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ABSTRACT
This paper presents a model that provides adaptive and
evolutive interaction between a human and a virtual agent.
After introducing the theoretical justifications, the aliveness
metaphor and the notion of coupling are presented. Then,
we propose a formalization of the model that relies on the
temporal evolution of the coupling between participants and
the existence of phases during the interaction. An example
on a fitness exergame is provided and some illustrations
show the behavior of the model during an interaction. A
video complements this example.
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1. INTRODUCTION
An important challenge to face when designing virtual in-

teractive agents is the issue of believability, not as much
in the physical aspect as in the behavior performed during
the interaction with a human user. We reckon that, to sus-
tain natural and believable interactions, the agent should
be able to adapt to the behavior performed by the human.
Indeed, several researchers have shown that human-human
interaction is a dynamic process in which interactants influ-
ence each other’s behavior [1] and they tend to adapt both
their verbal and non-verbal behavior [2]. This mutual influ-
ence appears on different levels, such as temporal, acoustic,
non-verbal, verbal, and linguistic. Studies have shown, for
example, that during an interaction individuals tend to syn-
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chronize their movements [3] and to mimic their partner’s
non-verbal behaviors (such as facial expressions, body and
leg positions, gestures [4]). Such a mutual influence is then
a crucial element in human-human interactions and people
are able (consciously or not) to actively perceive and regu-
late it. As argued in [5], it is when the coordination is not
working that people become consciously aware of it.

Previous works which tackle the implementation of be-
lievable human-agent interaction focused mainly on conver-
sational interactions and the behavior the agent should per-
form, for example, while listening [6, 7, 8] or managing the
turn [9, 10]. These works are concerned more with spotting
the right time the agent should react than with the type
and the quality of the behavior the agent should perform
according to the human’s behavioral signals. Mutual influ-
ence appeared just on a temporal level. Moreover, most of
the existing approaches are generally static and based on a
cognitivist perspective: to the perception of a signal corre-
sponds a response generally described via some rules [6, 9,
10, 8] or probabilistic mechanisms [7]. The problem is that
the mutual influence of the interacting entities and their
temporal regulation are not the starting point of the defini-
tion of these rules. The main focus is on how to model the
choice of the behavior to perform according to the input but
not on the evaluation of the on-going interaction. Then, reg-
ulation and mutual influence are not guaranteed to appear
and if they do, it is an indirect consequence of the rules. If
an unexpected reaction occurs, regulation will certainly be
broken and so will be the believability of the virtual char-
acter. The problem is that it is very hard to anticipate all
the combinations of input which could brake the regulation
if this regulation is not explicitly expressed into rules which
evaluate the interaction.

In this work we would like to present a different approach
that focuses on the evolution of the interaction itself by
taking into account the correlation between the behavior
performed by the human and that performed by the agent.
Differently from previous works, we follow the enactive per-
spective, which considers that it is not possible to separate
perception and action as traditional methods do when they
compute output from input [11]. The difference between
classical input/output approaches and our proposition is il-
lustrated in figure 1. Due to the complexity of reproducing a
full human-human interaction, here we focus only on bodily



interaction and we do not consider verbal communication at
all. We will describe a model which enables a virtual agent
to adapt to its partner’s behavior in scenarii where speech is
not mandatory to establish an interaction. A similar work
was presented by Pugliese and colleagues [12]. Their ap-
proach, based on enaction too, mapped the human’s quality
of motion onto a bi-dimensional space where motion capture
animations for the virtual agent where placed according to
their motion style. So the agent played back the animation
that fitted the human’s behavior the most. Differently, we
suggest to select the agent behavior not only according to
the quality of that performed by the human but also accord-
ing to an evaluation of the on-going interaction.

In the next section we describe the principles our work is
based on. In section 3 a formalization of the model is pre-
sented and section 4 shows a real application of this model.
We conclude this paper by offering some perspectives for
future improvements.

Figure 1: cognitivist (a) versus enactive (b) approaches

2. PRINCIPLES: ALIVENESS METAPHOR
AND COUPLING

To design our model we were strongly inspired by the the-
oretical method to study human-human communication sug-
gested by Fogel and Garvey [13]. Their method is based on
the alive communication metaphor (or aliveness metaphor)
which stresses the analogy between living phenomena and
communication as their temporal self-regulated and contin-
uous changing aspects. According to this method, a com-
munication can be described through three states, called
co-regulation, ordinary variability and innovation. Co-
regulation appears when interactants are open to mutual
influence and their coordinated co-actions create constantly
new information constructing the communication. However,
even when two people involved in an interaction experienced
co-regulation, their co-actions are not always produced in
the same manner. This is because in human-human interac-
tion there is an intrinsic variability. According to Burgoon
et al. [14, page 269], for example, variability increases when
the interaction runs smoothly and people are less restrained
by social and cultural norms and are freer to express their

individual differences, such as behavioral style, goals and
desires. This ordinary variability makes interactions ‘never
the same’ but never nonsense. From time to time, extraor-
dinary variability (called innovation) can appear, obliging
the interactants to make an effort to integrate the novelty
in order to keep the communication going. Innovation is im-
portant also because, without important changes, an inter-
action could get less interesting, thus the interactants have
the tendency to introduce something new in order to main-
tain their engagement [15].

We introduce a model able to analyze the low-level of the
on-going interaction between a virtual agent and a human
in order to determine the state it is passing through: Are
the interactants co-regulated? Are they showing variability
or innovation? Then, this information is used to decide the
agent behavior. To determine the running state of the inter-
action we use the concept of coupling. Coupling is defined
as the continuous mutual influence between two individuals
[16]. It possesses the capability to resist to disturbances, and
compensates them by making the interaction evolve. Distur-
bances come both from the environment and from within the
individuals. This definition is recursive since coupling exists
because of the interactants’ effort to “recover” it as its qual-
ity decreases. In [16] this effort is considered as an expla-
nation of the improvement of the feeling of co-presence and
engagement. Interactants measure coupling unconsciously
and unconsciously they regulate it. We suggest here to use
coupling as the variable that informs the model about the
on-going interaction. One can make the link with the no-
tion of ultrastability in cybernetic [17] which considers that
biological systems regulate themselves through the obser-
vation of essential variables. Here, the essential variable is
represented by the value of the coupling. Decisions are then
described in terms of their ability to modify the coupling
in real-time. The agent behavior is chosen according to its
potential to make the interaction pass in one of the previous
cited states: co-regulation, variability or innovation.

Another important characteristic of our model is the abil-
ity to evolve together with the interaction itself. The be-
havior performed by the agent is always influenced by what
happened before and, whenever the innovation state is at-
tained, the introduced novelty is injected and assimilated to
become ordinary interaction.

3. FORMALIZATION
Relevant symbols of this formalization are defined in Table

1.

3.1 Aliveness states
The state of the interaction is modeled by a probability

distribution of a discrete random variable S. This variable
can take 3 values that represent respectively the fact that
the interaction is in co-regulation state, in variability state or
innovation state. The probability distribution is defined by
the vector PR = [pr1, pr2, pr3], where pr1 is the probability
P(S = regulation), pr2 the probability P(S = variability)
and pr3 the probability P(S = innovation). These proba-
bilities evolve in time according to the coupling.

3.2 Evaluation of the coupling
As explained in section 1, the present work focuses on

gestural behavior and gestural expressive quality shown by
both interactancts. For such a reason we compute coupling



Table 1: Symbols Table

βi(t) tendency to innovate (at time t)
βv(t) tendency to vary (at time t)
fi(p, t) value of feature i of participant p at

time t
C(p1, p2, t) coupling at time t, between partici-

pants p1 and p2
Cp1p2W (T ) mean coupling between participants

p1 and p2 on a temporal windows T
thβv threshold between successive cou-

pling to increase variability proba-
bility

αi rate of innovation tendency increase
αv rate of variability tendency increase

F pW (T ) mean value of weighted features on
a time interval T for participant p

initiator the participant whose features
evolve the most

S discrete random variable that rep-
resents the state of the interaction
(among (co-regulation, variability,
innovation))

PR vector [prcr, prv, pri] of probability
distribution of S

pr1 probability to be in co-regulation
pr2 probability to be in variability
pr3 probability to be in innovation
δpi variation of weighted features of pi

between two temporal windows
τ positive real that represents the

strength of the influence of tenden-
cies on probabilities pri

as the measure of the difference between some relevant be-
havioral features. The most relevant features depend on the
nature of the interaction. For example, they are different for
cooking together, playing tennis or dancing.

These features are real values extracted from the skele-
ton’s movements of the interactants. Many features can be
considered, such as hands and feet position, speed, energy,
spatial extent, directness, impulsiveness, jerkiness of move-
ments and more [18, 19, 20]. Here we introduce also one sym-
bolic feature which is the identifier of the recognized gesture
performed by the human. It is determined with the real-
time gesture recognition algorithm described in [21]. This
symbolic feature can be utilized for interactions where the
shape of the gesture is important, such as dance for example.

Let us consider n behavioral features for each participant
to the interaction: fi(p, t), where p is the participant, t the
discrete time (in practice, the time step is 30ms), and i the
index of the feature (0 < i ≤ n)

We define a normalization function:

nm : R −→ [0, 1]
x 7−→ |x|/(1 + |x|)

that is used to compute C(p1, p2, t), the global coupling
of two participants p1 and p2 at time t, as:

C(p1, p2, t) =

1−


n∑
i=0

wi ∗ (nm(fi(p1, t)− fi(p2, t)))
n∑
i=0

wi

 (1)

The weight wi represents the relevance of the ith feature
for computing the global coupling. It depends on the type
of the interaction and its value wi is limited between 0 and
1.

For example, in an imitation game, where each participant
has to imitate the posture of the other, the weights of the
features relative to the positions of the joints of the skele-
tons should be set to 1 while the other weights to 0. In a
fitness exergame, where the quality and the dynamic of the
movements are important, the weights could be distributed
among features such as the spatial extent, the speed and the
identifier of the performed gesture.

Formula 1 guarantees that 0 ≤ C(p1, p2, t) ≤ 1. Note that
for the symbolic feature corresponding to the id of a gesture,
the difference is set to 1 if the gesture performed by p1 and
p2 is the same, to 0 otherwise.

Now, let T be a temporal window of 30 frames, such as
T = [tj , tk], with tj < tk. We compute the mean of the
coupling as follows:

Cp1p2W (T ) =
1

T
∗
∑
T

C(p1, p2, t) (2)

We compute the mean value of coupling on a temporal

window in order to filter noise in the data, such a noise is
generally due to sensor flaws or to gesture recognition errors.

3.3 Temporal evolution
As mentioned in section 3.1, the probability distributions

of S evolves in time according to the history of the coupling.
To represent this dynamical evolution, we use two variables
βv(t) and βi(t) that correspond respectively to the tendency
to introduce variation and to innovate. Tendencies represent
the psychological part of the metaphor in the sens that
they model the need for changing (by introducing variation
or innovation) to maintain the aliveness of the interaction.
Considering two consecutive time windows T1 = [tj , tk] and
T2 = [tk, tl], where tj < tk < tl, the increase of βv(t) and
βi(t) is computed as follows:

if |(Cp1p2W (T1)− Cp1p2W (T2))| ≤ thβv then
βv(t)← βv(t− 1) + αv ∗ C(p1, p2, t) ∗ (1− βv(t− 1))

else
βi(t)← βi(t− 1) + αi ∗ (1− βi(t− 1))

end if

thβv is a tolerant threshold used to determine when the
means coupling computed on two consecutive temporal win-
dows are similar enough to increase the tendency to intro-
duce a variation. αv is the rate which this tendency increases
at. Similarly, αi is the rate which the tendency to innovate
increases at.

In short, if the mean coupling does not change during



time, the tendency to make some variations increases.
Otherwise, it is the tendency to innovate (βi(t)) that
increases (but more slowly since αi < αv). At each
time step, these tendencies are evaluated and so does the
probability distribution vector PR (see section 3.1). To do
that, we use a softmax function that “squashes” the vector
[z = (C(p1, p2, t), βv(t), βi(t)] in PR:

PR(z)j =
ezj/τ∑3
k=1 e

zk/τ
; j = 1...3 (3)

τ is a real that enables the adjustment of the influence
exerted by z on PR. Using a softmax function offers two
advantages: The first one is the guaranty that the sum of
the probabilities is equal to 1, the second one is that it allows
the adjustment of the influence level of the variables of z on
the probability values of PR. For example, for a value of
βi(t) and βv(t) close to 1, if C(pr1, pr2, t) is close to 0, then
pr1 and pr2 are close to 0.5 and pr3 is close to 0. However,
for the same values of βi() and βv(t), but C(p1, p2, t) close
to 1, pr1, pr2 and pr3 are all close to 0.33. The value of τ
allows to set this adjustment for intermediate values.

After the computation of PR, the state S of the interac-
tion, is determined. We will see in section 3.4 that when
the value of S changes, the behavior of the virtual character
changes too. In this case, the value of the tendencies βi(t)
and βv(t) is modified:

when S passes to variability
βv(t)← 0
βi(t)← βi(t− 1) + αi ∗ (1− βi(t− 1))

when S passes to innovation:
βi(t)← 0

In short, each time the interaction passes in variability
(because something new appears in term of coupling), the
tendency to variate is reset and the probability to innovate
increases. The same principle is used for the tendency
to innovate. Indeed, when an innovation (or variation)
is triggered, the need to reach the corresponding state is
satisfied and then the tendency to reach it again is reset.
After some time, the tendency to innovate or to introduce a
variation will increase again, according to the evolution of
the coupling. At any moment, when the interaction passes
to variability state or to innovation state, we can determine
which interactant causes the change. We call them the
initiator. To explain how we determine the initiator, firstly
we need to introduce the formula F pW (T ), that is the mean
value of the weighted features of a participant p on a time
windows T = [tj , tk] with tj < tk.

F pW (T ) =
1

T
∗
∑
t∈T


n∑
i=0

wi ∗ nm (fi(p, t))

n∑
i=0

wi

 (4)

Let p1 and p2 be two participants and T1 and T2 two
timed windows partially overlapped, such as T1 = [tj , tl]
and T2 = [tk, tm] with tj < tk < tl < tm, we determine the
initiator as follows:

δp1 ← (F p1W (T1)− F p1W (T2))
δp2 ← (F p2W (T1)− F p2W (T2))
if (δp1 < δp2) then

initiator ← p2
else

initiator ← p1
end if

In other words, the initiator is the participant whose rel-
evant features have evolved the most.

Whenever the interaction passes through one of the three
states, the behavior that the agent should show depends
strongly on the type of scenario which the interaction takes
place in. For such a reason, the programmer must define
three generic functions, called BehavCo, BehavV ar and
BehavIn, which describe the behavior that can be per-
formed respectively during the states of co-regulation, of
variability and of innovation. Section 4 will provide exam-
ples about the definition of these three functions.

3.4 Toward a more evolutive model
The previous part of our model enables an adaptation

of the interaction through the three states of the aliveness
metaphor, according to the value of the coupling between
the two participants. Since this change is relative to the
coupling, it appears very adaptive. It can be described as
follows: interaction states change in time and so does the
behavior of the virtual agent. Reciprocally, the behavior of
the other interactant (human or virtual) evolves and by do-
ing so it changes the state of the interaction. However, it is
not enough. We want our model able to make the variabil-
ity evolve as well, that means that each time the interaction
passes to the variability state, the model does not compute
always the same kind of variability in the agent behavior.
This variability should depend on the type of interaction
and on the behavior performed by the other. We are well
aware that the variability depends also on the agent charac-
teristics (such as behavioral style, goals, desires, mood and
so on), but in this work we do not take that into account.
We want also our model able to assimilate innovations to
make them part of the ordinary interaction. An unexpected
behavior is not surprising anymore when it appears a sec-
ond time, it becomes part of the interaction. To sum up, we
want that, even if the behavior that the agent can show in
any state of the interaction is defined by the programmer in
the three functions described above (BehavCo, BehavV ar
and BehavIn), these functions do not produce always the
same output for the same input and that they can be pa-
rameterised according to the evolution of the interaction.

To reach this goal, we use a classifier system. A classi-
fier system is a set of weighted rules (which are a couple
(condition-action)) [22]. The probability to choose one rule
depends on the value of its condition and its weight. Gener-
ally, weights are computed through a reinforcement learning
algorithm and rules are generated through a genetic algo-
rithm. However in this work, we do not introduce reinforce-
ment learning and rules are handwritten. The condition of
a rule takes into account the other interactant behavioral
features fi(p, t)), the level of coupling C(p1, p2, t) and the
initiator ; the actions change some parameters of the behav-
ior the agent will perform, for example they will increase
the speed of movements or their amplitude. Thus, the rules
can modify, in real-time and according to the interaction,



<classifier>

<!-- Intern parameters -->

<param [dynamic] />

<!-- Rules -->

<rule [weight]>

<condition/>

<action/>

</rule>

<!-- Rewards -->

<reward [value]>

<condition/>

</reward>

</classifier>

Figure 2: structure of the XML file classifier

the parameters of the three generic functions (BehavCo,
BehavV ar and BehavIn) which describe the behavior that
can be performed during each interaction state.

Concretely, the user has to configure an XML file with cus-
tomized tags. The tags are shown in Figure 2. Through
the tag param one can define the variables that are implied
as parameters for the conditions. If a variable is declared
dynamic (dynamic=true), it is possible to known its tem-
poral evolution to evaluate rules condition. Any variable of
the full program could be used. The tag rule is used to
define the rules. Conditions can use different operators of
comparison (i.e greater, lower, equal ...) or evolution
(like increasing, decreasing and steady) for dynamical
variables. Actions contain operators to modify the parame-
ters (i.e. add, sub, divide, multiply, set).

4. APPLICATIONS
In order to use our model in real human-agent interac-

tions, we need to parameterize it according to the specific
scenario which the interaction will take place in. We must
specify:

1. the most important features that are needed to com-
pute the level of coupling: the values of all wi in for-
mula 1,

2. the three functions BehavCo, BehavV ar, BehavIn
and their parameters which can evolve during the in-
teraction,

3. the rules of the classifier which describe how these pa-
rameters evolve.

It could seem as an heavy task, however it is not so cum-
bersome. To show that, we used our model to make a virtual
companion interact with a human within an exergame.

4.1 Fitness exergame
Exergames for sport are flourishing thanks to the more

and more affordable body sensors used in edutainment.
However, the coupling between a virtual agent and a hu-
man during a training session is far from being simple and
correctly simulated. The goal of this interaction is to have
the virtual agent playing the role of a fitness companion
who shows some fitness movements that the human must
reproduce. The movements that the agent can show were

Figure 3: three screen shots from the video of the exergame.
The human is tracked using a kinect.

collected through motion capture. A set of 12 fitness move-
ments was captured. The agent can regulate its expressivity
(in term of speed) in real-time according to that showed by
the human. He can also offer an innovation by introducing
a new fitness movement; as soon as a movement has been
performed by both the agent and the human, it becomes a
“known movement” and cannot be considered as innovating
any more. Variability is offered by the agent either by vary-
ing its expressivity (always in term of speed) or by changing
the current movement with another known one.

To make a virtual agent play the fitness game, we param-
eterise our model as follows:

1. What are the important features used to compute the
coupling? Fitness practice relies on predefined body
movements and on the manner they are performed.
Then, the weights of the features corresponding to the
recognized gesture, and some features relative to the
effort provided by the performer (such as speed) are set
to a positive value. The weight of the other features is
set to 0.

2. How do we specify the three functions BehavCo,
BehavV ar, BehavIn and their parameters? The role
of BehavCo is that, when the interaction is in co-
regulation state, the virtual agent, who is performing
a fitness movement, modulates its speed to be sim-
ilar to that showed by the human. The interaction
can move to variability state whenever an important
change appears in the expressivity of the movement.
Such a change could be offered by the agent or by the
human; as we have seen in section 3.3 we can deter-
mine who initiates the modification in the interaction
and we called it the initiator. So, whenever the inter-
action passes to variability state, if the initiator is the
agent, the BehavV ar chooses either to vary the speed
of a random amount selected within a given range, or
to change the current movement with another known
one. Otherwise, if the human is the initiator, the vir-
tual agent modulates the movement it is performing
according to the value of speed computed by the clas-
sifier system.

3. How can the parameter of speed evolve? There are two
basic classifier rules: one specifies that if the coupling



Figure 4: Traces of the execution of an episode of interaction. The value of S is 0 for co-regulation, 1 for variability and 2 for
innovation

Figure 5: Same episode as Figure 4 for the evolution of probability distributions according to the coupling and the tendency
to pass to variability state

is good for awhile, the range of the possible values
for the random change of speed will grow. Recipro-
cally, another rule indicates that if the coupling is low,
this range will decrease. Of course, several other rules
could be imagined. The purpose here is to illustrate
the possibility to introduce some evolution of the be-
havior during time.

Figure 6 shows the rules in the classifier which specify
the variability of the speed. Speed and deltaS corre-
spond respectively to the range of speed variability of
the virtual agent and the difference between the speed
of the human and the agent. Whenever the interaction
passes to innovation state, if the agent is the initiator,
the BehavIn function introduces a new fitness move-

ment, that is a movement that has never been per-
formed before. If the human is the initiator, the agent
refuses the proposition by randomly maintaining its
current movement or playing a gesture of refusal. In
this game just the agent knows all the movements that
can be performed. Such a limitation assures that the
human does not introduce movements that the agent
could neither recognize nor reproduce.

4.1.1 Results
Figure 3 shows the technical realization of our example

(we encourage the reader to have a look at the video posted



<classifier>

<!-- Intern parameters -->

<param tag="deltaS" dynamic="true" value="0.0" />

<param tag="speed" dynamic="true" value="0.0" />

<!-- Rules -->

<rule weight="1">

<condition param="deltaS" compare="greater"

to="0.0"/>

<action type="add" param="speed" value="0.01"/>

</rule>

<rule weight="1">

<condition param="deltaS" compare="lower"

to="0.0"/>

<action type="sub" param="speed" value="0.01"/>

</rule>

</classifier>

Figure 6: Example of the classifier rule that modifies the
range of speed variability.

on the project web site1): Two girls played the fitness game
with the agent. Figures 4 and 5 show the temporal evolution
of different variables of the model during an episode of the
interaction. For this example, we chose τ=0.07, αv=0.1,
αi=0.08 and thβv=0.15.

This episode exemplifies the possibilities of our model. In
figure 4, we trace the features that correspond to the speed
of the agent and the human. We can observe that their
evolution are linked together: sometime the agent moves
faster than the human but, some times, it is the opposite.
However, even if it is quite subtle, the speed variation of
the agent follows that of the human. It also appears that
if the gesture of the agent and the human is not the same
(curve sameGesture from time 90 to time 94), the coupling
decreases. When the coupling is high (for instance from
time 70 to time 90), the βv(t) increases (on figure 5) and
so increases pr2. Then after awhile, S enters in variability
state (time 86) and the agent offers another fitness move-
ment (gesture 2 starts effectively at time 90, after the end of
gesture 1). The coupling starts decreasing, but, at time 94,
the human plays gesture 2 too and the coupling increases
anew. One can observe that each time S enters in the vari-
ability state, βv(t) is reset to 0 (and so is pr1(t)). However,
it can come true that βv(t) increases while pr2 decreases. It
is due to the effect of the softmax function (see section 3.3).
For instance, at time 96, as the coupling and pr1 increases
sharply, pr2 decreases, even if βv(t) does not really evolve.

Another interesting phenomenon appears at time 112
when the probability to innovate is strong enough to trigger
an innovation. Since the initator (which is not traced for
clarity of the figure) is the human, BehavIn plays a gesture
of refusal. So the girl is surprised and stops her movement.
The speed of the human decreases, the coupling too, but,
as soon as the virtual agent enter in co-regulation, it slows
down to get closer to the girl’s pace. Then, the human re-
sumes the interaction by performing the right gesture (at
time 120).

Figure 7 illustrates, on a longer period of the interaction,
that the number of the “known movements” increases. We
remind that a known movement is a movement which has

1http://www.ingredible.fr/?page id=201

been performed by the interactants at least once. Each novel
gesture is progressively introduced whenever the interaction
entered in innovation state and the agent was the initiator
(that is at times 90, 120, 320, 390, 450). Figure 7 shows also
that during an interaction there are generally some variabil-
ity and co-regulation cycles before an innovation. Statis-
tically, the interaction is in co-regulation 80% of time, in
variability 13% of time and in innovation 7% of time. The
introduction of all 12 fitness gestures takes generally 12 min-
utes.

These different traces show that our model generates an
evolving and self-adapting behavior for the agent, as sug-
gested by the aliveness metaphor.

5. PERSPECTIVES
This paper has presented an architecture able to induce

behavioral coupling between a virtual character and a real
human. Its originality relies on the introduction of the
aliveness metaphor that considers the interaction as a self-
regulated system. The “dynamic equilibrium” between the
participants reproduces real life interactions. We consider
that the problem of believability, feeling of co-presence and
engagement of people faced to virtual agents could be im-
proved through this proposition. The next step of this work
is to perform some evaluations. We also plan to improve
the definition of features. For instance, [23] introduces a
multi-level analysis of motor actions of coaching that could
be relevant for a high performance virtual coach (for the
moment, coaching is used as an illustrative example of the
principles of our architecture without claiming that it does
what a real coach would do). We also plan to improve the
animation. Rather than using tools as FinalIK2, we plan
to connect the cognitive architecture with interactive mesh
techniques that can be generated from data [24]. To fin-
ish, we would like to improve the rules of the classifier by
implementing a learning mechanism.
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