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Abstract – We present a homogenization method based on a matched asymptotic expansion
technique for sound hard materials structured at subwavelength scale. Considering the wave
equation in the time domain, jump conditions are derived for the acoustic pressure and the
normal velocity across an equivalent interface with non zero thickness. These jump conditions
are implemented in a numerical scheme and compared to the results of the direct problem.

I. INTRODUCTION

Since Pendry’s works [1], acoustic metamaterials consisting in massive materials perforated by periodic sub-
wavelength holes have been shown to be able to control the wave propagation with high flexibility. However, if the
metamaterials have a subwavelength period, many of the observed phenomena are attributable to Fabry-Perot type
resonances, which requires the thickness of these metamaterials to be at wavelength scale (and the thickness refers
to the size in the direction perpendicular to the planes containing the periodic cells). In order to reduce the size
of the devices, structures with a subwavelength thickness have been developed, and they are known as metasur-
faces and metafilms. Because of their subwavelength periodicity, homogenization techniques are natural tools to
describe the effective properties of metamaterials, but the vanishing thickness of these devices has to be accounted
for. We present an interface homogenization following the approach developed in solid mechanics [2], and that
we adapt to the wave equation in the time domain. Equivalent jump conditions are obtained across an equivalent
interface, which allows to define a (positive) energy supported by this interface. A numerical implementation of
the homogenized problem is proposed and the results are compared with results of the real problem.

Fig. 1: Array of periodic rigid inclusions; the homogenization gives an equivalent thin interface associated to jump
conditions, Eqs. (2).

II. EFFECTIVE JUMP CONDITIONS AND ENERGY OF THE EQUIVALENT INTERFACE

A. Effective jump conditions

We consider the linearized Euler equations for the acoustic pressure P (x, t) and velocity U(x, t) in the time
domain, with t the time and x = (x1, x2) the spatial coordinates

ρ0
∂U

∂t
= −∇P, χ0

∂P

∂t
+ divU = 0, (1)

(ρ0 is the mass density, χ0 = (ρ0c
2
0)−1 is the isentropic compressibility of the fluid with c0 the sound speed in

the fluid). We consider acoustic waves with a minimum wavelength 2π/k larger than the typical periodicity of the
microstructuration h, such that ε ≡ kh is a small parameter.
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The effective jump conditions are obtained (at second order in ε) from a matched asymptotic expansion as pre-
sented in [3]. The derivation is based on a separation of the space into the far field and the near field and a two
scale expansion of the near field solution. The near field solution can be expressed in terms of two elementary
functions, being themselves solutions of static problems (which depend only on the geometry of the microstruc-
ture). Next, the two, far field and near field, solutions are matched asymptotically, leading to jump conditions for
the far field solution across the near field region being considered as an equivalent interface (afterwards this region
is not considered). The jump conditions at the equivalent interface of thickness e read

[P ] = hB ∂P

∂x1
,

[U1] = eϕ
∂U1

∂x1
+ hC ∂U2

∂x2
,

(2)

with (B, C) two parameters defined by the elementary problems. For rectangular sound hard inclusions, explicit
expressions are

B =
e

hϕ
+

2

π
log
(

sin
πϕ

2

)−1

. C ' e

h
ϕ− π

8
ϕ2, (3)

The complete derivation of these conditions can be found in [3, 4]. The notation [f ] refers to the f(e)− f(0) (Fig.
1) being the jump of the field f across the equivalent interface and f = (f(0) + f(e))/2.

B. Energy conservation for the equivalent thin interface

In a bounded domain Ω of the real problem, energy conservation reads

d

dt

∫
Ω

dV
(ρ0

2
U2 +

χ0

2
P 2
)

+

∫
Σ

dS PU.n = 0, (4)

with Σ = ∂Ω. Let us write the equation of energy conservation in the homogenized problem. In this problem,
the domain occupied by the microstructuration is not considered (numerically, this means that this domain Ωe

will not be resolved). Now the boundary ∂Ω includes the boundaries of Ωe, from which the equation of energy
conservation is

d

dt

∫
Ω\Ωe

dV
(ρ0

2
U2 +

χ0

2
P 2
)

+
d

dt
Ee +

∫
Σ

dS PU.n = 0,

where Ee is the energy supported by the equivalent interface, which takes the form (from the jump conditions, Eqs.
(2))

Es =

∫
dX2

[ρ0

2

(
hB U1

2
+ (eϕ− hC) U2

2
)

+
χ0

2
eϕ P

2
]
, (5)

and this energy is positive (with B > 0 and eϕ < hC), which is suitable for numerical purpose.

III. NUMERICAL VALIDATION

The time-domain simulations are done on a regular Cartesian grid, with a numerical scheme (ADER 4) being
fourth-order accurate both in space and time [5]. The interface conditions (being of Neumann type for the real
problem and being the effective conditions, Eqs. (2) in the homogenized problem) are discretized by an immersed
interface method [6]. We report the results obtained for a microstructure made up of rectangular sound hard inclu-
sions periodically located along a line (x1 = 0); e/h = 1 and ϕ = 0.5 have been considered. The homogenized
version of this microstructure is an enlarged interface which occupies the same domain as the microstructure (and
B = 2.22 and C = 0.42). Fig. 2 show typical instantaneous pressure fields after the reflection and transmission of
an incident wave on the microstructure. The incident wave has been generated by a punctual source (a truncated
sinusoid with central frequency associated to a dimensionless wavenumber kh; kh = 0.84 and kh = 1.25 have
been considered). The difference between the real field and its homogenized version is reasonable for kh = 0.84
(8%) and becomes visible for kh = 1.25 (20%); nevertheless, it is remarkable that these limiting cases of kh close
to unity do not produce a complete fail of the homogenization predictions.
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Fig. 2: Top panels: Instantaneous pressure fields obtained after the reflection and the transmission of the signal
emitted by a source point (white point); the upper and lower half-spaces show the fields obtained by solving the
full problem and by solving the homogenized problem (left for kh = 0.84 and right for kh = 1.25). Bottom
panels: pressure along the x2 = 0-line, for the full problem (grey lines) and for the homogenized problem (dotted
lines); the insets show a zoom of the coda.

The reflected and transmitted waves are characterized by a main ”ballistic” pulse followed by a long coda-type
signal due to multiple reflections within the microstructure. If the continuities of the pressure field and of the
normal velocity were assumed (leading order approximation, or order 1), only the ballistic part of the signal would
be recovered, with an error due to an overestimate of the energy transported by the ballistic waves. With the jump
conditions written at order 2 in Eq. (2), the main characteristic of the coda is captured, and main characteristic is
meant here notably in terms of the energy supported by the coda.

IV. CONCLUSION

The capability of our jump conditions to capture the behavior of microstructured films can be used to predict the
properties of metamaterials. For instance, many of the so-called metasurfaces correspond to the same geometry
as in Fig. 2 with a rigid plate at x1 = d; this configuration is known to produce resonances at the subwavelength
scale which can be tuned to produce efficient metascreens.
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