The abundance of
multiple scattering situations in engineering applications should provide applications for the presented results.
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APPENDIX

A. Proof of the unimodality of the convolution of unimodal and rotationally symmetric distributions

Let f1 and f2 be the pdfs of two absolutely continuous unimodal and rotationally symmetric distributions on Sp−1 with the
same mode µ ∈ Sp−1. These pdfs express as continuous functions of the only cosine xTµ, that is f1(x;µ) = g1(xTµ) and
f2(x;µ) = g2(xTµ). Moreover, due to the unimodality property, g1 and g2 are increasing functions from [−1, 1] to R+. As
explained in II-D, f1 and f2 belong to the double coset space L1 (SO(p− 1)\SO(p)/SO(p− 1),R) where SO(p− 1) stands
for the rotation subgroup such that the axis defined by the unit vector µ is left invariant. This space is stable by convolution,
and the resulting convolved pdf is rotationally symmetric about µ and reads

f(x) = (f2 ?µ f1) (x) = (f2 ? f1) (xTµ)

=

∫
Sp−1

g2(xTx1)g1(x1
Tµ)dx1.

We want to show now that the convolved distribution is unimodal with mode µ.



15

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

 

 

CRLB

Asympt. CRLB

(a) CRLBs for ρ

0 100 200 300 400 500
0

0.5

1

1.5

2
x 10

4

 

 

CRLB

Asympt. CRLB

(b) CRLBs for θ

0 100 200 300 400 500
0

2

4

6

8

10
x 10

5

 

 

CRLB

Asympt. CRLB

(c) CRLBs for ξt

Fig. 4. CRLBs vs κ = A−1
p (ρ) for the Negative Binomial multiple scattering process (θ = 1, ξt = 10, p = 3). Blue curve: exact distribution of xt. Green

curve: high concentration asymptotic distribution of xt.

The sketch of the proof is inspired by the proof given in [28] of the equivalent property on the real line. Note first that the
convolved pdf can be expressed as the following expectation:

f(x) =

∫
Sp−1

g2(xTx1)g1(x1
Tµ)dx1,

= E
[
g2(XT

1 x)
]
, (43)

where X1 is a random vector in Sp−1 with pdf f1. Since g2(XT
1 x) is a continuous positive variable, one gets

E
[
g2(XT

1 x)
]

=

∫ +∞

0

Pr(g2(XT
1 x) ≥ u)du, (44)

(45)

Furthermore, since g2 is continuous and increasing on (−1, 1), for all u in the image of g2

Pr
(
g2

(
XT

1 x
)
≥ u

)
= Pr

(
XT

1 x ≥ δ
)
,

=

∫
x1∈Sp−1∩xTx1≥δ

g1

(
µTx1

)
dx1.

where δ = g−1
2 (u) ∈ (−1, 1). In the remainder, since we only consider unit vectors, the hypersphere constraint x1 ∈ Sp−1 on

the integration domain will be omitted to simplify the notation.
The normal-tangent decomposition along the axis µ yields now that x = tµ+

√
1− t2ξ where t ∈ [−1, 1] and ξ ∈ µ⊥∩Sp−1.
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Lemma 2. For any fixed ξ ∈ µ⊥ ∩ Sp−1 and δ ∈ (−1, 1), the function h defined as

t ∈ [−1, 1] 7→ h(t) =

∫
xTt x1≥δ

g1

(
µTx1

)
dx1,

where xt = tµ+
√

1− t2ξ is increasing.

Proof: See section B.
According to Lemma 2, if x′ = t′µ +

√
1− t′2ξ with −1 ≤ t < t′ ≤ 1, then Pr

(
XT

1 x ≥ δ
)
< Pr

(
XT

1 x
′ ≥ δ

)
for

all δ ∈ (−1, 1). This yields directly that f(x) < f(x′) according to (45) and (43). Due to the rotational symmetry about
µ, the convolved density expresses as f(x) = g(µTx) and depends on the only tangent part t = µTx. Thus the inequality
f(x) < f(x′) extends to the case where x′ = t′µ +

√
1− t′2ξ′ for any ξ′ ∈ µ⊥ ∩ Sp−1. Finally, we obtain that g is an

increasing function on [−1, 1]: for all x,x′ ∈ Sp−1, f(x) = g(µTx) < f(x′) = g(µTx′) iff µTx < µTx′, and the maximum
is reached for µTx′ = 1, i.e. when x′ = µ. This concludes the proof.

B. Proof of Lemma 2

Consider the following unit vectors,

xt = t µ+
√

1− t 2ξ,

xt′ = t′µ+
√

1− t′2ξ,

with −1 ≤ t < t′ ≤ 1 and ξ ∈ µ⊥ ∩ Sp−1. Introduce the reflection matrix R ∈ O(p) across the axis directed by xt + xt′ ,
R =

[
(xt+xt′ )(xt+xt′ )

T

1+xTt x
′
t

− Ip
]
, where Ip is the p× p identity matrix.

This interchanges xt and xt′ , i.e. Rxt = xt′ and Rxt′ = xt. Let u1 ∈ Sp−1 be defined as u1 = Rx1. Since the reflection
matrix R satisfies R = RT , it comes that

xTt′x1 = (Rxt)
Tx1 = xTt Rx1 = xTt u1,

xTt x1 = (Rxt′)
Tx1 = xTt′Rx1 = xTt′u1.

(46)

Moreover one gets that

h(t) =

∫
xTt x1≥δ
∩xT

t′x1≥δ

g1

(
µTx1

)
dx1 +

∫
xTt x1≥δ
∩xT

t′x1<δ

g1

(
µTx1

)
dx1

︸ ︷︷ ︸
I

.

The reflection matrix R satisfies Rxt = xt′ , |detR| = 1, R−1 = R and (46). As a consequence, performing the substitution
u1 = Rx1 in the integral denoted as I yields

I =

∫
xT
t′u1≥δ

∩xTt u1<δ

g1

(
µTRu1

)
du1. (47)

We need now to use the following result

Lemma 3. For all x1 ∈ Sp−1 such that xTt x1 > x
T
t′x1,

µTu1 > µ
Tx1. (48)

Proof of Lemma 3: When xTt x1 > x
T
t′x1, eq. (46) allows us to derive the following inequalities

xTt′u1 > x
T
t′x1,

xTt x1 > x
T
t u1.

Using the normal tangent decomposition, theses inequalities express as

t′µTu1 +
√

1− t′2ξTu1 > t′µTx1 +
√

1− t′2ξTx1, (49)

t µTx1 +
√

1− t 2ξTx1 > t µTu1 +
√

1− t 2ξTu1. (50)

When t′ = 1, or t = −1 respectively, it comes directly from (49), or (50) respectively, that µTu1 > µTx1. We can thus
assume that −1 < t < t′ < 1. Multiplying both sides of inequality (50) and (49) by 1√

1−t2 > 0 and −1√
1−t′2

< 0 respectively,

and summing the resulting inequalities yields

(α(t′)− α(t))µTu1 > (α(t′)− α(t))µTx1,
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where α(z) = z√
1−z2 . The function α being increasing on (−1, 1), the factor α(t′)− α(t) is positive since −1 < t < t′ < 1.

Thus the required inequality holds.
For all u1 belonging to the integration domain defined in (47), it comes that xTt′u1 > xTt u1 which is equivalent to

xTt x1 > x
T
t′x1. Thus µTRu1 = µTx1 < µ

Tu1 according to Lemma 3. Since g1 is increasing, it comes that

I <

∫
xT
t′u1≥δ

∩xTt u1<δ

g1

(
µTu1

)
du1.

As a consequence,

h(t) <

∫
xTt x1≥δ
∩xT

t′x1≥δ

g1

(
µTx1

)
dx1 +

∫
xT
t′u1≥δ

∩xTt u1<δ

g1

(
µTu1

)
du1,

=

∫
xT
t′z≥δ

∩xTt z≥δ

g1

(
µTz

)
dz +

∫
xT
t′z≥δ

∩xTt z<δ

g1

(
µTz

)
dz,

=

∫
xT
t′z≥δ

g1

(
µTz

)
dz = h(t′),

and the inequality holds for all −1 ≤ t < t′ ≤ 1.

REFERENCES

[1] A. Bhalerao and C.-. Westin, “Hyperspherical von mises-fisher mixture (hvmf) modelling of high angular resolution diffusion mri,” in MICCAI 2007,
N. Ayache, S. Ourselin, and A. Maeder, Eds., vol. 4791 of Lecture Notes in Computer Science, pp. 236–243. Springer Berlin Heidelberg, 2007.

[2] M. Bangert, P. Hennig, and U. Oelfke, “Using an infinite von mises-fisher mixture to cluster treatment beam directions in external radiation therapy,”
in Proceedings of the Ninth international conference on Machine Learning and applications, 2010, pp. 746–751.

[3] H. Tang and S.M. Chu, “Generative model-based speaker clustering via mixture of von mises-fisher distributions,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009, pp. 4101–4104.

[4] A. Banerjee, I.S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the unit hypersphere using von mises-fisher distributions,” Journal of Machine Learning
Research, vol. 6, pp. 1345 – 1382, 2005.

[5] X. Ning, L. Papiez, and G. Sandison, “Compound-poisson-process method for the multiple scattering of charged particles,” Phys. Rev. E, vol. 52, no.
5, pp. 5621–5633, Nov 1995.

[6] N. Le Bihan and L. Margerin, “Nonparametric estimation of the heterogeneity of a random medium using compound poisson process modeling of wave
multiple scattering,” Physical Review E, vol. 80, pp. 016601, 2009.

[7] S. Said, C. Lageman, N. Le Bihan, and J.H. Manton, “Decompounding on compact Lie groups,” IEEE Transactions on Information theory, vol. 56, no.
6, pp. 2766 – 2777, 2010.
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