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Hyperbolic Wavelet-Fisz denoising for a model
arising in Ultrasound Imaging

Younes Farouj, Jean-Marc Freyermuth, Laurent Navarro, Marianne Clausel, and Philippe Delachartre

Abstract

We present an algorithm and its fully data-driven extension for noise reduction in ultrasound imaging. Our proposed method
computes the hyperbolic wavelet transform of the image, before applying a multiscale variance stabilization technique, via a Fisz
transformation. This adapts the wavelet coefficients statistics to the wavelet thresholding paradigm. The aim of the hyperbolic
setting is to recover the image while respecting the anisotropic nature of structural details. The data-driven extension removes the
need for any prior knowledge of the noise model parameters by estimating the noise variance using an isotonic Nadaraya-Watson
estimator. Experiments on synthetic and real data, and comparisons with other noise reduction methods demonstrate the potential
of our method at recovering ultrasound images while preserving tissue details. Finally, we emphasize the noise model we consider
by applying our variance estimation procedure on real images.

Index terms— Hyperbolic wavelets, Fisz transformation, Variance stabilization, Gaussianization, Ultrasound imaging, Data-
driven denoising.

I. INTRODUCTION

ULTRASOUND (US) imaging has been a well-established diagnostic tool in various medical applications for many years.
This technology remains one the cheapest and safest medical imaging modalities. Nevertheless, the examination and the
interpretation of ultrasound images is particularly challenging. This is mainly due to the presence of a particular type of
noise called “speckle”, which can also be found in similar imaging systems such as Synthetic-Aperture-Radar (SAR) and
laser imaging. In ultrasound imaging, acquired signals are adjusted, inside the scanner, prior to display, by a non-linear
processing transformation called log-compression [1]. This process aims at enhancing backscatterers in order to facilitate
visual understanding. In this paper, our aim is to recover ultrasonic images using a relevant signal-dependent noise model [2]
that takes into account the modification of noise characteristics due to the log-compression. Adaptations of non-local and
variational techniques to this model have already been described in the literature respectively by Coupé et al. [3] then Jin and
Yang [4].

Although these methods lead to good results in terms of signal-to-noise ratio, they still produce displeasing visual quality,
mostly characterized by attenuated sharp edges. In this paper we present a different strategy which belongs to the wavelet
denoising approaches [5]. As in the majority of denoising approaches, the wavelet denoising paradigm relies on the limiting
assumption that the noise is additive white Gaussian noise (AWGN). To go beyond this case, we adapt a multiscale variance
stabilization technique introduced by Fryzlewicz [6] in order to make the distribution of wavelet coefficients asymptotically
Gaussian with the same variance. We extend this method to hyperbolic wavelets and show how variance stabilization can be
easily performed using the low frequency outputs from the wavelet transform at different scales. The motivation behind the
use of hyperbolic wavelets is their capacity to provide better estimators than the standard wavelet-tensor construction whenever
images contain anisotropic features [7][8]. This situation often occurs in ultrasound imaging due to the presence of features
skin layers, vessels. Finally, we show how our approach can be performed in a blind mode, that is, without any prior knowledge
of the noise variance parameters. This involves the use of a mean filter for a pre-estimation of the image. The noise component
is then computed using a Nadaraya-Watson estimator.

To validate our methods we present numerical experiments based on synthetic and real data, and comparisons with the state
of the art non-local and variational algorithms. We demonstrate that our data-driven approach performs nearly as well as in
situations in which the noise variance is known. Moreover, the measured variance on real ultrasound images confirms the
relevance of the noise model we are considering.

The rest of the paper is organized as follows. A brief overview of different US noise models and dedicated denoising
techniques is presented in Section II. In section III, we describe our novel wavelet based methodology. Finally, we provide
extensive experimental results and comparisons in Section IV.
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M. Clausel is with the Université de Grenoble; Laboratoire Jean Kuntzmann; CNRS UMR 5224, Grenoble, France (e-mail: marianne.clausel@imag.fr).

farouj@creatis.insa-lyon.fr
delachartre@creatis.insa-lyon.fr
jmf84@cam.ac.uk
navarro@emse.fr
marianne.clausel@imag.fr


2

II. RELATED WORK

Novel techniques emerging in the general image processing community have been continuously adapted to deal with US
noise models. Hereafter, we propose an overview of the main models and techniques we are concerned with.

A. Multiplicative Noise

An important challenge in the process of denoising ultrasound images is to find an adequate noise model. The noise can be
described as the sum of individual scattered beams from tissue inhomogeneities. Hence, one can derive a natural noise model
from the knowledge of the statistics of the echo signal. It has been shown that the probability density function of the scatters is
a Rayleigh distribution [1]. This understanding gave rise to multiplicative noise models similar to those used in SAR imaging.
Many filters have been proposed for such a model, including the seminal works by Lee [9], Frost et al.[10] and Kuan [11].
Anisotropic diffusion filters [12] have also been successful in US imaging. These include adaptations to account for speckle
noise statistics as in the Speckle Reducing Anisotropic Diffusion (SRAD) [13] and its oriented version (OSRAD) [14], and
more recently, memory-driven filters [15].

B. Additive Noise

Multiplicative noise models do not take into consideration the image formation process leading to the final US images
visualized on scanners. In particular, a process called logarithmic compression [1] is used to enhance backscatterers suffering
from low contrast in order to improve visual understanding. A simple solution is to assume that the signal and the noise are
totally distinct. Thus the logarithmic compression step transforms the multiplicative noise into an additive signal-independent
model

v = u+ ε, (1)

where v is the observation, u is the unknown image and ε is the noise component. Assuming that ε is a zero-mean Gaussian
white noise ε ∼ N (0, σ2), with σ ∈ (0,∞) leads to AWGN models widely studied in signal and image processing. In
particular, these models are well suited for wavelet thresholding [5] and have been used for US applications [16]. Achim et
al.[17] showed that under model (1), the wavelet coefficients of the noise, after logarithmic transformations, have non-Gaussian
statistics which can be described by some alpha-stable distributions [18].

C. Hybrid Noise

The main drawback of model (1) is the violation of the assumption that the noise is correlated with underlying tissues. This
assumption is widely used and accepted in Echography. For example, it is the key idea behind motion estimation via speckle
tracking [19]. It turns out that the logarithmic compression makes the statistics of ultrasound images deviate from the Rayleigh
distribution [20]. A more relevant model for ultrasound noise was presented in [2] and assumes that the variance of the noise
component is no longer constant but respects the following equation

v = u+ uγε, (2)

where ε is a Gaussian noise as in (1) and γ > 0. Model (2) seems to be more appropriate as it preserves the signal dependency
and has shown been to be effective for speckle modelling [2], as well as motion estimation in US image sequences [21]. In
this paper, we develop an appropriate wavelet thresholding method assuming model (2) holds true. Adaptations of two other
classical paradigms in denoising, beside wavelet methods, have been studied for model (2) [3][4]. We recall these paradigms:

Nonlocal methods. The non local point of view was initially developed in [22] leading to the famous N-L means filter. It
can be seen as a type of smart average filtering that uses the fact that similar pixels are not necessarily neighbours. Given
two pixels, the similarity measure is the Euclidean distance between patches within their respective neighborhoods. As the
Euclidean distance is more appropriate in white noise cases [22]. Coupé et al. [3] presented the OBNLM algorithm in which
the Pearson distance is used along with an optimized version of the N-L means filter.

Variational methods. The variational approach relies on the minimization of a functional involving a data-fidelity term and a
regularity assumption. A common assumption is that images belong to BV (Bounded Variation) spaces, and so Total Variation
(TV) is often used for the regularization term [23]. For AWGN models, the fidelity term is simply given as the Euclidean
distance between the unknown image and the corrupted one. Adaptations to model (2) consists in dividing the fidelity term
by the unknown image to the power γ, which is also the standard deviation of the noise. The reader is referred to papers by
Rudin, Lions and Osher for the case γ = 1 [24] and by Jin and Yang for the case γ = 0.5 [4]. However, the functional cannot
be minimized via simple primal dual algorithms [25] as in the AWGN case, a gradient descent is required.

In the following section we propose a technique to adapt the wavelet-based methods to the noise model (2). Moreover, we
present a data-driven algorithm which solves the problem without prior knowledge of the parameters σ and γ of model (2).
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III. METHOD

Hyperbolic wavelet bases are unconditional bases for functions in L2([0, 1]2). They provide sparse representations so that the
simple hard thresholding procedure which consists in keeping only coefficients with magnitude larger than a given threshold;
setting the others to zero, provide estimators with very good theoretical and practical performances [7][8].

Peppers Isotropic Hyperbolic

Figure 1: Wavelet decomposition in isotropic and hyperbolic settings

A. Notations

We begin with the hyperbolic wavelet transform (HWT). The starting point is a one-dimensional function ψ, called the
mother wavelet, to which one can associate dilated and translated versions ψj,k(.) = 2j/2ψ(2j . − k) with j ≥ 0 and k ≥ 0.
In the same manner, a scaling function ϕ is defined, along with its dilated and translated versions ϕj,k(.) = 2j/2ϕ(2j . − k).
Then, the 2D HWT basis of L2([0, 1]2) is given by

ψj1,j2,k1,k2(x1, x2) = ψj1,k1(x1)ψj2,k2(x2),

ψ0,j2,k1,k2(x1, x2) = ϕ0,k1(x1)ψj2,k2(x2),

ψj1,0,k1,k2(x1, x2) = ψj1,k1(x1)ϕ0,k2(x2),

ψ0,0,k1,k2(x1, x2) = ϕ0,k1(x1)ϕ0,k2(x2),

(3)

for all (j1, j2) ∈ N × N and (k1, k2) ∈ Z2. This construction differs from that of the classical two dimensional Discrete
Wavelet Transform (DWT), in the sense that different dilation factors are used in each dimension. In the case of the standard
2D DWT, only the cases j1 = j2 are allowed; therefore the resulting atoms are isotropic.

Let us note I = {j = (j1, j2) ∈ N2 and k = (k1, k2) ∈ Z2} The projection of a function f of L2([0, 1]2) onto the HWT
basis gives a set of hyperbolic wavelet coefficients {dj,k}(j,k)∈I where

dj,k(f) = 〈ψj,k, f〉. (4)

The set {d0,k}, where 0 = (0, 0), represent the approximation coefficients. In finite discrete settings, a maximal scale is
fixed at J = log2(N) for an image of size N ×N . As the HWT can be seen as a tensor product of one-dimensional wavelet
transforms, the numerical implementation of the HWT can be achieved by applying two successive 1D DWT on each of the
two dimensions. Figure 1 highlights the difference of the scale-space tilling in the standard and hyperbolic settings.

B. Wavelet denoising

When the noisy observation v verifies model (1), the very simple, but powerful, procedure of wavelet thresholding mentioned
earlier can be used. In the wavelet domain, the additive model (1) reads

dj,k(v) = dj,k(u) + dj,k(ε), (5)

with (j, k) ∈ I . The idea behind wavelet methods comes from the efficiency of wavelet coefficients in the sparse representation
of images. A simple process consists in constructing an estimator ûσ given by

ûσ =
∑

(j,k)∈Iσ

dj,k(v)ψj,k, (6)
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where Iσ = {(j, k) ∈ I, such that |dj,k(v)| > t(σ)} and t(σ) is the threshold parameter. This will basically remove the
noisy coefficients. Moreover, one of the distinctive features of this elitist empirical algorithm is the existence of a universal
threshold given by

t(σ) =
√

2 log(Card(I))Var(dj,k(ε)) = σ
√

2 log(N2), (7)

In image restoration, it is often considered that the unknown image belongs to spaces with regularity varying along the
two dimensions. This notion of anisotropy is at the heart of multivariate function estimation [7]. Hyperbolic wavelets are well
suited to such situations [27]. It has recently been shown [28] that mixing scales when constructing wavelets, as in (3), makes
thresholding techniques comparable to state-of-the art denoising algorithms. Still, the choice of the threshold (7) is crucial,
and its existence relies on the fact that the wavelet coefficients of the noise are Guassian and independent. In the next section
we show how, in the case of the ultrasound noise model (2), this obstacle can be overcome via a wavelet-based variance
stabilization technique.

(a) (b)

Figure 2: Outputs of the hyperbolic NDWT of the “Peppers” image: (a) The set of wavelet coefficients {dj,k}j,k and (b) the
set of approximation coefficients {cj,k}j,k

C. The Proposed Wavelet-Fisz (WF) approach

In (2), the noise component is of the form

η = uγε, (8)

thus, its variance depends on the unknown image. In order to obtain an adaptive image-dependent threshold we extend results
from [6] to the two-dimensional case while adapting it to our problem.

Lemma 3.1: Let {ψj,k}(j,k)∈I be a normalized wavelet basis, in the sense that ||ψ||22 = 1. Let uj,k denote the restriction of
u in the support of the function ψj,k. Assume that, for each (j, k) ∈ I , uj,k can be approximated by a constant function ūj,k.
Then we have (dj,k(η)

σ ūγj,k

)
j,k
∼ N (0, 1). (9)

In words, lemma 3.1 guarantees that the vector
(
dj,k(η)

ūγj,k

)
j,k

is asymptotically normal, in the distribution sense, when uj,k

is approximated by ūj,k. In Appendix A, we derive the variance given in (9). Convergence results are immediate from the
one-dimensional case [6]. The idea of applying the Gaussianizing routine to wavelets coefficients was first introduced for
Poisson intensity estimation by Fryzlewicz and Nason [29], following a general framework introduced by Fisz [30]1. It was
later extended to Poisson intensity estimation in images [31]. An approximation ūj,k of the unknown image u needs to be
computed in the support of the function ψj,k. A key point here is our use of the low frequency outputs of the wavelet transform
at each scale as local means pre-estimations. These outputs are given by scaling coefficients:

cj,k(f) = 〈ϕj,k, f〉, (10)

1Hence the name Wavelet-Fisz.
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where
ϕj1,j2,k1,k2(x1, x2) = ϕj1,k1(x1)ϕj2,k2(x2). (11)

The support of the function ϕj,k decreases as the value |j| = j1 + j2 decreases. As a consequence of the law of large
numbers, the local means approximation (10) becomes less accurate. This issue has limited consequences since, following [6],
we consider only the coarsest scales up to a certain level |j| ≤ Jmax. Not much information is lost since the finest scales
consist of high-frequency components which are essentially noise. Using the lemma 3.1, we can now define a new set for the
construction of the nonlinear estimator (6) given by

Ĩσ = {(j, k) ∈ I, s.t |j| ≤ Jmax;
|dj,k(v)|
σ cj,k(v)γ

> t(1)}. (12)

Implementation: The presented WF technique can be performed using a non-decimated wavelets transform (NDWT). The
wavelets coefficients (4) and the approximation coefficients (10) for the NDWT are presented in Figure 2. It has been shown that
the denoising methods based on NDWT outperforms those based on traditional (decimated) wavelets in terms of mean-squared
error (MSE) and signal-to-noise ratio (SNR) [32]. This is mainly due to its translation invariance. However, the non-decimated
wavelet coefficients are, in general, correlated even if the noise is independent. The choice of relevant wavelet coefficients
becomes a correlated multiple hypothesis testing problem. Thus, the choice of the threshold (7) can lead to non-optimal results.
In practice, one can consider the non-decimated wavelet coefficients as separate packets of uncorrelated coefficients [33]. The
universal threshold can then be applied to each packet. The pseudo code for the routine is given in Algorithm 1.

Algorithm 1 WF algorithm

Input: f, σ, γ, Jmax
Output: Estimate ũ

1: [dj,k, cj,k]←− NDWT(f)
2: for each couple (j, k) do
3: if |j| > Jmax then dj,k = 0
4: else
5: pj,k = σ × (cj,k)γ

6: sj,k = |dj,k|/pj,k
7: if sj,k < t(1) then dj,k = 0
8: end if
9: end if

10: end for
11: ũ = INDWT(dj,k)

The key step in this algorithm is the stabilization technique leading to the set (sj,k)(j,k)∈I . Figure 3 shows how the wavelet
coefficients are stabilized after the WF procedure. Here, we used the stabilization technique with σ = 2 and γ = 0.5. The
wavelet coefficients magnitudes were scaled beeteween 0 and 1 and a normal distribution fitting algorithm was applied. The
Liver image represents a section of a human liver along with the portal vein. The diagonal details of the wavelet transform
at the first thresholding scale are examined. At fine scales, the wavelet transformation retrieves, mainly, the noise component.
We can clearly see that the distribution of the wavelet coefficients deviates from the Gaussian distribution. This phenomenon
can be explained by model (2) as the noise is perturbed by the image statistics. In fact, it was observed that the statistics of
the wavelet coefficients of an image are more likely to follow distributions with heavier tails than a Gaussian one, such as
Exponential and Laplacian distributions [26][34]. Note that the non-Gaussianity of the wavelet coefficients distribution in US
images was first observed by Achim et al. [17]. In this latter work, the authors assumed that the noise has an alpha-stable
distribution.

D. Fully data-driven extension

Besides the fact that there is no conventional noise model in ultrasound imaging, different authors may use different
parametrizations for a given noise model. In particular, for our model of interest, different values for the parameters σ and γ
are given in [3],[4] and [24]. A point of debate is whether a large value should be used for γ and a small one for σ or vice
versa. We sidestep the problem by estimating the standard deviation of the noise directly from the data.

1) Standard deviation estimation: To address this problem, any filter of low computational cost can be used on the noisy
image to obtain a pre-estimation ū. We applied a simple mean filter of size M to the image. An estimation of the noise
component η is then given by the residual

η̂(ū) = v − ū (13)
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Figure 3: Wavelet decomposition of US images: Statistics of the diagonal details at the finest scale

To estimate the variance, a kernel smoothing technique is applied to the highly oscillating squared residuals η̂2. For any
vector w with values belonging to [min(ū),max(ū)], the variance estimator of w is given as

h(w) = ̂Var(η(w)) =
〈Ŵb(w), η̂2〉
Ŵb(w)

, (14)

where W is defined as

Ŵb(w) =
1

N2b
K
( ū− w

b

)
, (15)

with b the bandwidth of the kernel K. This regression technique is called the Nadaraya-Watson estimation. Under the
assumption that the variance of the noise is a positive power of the image intensity, as suggested by model (2), it is natural to
constraint the estimator of the variance to be non-decreasing. This can be done using the so-called isotonic regression, which
consists in finding the closest non-decreasing function, in term of least mean square error, using a “pool-adjacent-violators”
algorithm [35]. We present an example of such a routine on a corrupted Peppers image. Our choice of the image Peppers
is motivated by the fact that it has many variations in grey values, resulting in an interval of intensities well covered by the
vector w. The results of two experiments with different values of γ and σ are given in Figure 4. As the image pixel values
range from 0 to 255, we simply choose w to be a uniform discretization of [0, 255]. The size of the average filter depends on
the homogeneity of the image, in this example we used M = 12. A Gaussian kernel with a bandwidth b = 1 was used for K.
The results confirm the reliability of the standard deviation estimator

√
h in comparison to the ground truth.
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Figure 4: Standard deviation estimation from experiments on the “Peppers” image for different values of σ and γ.

2) Blind denoising: We describe the adaptation of the WF algorithm to the fully data-driven methodology. For our noise
model, the standard deviation estimator presented in III-D1 gives the following approximation√

h(w) ≈ σwγ , (16)

hence, we have a similar result to the one given in lemma 3.1( dj,k(η)√
h(cj,k)

)
j,k
∼ N (0, 1), (17)

To remove the parameters σ and γ from the WF algorithm, the computation of the auxiliary step 5 is changed to

pj,k =
√
h(cj,k), (18)
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IV. EXPERIMENTS AND DISCUSSION

In this section we present some experiments to evaluate the performance of our WF method. In order to distinguish the
different contributions of our work, we divide this section into two parts. First, we focus on the performance of the WF method
in both Isotropic (IWF) and Hyperbolic (HWF) settings, and then we show the potential of the data-driven extension.

A. The WF method

We compare our results to those obtained using two other approaches that considers the noise model given by (2). The
OBNLM filter have proven to be very effective in speckle noise reduction and to perform better than classical filters [3].
The variational approach [4] is an adaptation of the well-established TV denoising to model (2). The criteria used for the
comparisons were the classical Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index Measure (SSIM) [36]
which allowed evaluation of the tissue structure preservation. As the great majority of ultrasound imaging is not concerned
with functional studies, the preservation of morphological information while performing denoising is normally more important
than preserving the true measured pixel intensity. We also show the difference between the true image and the denoised result
of every method. This is known in the literature as the method noise [22]. One except to retrieve more noise in areas of high
pixel intensities according to model (2). The OBNLM filter is available on the web2. The parameters α and M controlling the
number of blocks and the size of the search window are fixed at 3 and 6 as in the original paper, and the filtering parameter h
was optimized for different levels of noise. The variational algorithm was implemented with the gradient descent step fixed at
0.2 as suggested by the authors. We use Haar wavelets for the WF method. The scaling function associated to these wavelets
behave like a simple mean filter which gives a reliable set of approximation coefficients {cj,k}j,k. These wavelets are also
efficient at preserving discontinuities. We are aware, however, that these wavelets do not lead to optimal results in terms of
PSNR and its is possible to improve the results using wavelets from other families such as Daubechies or Coiflets. In all
experiments, the coefficients corresponding to the first finest scale are truncated.

Blocks Noisy (σ = 4) OBNLM Variational IWF HWF

Figure 5: Results of various methods applied to the image Blocks. Quantitative evaluation is given in Table I.

Kidney Noisy (σ = 4) OBNLM Variational IWF HWF

Figure 6: Results of various methods applied to the image Kidney. Quantitative evaluation is given in Table I.

1) Experiments on synthetic data: Our two Synthetic experiments were performed by adding synthetic noise to clean images.
We fix γ = 0.5, as in [3] and [4]. The first image Blocks aims only at demonstrating the ability of hyperbolic wavelets to deal
with highly anisotropic images. In fact, this image is an additive model when the regularities in the two space dimensions are
independent. This is a highly anisotropic case where the hyperbolic setting gives optimal results [8]. The second Kidney image
is a CT image taken from FIELD II’s website3. This latter example is challenging to denoise because of the presence of many
gray level variations.

Table I outlines the performances of the different methods together with optimal parameters. In the case of the image Blocks,
the contribution of the hyperbolic setting is clearly visible in terms of PSNR, SSIM and visual quality (e.g. Figure 5). The
hyperbolic Wavelet-Fisz thresholding gives the best results for all noise levels. The variational approach also gives good results

2https://sites.google.com/site/pierrickcoupe
3http://field-ii.dk

https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/speckle-reduction/obnlm-package
http://field-ii.dk
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Blocks Kidney
PSNR (dB) SSIM Parameters PSNR (dB) SSIM Parameters

Noisy(σ = 2) 22.83 0.135 – 24.83 0.430 –
OBNLM 35.13 0.917 h=1.5 30.05 0.845 h=1
Variational 37.98 0.972 niter=180 28.72 0.814 niter=160
IWF 35.78 0.958 – 29.04 0.837 –
HWF 49.65 0.993 – 30.24 0.866 –

Noisy(σ = 3) 20.95 0.071 – 22.30 0.272 –
OBNLM 32.86 0.836 h=2 28.71 0.752 h=1
Variational 35.57 0.955 niter=260 27.91 0.799 niter=180
IWF 33.75 0.929 – 27.39 0.791 –
HWF 46.65 0.987 – 28.20 0.822 –

Noisy(σ = 4) 19.31 0.044 – 20.83 0.187 –
OBNLM 31.38 0.739 h=2.5 27.81 0.765 h=2
Variational 34.41 0.946 niter=350 28.03 0.782 niter=210
IWF 32.40 0.909 – 26.63 0.764 –
HWF 43.04 0.973 – 27.31 0.791 –

Table I: Quantitative comparison (PSNR & SSIM), and optimal parameters for different methods applied to the Blocks and
Kidney images with different noise levels.

Original OBNLM Variational IWF HWF

Figure 7: The method noise [22] of the various approaches applied to the Kidney image (σ = 3).

Image OBNLM Variational IWF HWF

Figure 8: Visual evaluation of various methods applied to the Carotid-Thyroid image.

because the image is a piece-wise constant. However, it suffers from over-blurring effects around the edges. Artifacts due to the
patching process are clearly visible in the OBNLM filter results. For the image Kidney, our approach fails at outperforming the
OBNLM filter and the variational method in terms of PSNR, but remains competitive. This can be explained by the different
philosophy of wavelet methods more oriented toward the complete elimination of the noise rather than the minimizing the
MSE [5]. The OBNLM approach gives good results when the noise level is low. Conversely, the variational method was more
appreciable for high noise levels. As can be observed in Figure 6, the wavelet approaches efficiently preserved the structure.
Unfortunately, we note the presence of artifacts related to the supports of the wavelet basis. This is a common inconvenience
of wavelet thresholding methods. The method noise presented in Figure 7 shows the structure of the suppressed noise for
each method. The proposed method gives a good compromise between efficient suppression of the noise and preservation of
structures. A major advantage of wavelet thresholding is its adaptability; the threshold comes directly from the knowledge of
σ and γ. Tuning the OBNLM filter is less straightforward, as the algorithm parameters are not directly expressed in terms of
the model parameters.

2) Experiments on real data: We propose to evaluate our algorithm on some samples from real US imaging. Unfortunately,
the blind extension of the SSIM presented in [37] was not suitable here as the noise is signal-dependent. Therefore comparisons
and parameters tuning were entirely based on the visual quality of the resulting image. We applied the different set of parameters
in Table I and choose those giving the best results. The first test concerns the Carotid-Thyroid image. In this image, the carotid
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artery, with some speckle inside due to blood flow, can be seen on the left, while the thyroid gland is visible on the right.
Denoising such images may be a pre-processing step in segmentation of the thyroid gland. An enhanced image also eases the
tracking of the carotid artery wall in dynamic imaging. The second test concerns Cranial US. This technique is mostly used
for babies, before the cranial bones have closed, as US waves cannot pass through the skull. An example of its use is obtaining
information on complications in premature birth.

Figure 8 shows results obtained using the different algorithms applied to the Carotid-Thyroid image. The results obtained
using the variational method are clearly over-blurred; this is due to the piece-wise constancy constraint of total variation. The
OBNLM filter achieved good results , although, there was some partitioning visible in the image. The proposed method has
comparable results to those of OBNLM. Moreover, in the hyperbolic case, one can see that the horizontal structures are nicely
recovered. The local treatment of the wavelets paradigm leads to images with well-defined structures. The main artifact with
the proposed method is the occurrence of wavelet basis elements in the final image. The Figure 9 reveals how these artifacts
can be drastically reduced when the hyperbolic wavelet is used. In the image obtained using the IWF procedure, small regions
representing the supports of the Haar basis can be seen. These are similar to the artifacts related to patching that occurred
using the Nonlocal methods. An improved result is obtained using the Hyperbolic settings, even though some lines are still
visible.

Image IWF HWF

Figure 9: Visual comparison between IWF and HWF for the Brain image

B. The Data-driven WF method

In this section, our experiments reveal the potential of the data-driven extension of our algorithm. The Table II presents a
comparison of the results obtained using HWF and data-driven HWF (dHWF) for the “Peppers” image studied in Figure 4.
As expected, there is a loss, proportional to the noise level, in the PSNR and the SSIM up to 0.5 dB and 4% respectively. We
believe this loss is acceptable, especially when the noise level is not very high.

PSNR (dB) SSIM
σ 2 3 4 2 3 4
Noisy 20.21 16.65 14.16 0.35 0.23 0.16
HWF 29.25 27.65 26.44 0.78 0.75 0.73
dHWF 29.09 27.40 26.17 0.76 0.72 0.69

Table II: Denoising of “Peppers” image: Quantitative Comparison (PSNR & SSIM) of the HWF and its fully data-driven
version for different noise levels.

We applied this data-driven technique to the Liver image studied in Figure 3. This image has a few discontinuities, allowing
the use of a large window for the mean filter. Results are given in Figure 10 for M = 8. A first interesting result is the shape
of the estimated standard deviation. A first interesting result is the “non constant slope” of the estimated standard deviation.
This points out that model (1) cannot be used. We suspect that this function is proportional to the power of the image, thereby
presenting an image processing based evidence of the noise model (2) relevance directly from the data. It was also noted
that the set of wavelet coefficients was well stabilized. We compared the image obtained in the data-driven mode to the one
obtained by using an exhaustive search for the parameter σ with γ = {0.5; 1}. Results demonstrated that the data-driven result
is satisfying and less blurred. We believe that a method free of tuning requirements is very desirable, especially for physicians.

V. CONCLUSION

In this paper, we described a novel approach for denoising ultrasound images based on wavelet thresholding, variance
stabilization and the use of hyperbolic wavelet basis. Quantitative and visual results show the potential of the proposed method
and the merit of the hyperbolic settings. A data-driven extension of our method is also presented. When applied to real data,
this extension provides evidence of the relevance of the noise model. Currently, we are addressing the extension to dynamic
US imaging.
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Figure 10: Experiments on the Liver image: (a) Estimated standard deviation, (b) Blind stabilized Coefficients.

APPENDIX A
VARIANCE DERIVATION

We recall that η = uγε, and we note t = (t1, t2)

Var
(dj,k(η)

σ ūγj,k

)
=

1

σ2 ū2γ
j,k

Var
(∑

t

ψj,k(t)uγ(t)ε(t)
)
,

=
1

ū2γ
j,k

∑
t

ψ2
j,k(t)u2γ(t),

=
1

ū2γ
j,k

∑
t

ψ2
j,k(t)u2γ

j,k(t).

Finally, replacing uj,k by its constant approximation ūj,k gives

Var
(dj,k(η)

ūγj,k

)
=
∑
t

ψ2
j,k(t) = ||ψj,k||22 = 1.
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