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On the Complexity of the Block Low-Rank Multifrontal

Factorization

Patrick Amestoy∗ Alfredo Buttari† Jean-Yves L’Excellent‡ Theo Mary§

Abstract

Matrices coming from elliptic Partial Differential Equations have been shown to
have a low-rank property: well defined off-diagonal blocks of their Schur complements
can be approximated by low-rank products and this property can be efficiently ex-
ploited in multifrontal solvers to provide a substantial reduction of their complexity.
Among the possible low-rank formats, the Block Low-Rank format (BLR) is easy to
use in a general purpose multifrontal solver and has been shown to provide significant
gains compared to full-rank on practical applications. However, unlike hierarchical
formats, such as H and HSS, its theoretical complexity was unknown. In this paper,
we extend the theoretical work done on hierarchical matrices in order to compute the
theoretical complexity of the BLR multifrontal factorization. We then present several
variants of the BLR multifrontal factorization, depending on the strategies used to
perform the updates in the frontal matrices and on the constraints on how numerical
pivoting is handled. We show how these variants can further reduce the complexity
of the factorization. In the best case (3D, constant ranks), we obtain a complexity
of the order of O(n4/3). We provide an experimental study with numerical results
to support our complexity bounds.

1 Introduction

We are interested in efficiently computing the solution of large sparse systems of linear
equations. A sparse linear system is usually referred to as:

Ax = b , (1)

where A is a sparse matrix of order n, x is the unknown vector of size n, and b is the
right-hand side vector of size n.

This paper focuses on solving (1) with direct approaches based on Gaussian elimina-
tion and more particularly the multifrontal method, which was introduced by Duff and
Reid [17] and, since then, has been the object of numerous studies [27, 4, 15].

The multifrontal method achieves the factorization of a sparse matrix A as A =
LU or A = LDLT depending on whether the matrix is unsymmetric or symmetric,
respectively. A is factorized through a sequence of operations on relatively small dense
matrices called frontal matrices or, simply, fronts, on which a partial factorization is
performed, during which some variables (the fully-summed (FS) variables) are eliminated,
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‡Université de Lyon, INRIA-LIP
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i.e. the corresponding factors are computed, and some other variables (the non fully-
summed (NFS) variables) are only updated. To know which variables come into which
front, and in which order the fronts can be processed, an elimination or assembly tree [26,
30] is built, which represents the dependencies between fronts.

When system (1) comes from the discretization of an elliptic Partial Differential
Equation (PDE), the matrix A, known as stiffness matrix, has been shown to have a
low-rank property: conveniently defined off-diagonal blocks of its Schur complements
can be approximated by low-rank products and this property can be efficiently exploited
in multifrontal solvers to provide a substantial reduction of their complexity. Several
strategies have been proposed to exploit this property within direct multifrontal solvers.
In comparison to the quadratic complexity of the full-rank solver, hierarchical formats,
such as H [22, 21, 14], H2 [24, 14], HSS [34, 32, 29, 20], HODLR [7], and others, have
been shown to possess near-linear complexity.

Previously, we have investigated the potential of a so-called Block Low-Rank (BLR)
format [1] that, unlike hierarchical formats, is based on a flat, non-hierarchical blocking of
the matrix which is defined by conveniently clustering the associated unknowns. While
its efficiency has been shown in practice on real applications [1, 2, 3], its theoretical
complexity was unknown. Unlike hierarchical formats, it remained to be proved that
the BLR format does not only reduce the computations by a constant, i.e., possesses a
complexity in O(n2) just like the full-rank solver.

The main objective of this paper is to compute the complexity of the BLR multifrontal
factorization. We will first prove that BLR does provide a non-constant gain, and then
show how variants of the BLR approach (introduced in [9, 6]) influence its complexity.

We now explain how we reach this objective by shortly describing the contents of each
section. Section 2 is devoted to preliminaries; we provide an overview of the Block Low-
Rank approximations that can be used within multifrontal solvers. We also present the
context of the complexity study, the resolution of elliptic PDEs with the Finite Element
(FE) method. Finally, we introduce classical block-admissibility conditions aiming at
determining if a block is admissible for low-rank compression. In Section 3, we compute
the theoretical bounds on the numerical ranks of the off-diagonal blocks in BLR matrices
arising in our context. First, we briefly review the work done on hierarchical matrices
and the complexity of their factorization. Then, we explain why applying this work to
BLR matrices (which are a very particular kind of hierarchical matrices) does not provide
a satisfying result. We then give the necessary ingredients to extend this work to the
BLR case. In Section 4, we use the rank bounds computed in Section 3 to compute
the theoretical complexity of the standard dense BLR factorization. Then, we explain
in Section 5 how the dense BLR factorization can be used within each node of the tree
associated with a sparse multifrontal factorization, and we compute the complexity of the
corresponding BLR multifrontal factorization. We then present in Section 6 algorithmic
variants of the BLR factorization and show how they can further reduce its complexity.
In Section 7, we support our theoretical complexity bounds with numerical experiments
and analyze the influence on complexity of each variant of the BLR factorization and
of two other parameters: the low-rank threshold and the block size. We provide our
concluding remarks in Section 8.
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2 Preliminaries

2.1 Block Low-Rank approximations

In this section, we provide a brief presentation of the BLR format, and explain its
main differences with hierarchical formats. A more detailed and formal presentation can
be found in Amestoy et al. [1].

Unlike other formats such as H-matrices [12] and HSS matrices [34, 33], the BLR
format is based on a flat, non-hierarchical blocking of the matrix which is defined by
conveniently clustering the associated unknowns. A BLR representation S̃ of a dense
matrix S is shown in Equation (2), where we assume that p subblocks have been defined.
Subblocks Bij of size mij × nij and numerical rank kεij are approximated by a low-rank

product B̃ij = XijY
T
ij at accuracy ε, where Xij is a mij×kεij matrix and Yij is a nij×kεij

matrix.

S̃ =


B̃11 B̃12 · · · B̃1p

B̃21 · · · · · ·
...

... · · · · · ·
...

B̃p1 · · · · · · B̃pp

 (2)

For the sake of simplicity, and without loss of generality, we will assume in the
following that, for a given matrix S̃, the property ∀i, j mij = nij = b holds, where b, the
block size, can depend on the order of the matrix.

Because the multifrontal method relies on dense factorizations, the BLR approxima-
tions can be easily incorporated into the multifrontal factorization by representing the
frontal matrices as BLR matrices, as will be described in Section 5. In fact, many of the
properties we will show in this paper are true for general dense BLR matrices and can
be applied to broader contexts than the multifrontal method.

The clustering of the unknowns (noted I) into subdomains that define the blocks of
the matrix A is formalized as a subdomain partition S(I×I) of I×I. How this partition
is computed in the context of the multifrontal method is explained in Section 5.

In general, hierarchical partitionings are a completely general partitioning of I × I.
However, a BLR partitioning verifies the following property:

∀(σ × τ, ρ× υ) ∈ S(I × I)2, σ × υ ∈ S(I × I) (and ρ× τ ∈ S(I × I))

which is not satisfied by a general hierarchical format as shown in Figure 1(a). This speci-
ficity of BLR partitionings is illustrated in Figure 1. In the hierarchical literature [21],
the partitionings are often formalized with so-called cluster trees and block cluster trees
(Figure 2). In the BLR case, we do not need a block cluster tree, because the blocking
of A is uniquely defined by the row and column indices cluster trees only (Figure 3).
Indeed, the block cluster tree associated to a BLR partitioning is always the complete
tree resulting from the block-product of the row and column cluster trees.

We define the so-called sparsity constant :

csp = max

(
max
i

#{Ij ; Ii×Ij ∈ S(I × I)},max
j

#{Ii; Ii×Ij ∈ S(I × I)}
)

(3)

where #E denotes the cardinal of a set E (we will use this notation throughout the
rest of the article). Thus, the sparsity constant is the maximum number of blocks of a
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given level in the block cluster tree that are in the same row or column of the matrix.
For example, in Figure 1(a), csp is equal to 2, and in Figure 1(b), it is equal to 4.
Under the assumption of a partitioning S(I × I) defined by a geometrically balanced
tree, the sparsity constant can be bound by a constant in O(1) ([21], Lemma 4.5). A
geometrically balanced tree is a block cluster tree resulting from a partitioning computed
as the intersection between the domain Ω (defined below in (4)) and a hierarchical cubic
domain. For a formal description, see Construction 4.3 in [21].

In the following, when referring to the BLR case, we simplify the notation S(I × I)
to S(I), as in most cases we do not need a different partitioning of the row and column
variables.

I

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I
I1 I2

I3 I4 I5 I6

I7 I8 I9 I10I11I12I13I14

(a) General H-partitioning

I

I1

I2

I3

I4

I5

I6

I
I1 I2

I3 I4 I5 I6

(b) BLR partitioning

Figure 1: BLR partitioning: a very particular H-partitioning.

I × I

I1×I1 I1×I2 I2×I1 I2×I2

I3×I3 I3×I4 I4×I3 I4×I4 I5×I5 I5×I6 I6×I5 I6×I6

I7×I7 I7×I8 I8×I7 I8×I8 I9×I9 I9×I10I10×I9I10×I10I11×I11I11×I12I12×I11I12×I12I13×I13I13×I14I14×I13I14×I14

Figure 2: Block Cluster Tree associated with the H-partitioning of Figure 1(a)

Next, we describe the context in which we place ourselves for the complexity study,
which is the same as in Hackbusch & Bebendorf [13].

2.2 FE discretization of elliptic PDEs

We consider a Partial Differential Equation of the form:

Lu = f in Ω ⊂ Rd,Ω convex , d ≥ 2 (4)

u = g on ∂Ω
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I

I1 I2

I3 I4 I5 I6

Figure 3: Row and column cluster tree associated to the BLR partitioning of Figure 1(b)

where L is a uniformly elliptic operator in divergence form:

Lu = −div[C∇u+ c1u] + c2 · ∇u+ c3u

C is a d × d matrix of functions, such that ∀x,C(x) ∈ Rd×d is symmetric positive
definite with entries cij ∈ L∞(Ω). Furthermore, c1(x), c2(x) ∈ Rd and c3(x) ∈ R.

We consider the resolution of problem (4) by the Finite Element (FE) method. Let
D = H1

0 (Ω) be the domain of definition of operator L. We consider a FE discretization,
with step size h, that defines the associated approximation of D, the space Dh. Let
n = Nd = dimDh be its dimension and {ϕi}i∈I the basis functions, with I = [1, n] the
index set. Similarly as in Hackbusch & Bebendorf [13], we assume that a quasi-uniform
and shape-regular triangulation is used. We define Xi, the support of ϕi, and generalize
the definition of support to subdomains:

Xσ =
⋃
i∈σ

Xi

We note J the bijection defined by:

J :
Rn → Dh
x 7→

∑
i∈I xiϕi

To compute an approximated solution of Equation (4), we solve the discretized prob-
lem (1) where A is the stiffness matrix defined by A = J∗LJ . We assume that (1) is
solved using the multifrontal method to factorize A. We also define B = J∗L−1J and
M = J∗J . B is the Galerkin discretization of L−1 and M the mass matrix.

A matrix of the form
S = AΨΨ −AΨΦA

−1
ΦΦAΦΨ (5)

for some Φ,Ψ ⊂ I such that Φ ∪ Ψ = I is called a Schur complement of A. One of the
main results of Bebendorf ([11], Section 3) states that the Schur complements of A can
be approximated if an approximant of the inverse stiffness matrix A−1 is known.

Therefore, we are interested in finding Ã−1, approximant of the inverse stiffness ma-
trix A−1. The following result from FE theory will be used ([13], Subsection 5.2): the
discretization of the inverse of the operator is approximated by the inverse of the dis-
cretized operator, i.e.,

‖A−1 −M−1BM−1‖2 ≤ O(εh) (6)

where εh is the accuracy associated with the step size h of the FE discretization. In the
following, for the sake of simplicity, we assume that the low-rank threshold ε is set to be
equal to εh.
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Then, assuming we can find M̃−1 and B̃, approximants of the inverse mass matrix
M−1 and of the B matrix, we have ([13], Subsection 5.3):

M−1BM−1 − M̃−1B̃M̃−1 = (M−1 − M̃−1)BM−1

+ M̃−1(B − B̃)M−1 + M̃−1B̃(M−1 − M̃−1) (7)

Thus M−1BM−1 can be approximated by M̃−1B̃M̃−1 and therefore so can A−1.

2.3 Block-admissibility condition

In the following, we will use a key concept called the admissibility condition. The
block-admissibility condition determines whether a block σ × τ is admissible for low-
rank compression. The standard block-admissibility condition, also called strong block-
admissibility, is the following:

σ × τ is admissible ⇔ max(diam(Xσ), diam(Xτ )) ≤ η dist(Xσ, Xτ ) (Adms
b)

where η > 0 is a fixed parameter. Condition (Adms
b) formalizes the intuition that the

rank of a block σ × τ is correlated to the distance between Xσ and Xτ : the greater the
distance, the weaker the interaction, the smaller the rank; that distance is to be evaluated
relatively to the subdomain diameters.

The η parameter controls how strict we are in considering a block admissible. The
smaller the η, the fewer admissible blocks. On the contrary, if we choose

ηmax = max
σ,τ∈S(I)

dist(Xσ ,Xτ )>0

max(diam(Xσ), diam(Xτ ))

dist(Xσ, Xτ )
(8)

then condition (Adms
b) can be simplified in the following condition, that we call least-

restrictive strong block-admissibility:

σ × τ is admissible ⇔ dist(Xσ, Xτ ) > 0 (Adm lrs
b )

Finally, there is an even less restrictive admissibility condition, called weak block-admissibility:

σ × τ is admissible ⇔ σ 6= τ (Admw
b )

With the weak admissibility, even blocks that correspond to neighbors (subdomains at
distance zero) interaction are admissible, as long as they are not self-interactions (i.e.,
the diagonal blocks).

The proofs in [13], on which this paper is based, rely on the strong admissibility.
In [23], it is shown that using the weak block-admissibility condition instead leads to a
smaller constant in the complexity estimates. The extension to the weak admissibility
condition in the BLR case is out of the scope of this paper. Therefore, we assume that
a strong block-admissibility condition is used for computing our theoretical complexity
bounds, that we will simply note (Admb).

Note that in Figure 1, the H and BLR partitionings were illustrated for the weak
admissibility case, for the sake of simplicity.
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3 From Hierarchical to BLR bounds

The existence of H-matrix approximants of the Schur complements of A has been
shown in [13, 11]. In this section, we summarize the main ideas of the proof and give the
necessary ingredients to extend it to the BLR case. The reader can refer to Hackbusch
& Bebendorf [13, 10, 11] for the details of the proof for hierarchical matrices.

3.1 H-admissibility and properties

The admissibility of a partition can now be defined based on the block-admissibility
condition. In the case of hierarchical matrices, the H-admissibility condition is defined
as:

S(I × I) is admissible ⇔ ∀σ × τ ∈ S(I × I), (Admb) is verified (AdmH)

or min(#σ,#τ) ≤ cmin

where cmin is a positive constant. The partitioning associated with the H-admissibility
condition (AdmH) can thus roughly be obtained by the following algorithm: for a given
initial partition, for each block σ× τ , if (Admb) is satisfied, the block is admissible and is
added to the final partition; if not, the block is subdivided, until either (Admb) is satisfied
or the block becomes small enough. This often leads to non-uniform partitionings, such
as the example shown on Figure 1(a).

We note H(S(I × I), r) the set of hierarchical matrices such that r is the maximal
rank of the blocks defined by the admissible partition S(I × I).

In Hackbusch & Bebendorf [13, 10, 11], the proof that the Schur complements of A
possess H-approximants is derived using (6).

It is first established that B and M−1 possess H-approximants ([13], Theorems 3.4
and 4.3). More precisely, they can be approximated with accuracy ε by H-matrices B̃

and M̃−1 such that

B̃ ∈ H(S(I × I), rG) (9)

M̃−1 ∈ H(S(I × I), | log ε|d) (10)

where S(I × I) is an H-admissible partition and rG is the rank resulting from the
approximation of the degenerate Green function’s kernel. rG can be shown to be small
for many problem classes [13, 10].

Then, the following H-arithmetics theorem is used.

Theorem 1 (H-matrix product, Theorem 2.20 in Grasedyck & Hackbusch [21]). Let H1

and H2 be two hierarchical matrices of order n, such that H1 ∈ H(S(I × I), r1) and
H2 ∈ H(S(I × I), r2). Then, their product is also a hierarchical matrix and it holds:

H1H2 ∈ H(S(I × I), csp max(r1, r2) log n)

In Theorem 1, csp is the sparsity constant, defined by (3).
Then, using the fact that rG > | log ε|d [13], and applying (6), (7), and Theorem 1, it

is established ([13], Theorem 5.4) that

Ã−1 ∈ H(S(I × I), rH), with rH = c2
sprG log2 n (11)

7



Furthermore, if an approximant Ã−1 exists, then for any Φ ⊂ I, an approximant of A−1
ΦΦ

must also exist, since AΦΦ is simply the restriction of A to the subdomain XΦ [11].
Thus, using (5), in combination to the fact that the stiffness matrix A can also be

approximated by Ã ∈ H(S(I×I), O(1)), the existence of S̃, H-approximant of any Schur
complement S of A, is guaranteed by (11) and it is shown [11] that the maximal rank of
the blocks of S̃ is rH, i.e.

S̃ ∈ H(S(I × I), rH) (12)

Finally, it can be shown that the complexity of factorizing an H-matrix of order m
and of maximal rank r is [21, 22]:

C(m) = O(c2
spr

2m log2m) (13)

Equation (13) relies on the assumption that the factorization is fully-structured, i.e.
the compressed form Ã of A is available at no cost.

To conclude, in the H case, applying (13) to the (dense) factorization of S̃ leads to a
cost which is almost linear when r = O(1) and almost in O(mN2) when r = O(N). As
will be explained in Section 5, both cases lead to near-linear complexity of the multifrontal
(sparse) factorization [32].

3.2 Why this result is not suitable to compute a complexity bound for
BLR

One might think that, since BLR is a specific type of H-matrix, the previous result
can be used to derive the complexity of the BLR factorization. However, the bound
obtained by simply applying H-matrix theory to BLR is useless, as explained below.

Applying the result on H-matrices to BLR is equivalent to bound all the ranks kεij
by the same bound r, the maximal rank. The problem is that this necessarily implies
r = b, because there will always be some blocks of size b such that dist(Xσ, Xτ ) = 0
(i.e., non-admissible blocks, which will be considered full-rank). Thus, the best we can
say about a BLR matrix is that it belongs to H(S(I), b), which is obvious and overly
pessimistic.

In addition, with a BLR partitioning, the sparsity constant csp (defined by (3)) is not
bounded, as it is equal to p = m/b. Thus, (13) leads to a factorization complexity bound
in O((m/b)2b2m log2m) = O(m3 log2m), even worse than the full-rank factorization.

3.3 BLR-admissibility and properties

To compute a meaningful complexity bound for BLR, we divide the BLR blocks
into two groups: the blocks who satisfy the block-admissibility condition (whose rank r
can be bounded by a meaningful bound), and those who do not, which we assume are
left in full-rank form. We show that the number of non-admissible blocks in A can be
asymptotically negligible, provided an appropriate partitioning S(I). This leads us to
introduce the notion of BLR-admissibility of a partition S(I), and we establish for such
a partition a bound on the maximal rank of the admissible blocks.

In the following, we note BA the set of admissible blocks. We also define

Nna = max
σ∈S(I)

#{τ ∈ S(I), σ × τ /∈ BA} (14)
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the maximum number of non-admissible blocks on any row. Note that, because we have
assumed for simplicity that the row and column partitioning are the same, Nna is also
the maximum number of non-admissible blocks on any column.

We then recast the H-admissibility of a partition to the BLR uniform blocking. We
propose the following BLR-admissibility condition:

S(I) is admissible ⇔ Nna ≤ q (AdmBLR)

where q is a positive constant. With (AdmBLR), we want the number of blocks (on any
row or column) that are not admissible (and thus whose rank is not bounded by r), to
be itself bounded by q.

For example, if the least-restrictive strong block-admissibility condition (Adm lrs
b ) is

used, (AdmBLR) means that a partition is admissible if for any subdomain, its number
of neighbors (i.e. number of subdomains at distance zero) is smaller than q. The BLR-
admissibility condition is illustrated in Figure 4, where we have assumed that (Adm lrs

b )
is used for simplicity. In Figure 4(a), the vertical subdomain (in gray) is at distance zero
of O(m/b) blocks and thus Nna is not constant. In Figure 4(b), the maximal number of
blocks at distance zero of any block is at most 9 and thus the partition is BLR-admissible
for q ≥ 9. Note that if a general strong admissibility condition (Adms

b) is used, the same
reasoning applies, as in Figure 4(b), Nna only depends on η and d, which are both
constant.

We note BLR(S(I), r, q) the set of BLR matrices such that r is the maximal rank of
the admissible blocks defined by the BLR-admissible partition S(I), i.e.

b

m

(a) Example of a non-BLR-
admissible partition. Here, the
gray subdomain has Nna =
O(m/b) 6= O(1) neighbors.

b

m

(b) Example of a BLR-
admissible partition when
q ≥ Nna = 9 = O(1), the
maximal number of neighbors of
any block.

Figure 4: Illustration of the BLR-admissibility condition.

We now prove the following lemma.

Lemma 1. Let S(I×I) be a given H-partitioning and let S(I) be the corresponding BLR

partitioning obtained by refining the H one. Let us note N
(H)
na and N

(BLR)
na the value of

Nna for the H and BLR partitionings, respectively. Then: (a) Provided b ≥ cmin , it holds

N
(BLR)
na ≤ N

(H)
na ; (b) Under the assumption that S(I × I) is defined by a geometrically

balanced block cluster tree, it holds N
(H)
na = O(1).

Proof. (a) We provide Figure 5 (where non-admissible blocks are in gray) to illustrate
the following proof. The BLR partitioning is simply obtained by refining the H one.

9



Since non-admissible H-blocks are of size cmin ≤ b, they will not be refined, and thus the
BLR refining only adds more admissible blocks to the partitioning. Furthermore, if cmin

is strictly inferior to b, the non-admissible H-blocks will be merged as a single BLR-block

of size b and thus N
(BLR)
na may in fact be smaller than N

(H)
na . (b) Since all non-admissible

blocks necessarily belong to the same level of the block cluster tree (the last one), it holds

by definition that N
(H)
na ≤ csp . We conclude with the fact that in the H case, the sparsity

constant is bounded for geometrically balanced block cluster trees [21].

As a corollary, we assume in the following that the partition S(I) is defined by a
geometrically balanced cluster tree and is thus admissible for q = Nna = O(1).

cmin

(a) Example of H-partitioning, with

N
(H)
na = 4 ≤ csp = 6 = O(1). Here, we have

assumed the bottom-left and top-right
blocks are non-admissible for illustrative
purposes.

b

(b) BLR refining of the H-partitioning
5(a). csp = O(m/b) is not bounded any-

more but N
(BLR)
na = 3 = O(1) remains con-

stant.

Figure 5: Illustration of Lemma 1 (proof of the boundedness of Nna).

The next step is to find BLR approximants of B and M−1. In the Appendix, we give
the constructions (35) and (36) of B̃ and M̃−1, BLR approximants of B and M−1, that
verify:

B̃ ∈ BLR(S(I), rG, Nna) (15)

M̃−1 ∈ BLR(S(I), 0, Nna) (16)

(15) and (16) are the BLR equivalents of (9) and (10), respectively. It now remains to
derive a BLR arithmetic property similar to Theorem 1.

In the Appendix, we prove the following theorem.

Theorem 2 (BLR matrix product). If A ∈ BLR(S(I), rA, qA) and B ∈ BLR(S(I), rB, qB)
are BLR matrices then their product P = AB is a BLR matrix such that

P ∈ BLR(S(I), rP , qP )

with rP = csp min(rA, rB) + qArB + qBrA and qP = qAqB.

Note that the sparsity constant csp is not bounded but only appears in the term
csp min(rA, rB) that will disappear when one of rA or rB is zero.
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Since A−1 can be approximated by M−1BM−1 (equation (6)), applying Theorem 2
on (15) and (16) leads to

Ã−1 ∈ BLR(S(I), N2
narG, N

3
na) (17)

and from this approximant of A−1 we can derive an approximant of A−1
ΦΦ for any Φ ⊂ I.

For any Φ,Ψ ⊂ I, we also have AΦΨ ∈ BLR(S(I), 0, Nna), and therefore applying
Theorem 2 on (5) and (17) implies in turn:

S̃ ∈ BLR(S(I), N4
narG, N

5
na) (18)

Therefore, there are at most N5
na = O(1) non-admissible blocks that are not considered

low-rank candidates and are left full-rank.
The rest are low-rank and their rank is bounded by N4

narG. In addition to the bound
rG, which is already quite large [10], the constant N4

na can be very large. However, our
bound is extremely pessimistic. In Section 7, we will experimentally validate that, in
reality, the ranks are much smaller. Similarly, the bound N5

na on the number of non-
admissible blocks is also very pessimistic.

In conclusion, the ranks are bound by O(rG), i.e. the BLR bound only differs from
the hierarchical one by a constant.

In the following, the bound N4
narG will be simply referred to as r.

4 Complexity of the dense BLR factorization

We first present the standard (dense) BLR factorization algorithm in Subsection 4.1.
We then compute the dense BLR complexity in Subsection 4.2. We will extend the
computation of the complexity to the sparse multifrontal case in Subsection 5.2.

Note that, as long as a bound on the ranks holds, similar to the one we have es-
tablished in Section 3, the complexity computations reported in this section hold, and
thus, the following results may be applicable to a broader context than the resolution of
discretized PDEs.

In Algorithm 1, operations on non-admissible blocks are omitted for the sake of
simplicity (but are taken into account in the complexity computations).

4.1 Standard BLR factorization

In order to perform the LU or LDLT factorization of a BLR matrix, the standard
block LU or LDLT factorization has to be modified so that the low-rank subblocks can
be exploited to perform fast operations. Many such algorithms can be defined depending
on where the compression step is performed. We present, in Algorithm 1, a version where
the compression is performed after the so-called Solve step and where numerical pivoting
is omitted for the sake of clarity. Note that when standard partial pivoting is performed,
the Factor and Solve steps are merged together. Because it is not immediate to handle
pivoting on low-rank blocks, we assume, for this standard version of the factorization,
that the Solve is done in full-rank.

This algorithm will be referred to as UFSC (standing for Update, Factor, Solve, and
Compress), to indicate the order in which the steps are performed. Note that UFSC
is the left-looking equivalent of the algorithm presented in Amestoy et al. [1]. Thanks
to the flexibility of the BLR format, it is possible to easily define two other variants,

11



Algorithm 1 Dense BLR LDLT (left-looking) factorization: standard UFSC variant.

1: {Input: a p× p block matrix F of order m; F = [Fij ]i=1:p,j=1:p}
2: for k = 1 to p do
3: for i = k to p do
4: for j = 1 to k − 1 do
5: Update Fik:

6: Inner product: C̃
(j)
ik ← Xij(Y

T
ij DjjYkj)X

T
kj

7: Outer product: C
(j)
ik ← C̃

(j)
ik

8: Fik ← Fik − C
(j)
ik

9: end for
10: end for
11: Factor: Fkk = LkkDkkL

T
kk

12: for i = k + 1 to p do
13: Solve: Fik ← FikL

−T
kk D

−1
kk

14: end for
15: for i = k + 1 to p do
16: Compress: Fik ≈ F̃ik = XikY

T
ik

17: end for
18: end for

CUFS and FSUC, which target different objectives [1]. In particular, we will also study
in Section 6 the complexity of the CUFS variant, where the compression is performed
earlier, before the solve, leading to a further use of the low-rank property of the blocks.

We recall that we denote the low-rank form of a block B by B̃. Thus, the Outer

product on line 7 consists in decompressing the low-rank block C̃
(j)
ik into the corresponding

full-rank block C
(j)
ik by means of an outer product.

We present Algorithm 1 and its variants in their LDLT version, but they can be easily
adapted to the unsymmetric case. Note that the complexity of the BLR factorization is
the same in LU or LDLT , up to a constant.

4.2 Computation of the dense BLR complexity

First, we compute the complexity of factorizing a dense frontal matrix of order m.
The cost of the main steps Factor, Solve, Compress, Inner and Outer Product necessary
to compute the factorization of a matrix of order m are shown in Table 1 (third column).
This cost depends on the type (full-rank or low-rank) of the block(s) on which the op-
eration is performed (second column). Note that the Inner Product operation can take
the form of a product of two low-rank blocks (LR-LR), two full-rank blocks (FR-FR) or
a low-rank block and a full-rank one (LR-FR). We note b the block size and p = m/b the
number of blocks per row and/or column. We assume here that the cost of compressing
an admissible block is O(b2r).

We can then use (18) to compute the cost of the factorization. The boundedness of
N5

na = O(1) ensures that only a constant number of blocks on each line are full-rank.
From that we derive the fourth column of Table 1, which counts the number of blocks
on which the step is performed.
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step type cost number Cstep(b, p) Cstep(m,x)

Factor FR O(b3) O(p) O(pb3) O(m1+2x)
Solve FR-FR O(b3) O(p2) O(p2b3) O(m2+x)
Compress LR O(b2r) O(p2) O(p2b2r) O(m2r)
Inner Prod. LR-LR O(br2) O(p3) O(p3br2) O(m3−2xr2)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
FR-FR O(b3) O(p) O(pb3) O(m1+2x)

Outer Prod. LR O(b2r) O(p3) O(p3b2r) O(m3−xr)

Table 1: Main operations for the BLR (standard UFSC variant) factorization of a dense matrix of
order m, with blocks of size b, and low-rank blocks of rank at most r. We note p = m/b. type:
type of the block(s) on which the operation is performed. cost : cost of performing the operation once.
number : number of times the operation is performed. Cstep(b, p): obtained by multiplying the cost and
number columns (equation (19)). Cstep(m,x): obtained with the assumption that b = O(mx) (and thus
p = O(m1−x)), for some x ∈ [0, 1].

The BLR factorization cost of each step is then equal to

Cstep(b, p) = coststep ∗ number step (19)

and is reported in the fifth column of Table 1. Then, we assume the block size b is of
order O(mx), where x is a real value in [0, 1], and thus the number of blocks p per row
and/or column is of order O(m1−x). Then by substituting b and p by their value, we
compute Cstep(m,x) in the last column.

We can then compute the total flop complexity of the dense BLR factorization as the
sum of the cost of all steps:

C(m,x) = O(rm3−x +m2+x) (20)

Similarly, the factor size complexity of a dense BLR matrix can be computed as

O(NLR ∗ br +NFR ∗ b2) = O(p2br +N5
napb

2) = O(p2br + pb2) (21)

where NLR = O(p2) and NFR = O(p) are the number of low-rank and full-rank blocks in
the matrix, respectively. Thus, the factor size complexity is:

M(m,x) = O(rm2−x +m1+x) (22)

It then remains to compute the optimal x∗ which minimizes the complexity. We
consider a general rank bound r = O(mα), with α ∈ [0, 1]. Equations (20) and (22)
become

C(m,x) = O(m3+α−x +m2+x) (23)

M(m,x) = O(m2+α−x +m1+x) (24)

respectively. Then, the optimal x∗ is given by

x∗ =
1 + α

2
(25)
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which leads to optimal complexities

C(m) = C(m,x∗) = O(m2.5+α/2) (26)

M(m) =M(m,x∗) = O(m1.5+α/2) (27)

It is remarkable that the value of x∗ is the same for both the flop and factor size complex-
ities, i.e. that both complexities are minimized by the same x. This was not guaranteed,
and is a desirable property as we do not need to choose which complexity to minimize
at the expense of the other.

In particular, the case r = O(1) leads to complexities in O(m2.5) for flops and O(m1.5)
for factor size, while the case r = O(

√
m) leads to O(m2.75) for flops and O(m1.75) for

factor size. The link between dense and sparse rank bounds will be made in Section 5.2.
Note that the fully-structured BLR factorization (when A is available under com-

pressed form at no cost, i.e. when the Compress step does not need to be performed)
has the same complexity as the non-fully-structured factorization, since the Compress
is asymptotically negligible with respect to the Solve step. This is not the case in the
hierarchical case, where the construction of the compressed matrix, whose cost is in
O(m2r) [21], becomes the bottleneck when it has to be performed.

5 From dense to sparse BLR complexity

We first describe in Subsection 5.1 how the BLR clustering is computed in the con-
text of the multifrontal method and the relation between frontal matrices and BLR
approximants of the Schur complements of the stiffness matrix A. Then, we extend in
Subsection 5.2 the computation of the factorization complexity to the sparse multifrontal
case.

5.1 BLR clustering and BLR approximants of frontal matrices

In a multifrontal context, the computation of the BLR clustering strongly depends on
how the assembly tree is built, since the separator ordering adds some constraints to the
BLR partitioning (specifically, variables from different separators cannot be regrouped
in the same BLR cluster).

We will assume that the assembly tree is built by means of a nested dissection [19];
this better suits the context of our work and allows for an easier understanding of how
low-rank approximation techniques can be used within sparse multifrontal solvers. Nested
dissection divides the adjacency graph into two domain subgraphs separated by a third
separator subgraph (S1 in Figure 6). The process is then recursively applied to the two
domain subgraphs until the domain subgraphs become too small to be subdivided again.
This generates a separator tree, as illustrated in Figure 6.

Each frontal matrix is associated with a separator in the tree. The fully-summed
variables of a frontal matrix match the variables of the separator. The non fully-summed
variables of a front form a border of the separator’s subtree and correspond to pieces of
ancestor separators found higher in the separator tree.

Thanks to the bottom-up traversal of the assembly tree, the rows and columns of
the fully-summed variables of a frontal matrix associated to a separator S thus belongs
to the Schur complement of the variables of the two domain subgraphs separated by
S. From this and the existence of low-rank approximants of the Schur complements of
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Figure 6: A general nested dissection and its corresponding separator tree.

Figure 7: BLR clustering obtained on the root separator of a Poisson 1283 problem

the stiffness matrix A, which was established in Section 3, it results that the fronts can
be approximated by BLR matrices. Algorithm 1 can easily be adapted to the partial
factorization of the fronts.

The admissibility condition (H or BLR) requires geometric information to compute
the diameter and distances. To remain in a purely algebraic context, we use the adjacency
graph of the matrix A instead. The BLR clustering is computed with a k-way partitioning
of each separator subgraph. A detailed description can be found in Amestoy et al [1]. An
example of BLR clustering obtained with this method is shown in Figure 7. In particular,
we note that the clustering respects the BLR-admissibility condition (AdmBLR).

5.2 Computation of the sparse BLR multifrontal complexity

The BLR multifrontal complexity in the sparse case can be directly derived from the
dense complexity.

The flop and factor size complexities CMF (N) andMMF (N) of the BLR multifrontal
factorization are reported in Table 2. We assume a nested dissection ordering [19] (with
separators in cross shape).

At each level ` of the separators tree, we need to factorize (2d)` fronts of order
O((N

2`
)d−1), for ` ranging from 0 to L = log2(N). Therefore, the flop complexity CMF (N)

to factorize a sparse matrix of order Nd is

CMF (N) =
L∑
`=0

C`(N) =
L∑
`=0

(2d)`C((N
2`

)d−1, x∗` ) (28)

where C`(N) is the cost of factorizing all the fronts on the `-th level, i.e. C`(N) =
(2d)`C(m`, x

∗
` ) with m` = (N

2`
)d−1. x∗` is the optimal choice of x` at the `-th level. Using
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r = O(1) r = O(N)
d x∗ C`(N) CMF (N) x∗` C`(N) CMF (N)

2D 1/2 O(2−`/2N2.5) O(N2.5) FR FR O(N3)

3D 1/2 O(2−2`N5) O(N5) 3L−2`
4L−4` O(2−2`N5.5) O(N5.5)

d x∗ M`(N) MMF (N) x∗` M`(N) MMF (N)

2D 1/2 O(2`/2N1.5) O(N2) FR FR O(N2 logN)

3D 1/2 O(N3) O(N3 logN) 3L−2`
4L−4` O(N3.5) O(N3.5 logN)

Table 2: Flop and factor size complexity of the BLR (standard UFSC variant) multifrontal factorization
of a sparse matrix of order Nd. d: dimension. C`(N)/M`(N): flop/factor size complexity at level ` < L in
the separator tree, computed using the dense complexity equations (20) and (22). The case l = L does not
modify the overall complexity and can be ignored (see Appendix). CMF (N)/MMF (N): total multifrontal
flop/factor size complexity, computed using equations (28) and (30). When a column indicates “FR”,
this means that our bounds are not good enough to compute a meaningful low-rank complexity.

the dense complexity equation (20), we compute C`(m`, x
∗
` ) and report the corresponding

value of C`(N) in Table 2 for two cases, r = O(1) and r = O(N) (third and sixth columns,
respectively).

The case r = O(1) is equivalent to ∀`, r = O(mα`
` ), with ∀`, α` = 0 and thus (25)

yields

∀`, x∗` = x∗ =
1

2
(29)

Then, CMF (N) can easily be computed as a geometric series of common ratio 2(5−3d)/2,
and is given in the fourth column.

The case r = O(N) is slightly more complex because α`, and thus x∗` , varies with
the level `. However, CMF (N) remains a geometric series and its value is given in the
last column. The details of the computation are provided in the appendix for the sake
of readability.

Using (22), we similarly compute the factor size complexity:

MMF (N) =
L∑
`=0

M`(N) =
L∑
`=0

(2d)`M((
N

2`
)d−1, x∗` ) (30)

and report the results in Table 2.

6 BLR variants and their complexity

We first describe in Subsection 6.1 and Algorithm 2 two BLR variants, LUA and
CUFS, whose aim is to further reduce the number of operations of the standard BLR
factorization (Algorithm 1). We then compute their complexity in Subsection 6.2.

6.1 BLR variants: LUA and CUFS

The first variant of Algorithm 1, is referred to as Low-rank Updates Accumulation

(LUA). It consists in accumulating the update matrices C̃
(j)
ik together, as shown on line 10

of Algorithm 2:

C̃
(acc)
ik := C̃

(acc)
ik + C̃

(j)
ik
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Note that in the previous equation, the + sign denotes a low-rank sum operation. Specif-

ically, if we note A = C
(acc)
ik and B = C

(j)
ik , then

B̃ = C̃
(j)
ik = Xij(Y

T
ij DjjYjk)X

T
jk = XBCBY

T
B

with XB = Xij , CB = Y T
ij DjjYkj , and YB = Xkj . Similarly, Ã = C̃

(acc)
ik = XACAY

T
A .

Then the low-rank sum operation is defined by:

Ã+ B̃ = XACAY
T
A +XBCBY

T
B = (XA XB)

(
CA

CB

)
(YA YB)T = XSCSY

T
S = S̃

where S̃ is a low-rank approximant of S = A+B.

This technique allows for additional compression, as the accumulated updates C̃
(acc)
ik

can be recompressed (as shown on line 12) before the Outer Product. A visual represen-
tation is given in Figure 8. To compute the cost of the Recompress, we need to bound
the rank of the accumulators XS and YS . If the Compress is done with an SVD or RRQR
operation, then each accumulated update in XS and YS is an orthonormal basis of an
admissible block. Thus, the accumulator is a basis of a superblock which is itself admis-
sible (because the union of admissible blocks remains admissible) and thus the rank of
the accumulator is bounded by r.

Thus, by recompressing the accumulators, we only need to do one Outer Product
(of size r) per block, instead of O(p) (one for each update matrix). This leads to a
substantial theoretical improvement, as it lowers the cost of the Outer Product from
O(b2r)∗O(p3) = O(p3b2r) to O(b2r)∗O(p2) = O(p2b2r) (see Table 3, column Cstep(b, p)),
even though the recompressions of the accumulated updates (Recompress operation)
introduce an overhead cost, equal to O(pbr2) ∗O(p2) = O(p3br2).

XS

CS Y T
S

(a) Accumulated updates before recompression

X̃S

C̃S

Ỹ T
S

(b) Accumulated updates after
recompression

Figure 8: Low-rank Updates Accumulation

Next, let us present the so-called CUFS variant. In this variant, we perform the
Compress before the Solve. This requires to either design a strategy to pivot on low-
rank blocks, or to restrict pivoting to the diagonal blocks only. The Solve step can thus
be performed on low-rank blocks (as shown on line 17) and its cost is thus reduced to
O(p2b2r + pb3) (as reported in Table 3, column Cstep(b, p)).

Furthermore, we can combine the LUA and CUFS variants. Since we perform the
Solve in low-rank, we don’t need to decompress the update matrices of the low-rank
off-diagonal blocks. Thus, we can further reduce the cost of the factorization by keeping

the recompressed accumulated updates C̃
(acc)
ik as the low-rank representation of the block

Fik, and thus suppress the Outer Product step.
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Algorithm 2 Dense BLR LDLT (left-looking) factorization: CUFS+LUA variant.

1: {Input: a p× p block matrix F of order m; F = [Fij ]i=1:p,j=1:p}
2: for k = 1 to p do
3: for i = k + 1 to p do
4: Compress: Fik ≈ F̃ik = XikY

T
ik

5: end for
6: for i = k to p do
7: Update F̃ik:
8: for j = 1 to k − 1 do

9: Inner product: C̃
(j)
ik ← Xij(Y

T
ij DjjYkj)X

T
kj

10: Accumulate update: C̃
(acc)
ik ← C̃

(acc)
ik +̃ C̃

(j)
ik

11: end for
12: C̃

(acc)
ik ← Recompress(C̃

(acc)
ik )

13: F̃ik ← F̃ik −̃ C̃
(acc)
ik

14: end for
15: Factor: Fkk = LkkDkkL

T
kk

16: for i = k + 1 to p do
17: Solve: F̃ik ← F̃ikL

−T
kk D

−1
kk = Xik(Y

T
ikL
−T
kk D

−1
kk )

18: end for
19: end for

6.2 Complexity of the BLR variants

The computation of the complexity of the BLR variants is very similar to that of the
standard version, computed in Section 4. We provide the equivalent of Tables 1 and 2
for the BLR variants in Tables 3 and 4, respectively.

In Table 3, we report the cost of each step of the factorization. These costs have been
explained in the previous subsection. For UFSC+LUA, the steps whose cost has changed
with respect to the UFSC variant have been grayed out; similarly, for CUFS+LUA, the
steps whose cost has changed with respect to UFSC+LUA have been grayed out.

By summing the cost of all steps, we obtain the flop complexity of the dense factor-
ization. In the UFSC+LUA variant, it is given by:

C(m,x) = O(r2m3−2x +m2+x) (31)

Compared to (20), the low-rank term of the complexity has thus been reduced from
O(rm3−x) to O(r2m3−2x) thanks to the recompression of the accumulated updates. The
full-rank term O(m2+x) remains the same. By recomputing the value of x∗, we achieve
flop complexity gains: C(m) becomes of order O(m2+(2α+1)/3) for r = O(mα), which
yields in particular O(m2.33) for r = O(1) and O(m2.67) for r = O(

√
m).

In the same way, the flop complexity for the dense factorization with the CUFS+LUA
variant is given by:

C(m,x) = O(r2m3−2x +m1+2x) (32)

This time, the full-rank term has been reduced from O(m2+x) to O(m1+2x). By recom-
puting x∗, we achieve further flop complexity gains: C(m) becomes of order O(m2+α) for
r = O(mα), which yields in particular O(m2) for r = O(1) and O(m2.5) for r = O(

√
m).

Note that the factor size complexity is not affected by the BLR variant used.
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UFSC+LUA variant

step type cost number Cstep(b, p) Cstep(m,x)

Factor FR O(b3) O(p) O(pb3) O(m1+2x)
Solve FR-FR O(b3) O(p2) O(p2b3) O(m2+x)
Compress LR O(b2r) O(p2) O(p2b2r) O(m2r)
Inner Prod. LR-LR O(br2) O(p3) O(p3br2) O(m3−2xr2)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
FR-FR O(b3) O(p) O(pb3) O(m1+2x)

Recompress LR O(bpr2) O(p2) O(p3br2) O(m3−2xr2)
Outer Prod. LR O(b2r) O(p2) O(p2b2r) O(m2r)

CUFS+LUA variant

step type cost number Cstep(b, p) Cstep(m,x)

Factor FR O(b3) O(p) O(pb3) O(m1+2x)
Solve FR-FR O(b3) O(p) O(pb3) O(m1+2x)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
Compress LR O(b2r) O(p2) O(p2b2r) O(m2r)
Inner Prod. LR-LR O(br2) O(p3) O(p3br2) O(m3−2xr2)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
FR-FR O(b3) O(p) O(pb3) O(m1+2x)

Recompress LR O(bpr2) O(p2) O(p3br2) O(m3−2xr2)
Outer Prod. LR — — — —

Table 3: Main operations for the factorization of a dense matrix of order m, with blocks of size b, and
low-rank blocks of rank at most r. We note p = m/b. type: type of the block(s) on which the operation
is performed. cost : cost of performing the operation once. number : number of times the operation is
performed. Cstep(b, p): obtained by multiplying the cost and number columns (equation (19)). Cstep(m,x):
obtained with the assumption that b = O(mx) (and thus p = O(m1−x)), for some x ∈ [0, 1].

The sparse flop complexities are derived from the dense ones in the same way as they
are for the standard UFSC variant. The results are reported in Table 4.

A summary of the sparse complexities for all BLR variants, as well as the full-rank
and H complexities, is given in Tables 5 and 6, in the case r = O(1) and r = O(N),
respectively. We remind that the complexity of the BLR fully-structured factorization is
the same as that of the non-fully-structured one.

7 Numerical experiments

In this section we compare the experimental complexity of the full-rank solver with
each of the BLR variants previously presented (UFSC, UFSC+LUA, CUFS+LUA). We
also discuss the choice of two parameters, the low-rank threshold ε and the block size b,
and their impact on the complexity.

7.1 Description of the experimental setting

The BLR standard factorization as well as its variants have been developed and in-
tegrated into the general purpose symmetric and unsymmetric sparse multifrontal solver
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r = O(1) r = O(N)
d x∗ C`(N) CMF (N) x∗` C`(N) CMF (N)

UFSC+LUA

2D 1/3 O(2−`/3N2.33) O(N2.33) FR FR O(N3)

3D 1/3 O(2−5`/3N4.67) O(N4.67) 2L−`
3L−3` O(2−5`/3N5.33) O(N5.33)

CUFS+LUA
2D 1/2 O(N2) O(N2 logN) FR FR O(N3)

3D 1/2 O(2−`N4) O(N4) 3L−2`
4L−4` O(2−`N5) O(N5)

Table 4: Flop and factor size complexity of the BLR multifrontal factorization of a sparse matrix of
order Nd. d: dimension. C`(N): flop complexity at level ` < L in the separator tree, computed using the
dense complexity equations (31) and (32) for the UFSC+LUA and CUFS+LUA variants, respectively.
The case l = L does not modify the overall complexity and can be ignored (see Appendix). CMF (N):
total multifrontal flop complexity, computed using equation (28). When a column indicates “FR”, this
means that our bounds are not good enough to compute a meaningful low-rank complexity.

operations factor size
2D 3D 2D 3D

FR O(n1.5) O(n2) O(n log n) O(n1.33)

BLR UFSC O(n1.25) O(n1.67) O(n) O(n log n)
BLR UFSC+LUA O(n1.17) O(n1.56) O(n) O(n log n)
BLR CUFS+LUA O(n log n) O(n1.33) O(n) O(n log n)

H O(n log n) O(n1.33) O(n) O(n)
H (fully structured) O(n) O(n) O(n) O(n)

Table 5: Flop and factor size complexities of the BLR multifrontal factorization of a
system of n unknowns, considering the case r = O(1) and an optimal choice of b.

MUMPS [5], which was used to run all experiments.
The BLR clustering was computed with a k-way partitioning using METIS [25].
All the experiments were performed on one module of a bullx supernode S6130, or

MESCA2 node. The MESCA2 is a shared-memory machine equipped with 12 TB of
memory and 128 Intel Xeon CPU E7-8867 v3 processors running at 2.50 GHz.

To compute our complexity estimates, we use least-squares estimation to compute the
coefficients {βi}i of a regression function f such that Xfit = f(N, {βi}i) fits the observed
data Xobs. We use the following regression function:

Xfit = eβ
∗
1Nβ∗2 with β∗1 , β

∗
2 = argmin

β1,β2
‖ logXobs − β1 − β2 logN‖2 (33)

Test problems

We provide the experimental complexities for two different problems: the Poisson
problem and the Helmholtz problem.

For the Poisson problem, the rank bound is in O(1) [13]. For the Helmholtz problem,
although there is no rigorous proof of it, it has been shown it is reasonable to assume a
rank bound in O(N) [32, 31, 18]. Thus, we will use the Poisson and Helmholtz problems
to experimentally validate the complexities computed in Table 5 and 6, respectively.
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operations factor size
2D 3D 2D 3D

FR O(n1.5) O(n2) O(n log n) O(n1.33)

BLR UFSC O(n1.5) O(n1.83) O(n log n) O(n1.17 log n)
BLR UFSC+LUA O(n1.5) O(n1.78) O(n log n) O(n1.17 log n)
BLR CUFS+LUA O(n1.5) O(n1.67) O(n log n) O(n1.17 log n)

H O(n1.5) O(n1.67) O(n log n) O(n1.17)
H (fully structured) O(n) O(n1.33) O(n log n) O(n1.17)

Table 6: Flop and factor size complexities of the BLR multifrontal factorization of a
system of n unknowns, considering the case r = O(N), without rank relaxation, and for
an optimal choice of b.

The Poisson problem generates the symmetric positive definite matrix A from a 7-
point discretization. We perform the computations in double-precision arithmetic. We
will use a low-rank threshold ε varying from 10−14 to 10−2 to better understand its
influence on the complexity, with no particular application in mind.

The Helmholtz problem builds the matrix A as the complex-valued unsymmetric
impedance matrix resulting from the finite-difference discretization of the heterogeneous
Helmholtz equation that is the second-order visco-acoustic time-harmonic wave equation
for pressure p. The aim is the modeling of visco-acoustic wave propagation in a 3D visco-
acoustic medium parameterized by wavespeed, density, and quality factor (the inverse of
the attenuation). The matrix A is built for an infinite medium. This implies that the
input grid is augmented with PML absorbing layers. The medium is homogeneous, is
parameterized by wave speed (4000 m/s), density (1 kg/m3), and quality factor (10000,
no attenuation). Frequency is fixed and equal to 4 Hz. The grid interval h is computed
such that it corresponds to 4 grid point per wavelength. Computations are done in
single-precision arithmetic. We will use a low-rank threshold ε varying from 10−5 to
10−3 because we know these are the values for which the result is meaningful for the
application [2, 3].

For both Poisson and Helmholtz, in all the following experiments, the backward error
is in good agreement with the low-rank threshold used.

Both the Poisson and Helmholtz problem were discretized using the finite-difference
method rather the finite-elements one, but this is acceptable as both methods are equiv-
alent on equispaced meshes [28].

Compression of the blocks and recompression of the accumulators

To compute the low-rank form of the blocks, we perform a truncated QR factorization
with column pivoting (i.e., a truncated version of LAPACK’s [8] geqp3). We use an
absolute tolerance on a scaled matrix (i.e. we stop the factorization after |rkk| < ε).

Because of our purely algebraic context, we do not know which blocks are admissible
and so we assume all off-diagonal blocks are admissible (which is equivalent to using a
weak block-admissibility condition). Thus, in our experiments, we try to compress every
off-diagonal block. If the prescribed accuracy ε is not achieved after a given number
of steps kmax , we stop the compression and consider the block to be full-rank. In the
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following numerical experiments, we have set kmax = b/2, the rank after which the low-
rank representation of a block is not beneficial anymore (in terms of both flops and
memory) with respect to the full-rank one.

In Figure 8, it is worth noting that XS , CS , and YS can all be recompressed. In
particular, when the compression is done with truncated QR, due to the form of the
Inner Product operation on line 9 of Algorithm 2, both XS and YS are formed of a set
of orthonormal matrices, i.e. contain an information based on collinearity only, while CS
contains all the norm information. In the following numerical experiments on the LUA
variant, we only recompress CS , i.e. only exploit the norm information. This allows
us to reduce the Recompress overhead cost while still achieving the desired complexity
reduction.

7.2 Experimental complexity of the multifrontal BLR factorization

7.2.1 Flop complexity of each BLR variant

In Figures 9 and 10, we compare the flop complexity of the full-rank solver with each of
the BLR variants previously presented (UFSC, UFSC+LUA, CUFS+LUA) for the Pois-
son problem, and the Helmholtz problem, respectively. The results show that each new
variant improves the complexity. Note that we obtain the well-known quadratic complex-
ity of the full-rank version. Results with both geometric nested dissection (Figures 9(a)
and 10(a)) and with a purely algebraic ordering computed by METIS (Figures 9(b) and
10(b)) are also reported.

We first analyze the results obtained with geometric nested dissection and compare
them with our theoretical results. For Poisson, the standard BLR (UFSC) version
achieves a complexity in O(n1.45). Moreover, the constant in the big O is equal to
2244, which is quite reasonable, and leads to a substantial improvement of the number
of flops performed with respect to the full-rank version. This confirms that the theo-
retical rank bounds (N4

narG) are very pessimistic, as the experimental constants are in
fact much smaller. Further compression in the UFSC+LUA variant lowers the complex-
ity to O(n1.38), while the CUFS+LUA reaches the lowest complexity of the variants,
in O(n1.27). Although the constants increase with the new variants, they also remain
relatively small and they effectively reduce the number of operations with respect to
the standard variant, even for the smaller mesh sizes. The same trend is observed for
Helmholtz, with complexities in O(n1.84) for UFSC, O(n1.79) for UFSC+LUA, and finally
O(n1.76) for CUFS+LUA. Thus, the numerical results are in good agreement with the
theoretical bounds reported in Tables 5 and 6. The difference between the theoretical
and experimental Helmholtz complexity of the CUFS+LUA variant can be explained
by an imperfect block size setting. Indeed, as explained in the appendix, the block
size setting is especially critical for this particular variant as for a non-adaptive x∗` (i.e.
∀`, x∗` = x∗) the O(n1.67) bound becomes O(n1.67 log n) (whereas it does not change for
the other variants). When taking into account the log factor, the O(n1.76) fitting becomes
O(n1.69 log n), which is much closer to the theoretical bound.

We also analyze the influence of the ordering on the complexity. We observe that
even though the METIS ordering slightly degrades the complexity, results remains close to
the geometric nested dissection ordering and still in good agreement with the theoretical
bounds. This is a very important property of the BLR factorization as it allows us to
remain in a purely algebraic (black box) framework, an essential property for a general
purpose solver.
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For the remaining experiments, we use the METIS ordering.

Mesh size N
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(a) Nested Dissection ordering (geometric)

Mesh size N
64 96 128 160 192 224 256 320

F
lo

p 
co

un
t

10 11

10 12

10 13

10 14

10 15

FR

fit: 3 n 2.05

UFSC

fit: 1344 n 1.48

UFSC+LUA

fit: 2927 n 1.40

CUFS+LUA

fit: 6066 n 1.33

(b) METIS ordering (purely algebraic)

Figure 9: Flop complexity of each BLR variant (Poisson, ε = 10−10)
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(a) Nested Dissection ordering (geometric)
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(b) METIS ordering (purely algebraic)

Figure 10: Flop complexity of each BLR variant (Helmholtz, ε = 10−4)

7.2.2 Factor size complexity

To compute the factor size complexity of the BLR solver, we study the evolution of
the number of entries in the factors, i.e., the compression rate of L and U . Note that
the global compression rate would be even better, because the local matrices that need
to be stored during the multifrontal factorization compress more than the factors.

In Figure 11, we plot the factor size complexity using the METIS ordering for both
the Poisson and Helmholtz problems. The different BLR variants do not impact the
factor size complexity. Here again, the results are in good agreement with the bounds
computed in Tables 5 and 6. The complexity is of order O(n1.04 log n) for Poisson and
O(n1.19 log n) for Helmholtz.
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(a) Poisson problem (ε = 10−10)
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(b) Helmholtz problem (ε = 10−4)

Figure 11: Factor size complexity with METIS ordering

7.2.3 Low-rank threshold

The theory [13, 10], through the bound rG, which increases as | log ε|d+1, states the
threshold ε should only play a role in the constant factor of the complexity.

However, that is not exactly what the numerical experiments show. In Figure 12, we
compare the complexity for different values of ε. For Helmholtz, the threshold does seem
to play a role only in the constant factor, as the complexity exponent remains around
O(n1.86). However, for Poisson, an interesting trend appears: the complexity gradually
lowers from O(n1.55) to O(n1.48), O(n1.45) and O(n1.32) with a threshold of 10−14, 10−10,
10−6, and 10−2, respectively.
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(a) Poisson problem
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(b) Helmholtz problem

Figure 12: Flop complexities of the standard UFSC variant for different thresholds ε

Our analysis is that the complexity exponent is related to the processing of zero-rank
blocks. With absolute tolerance, it is possible for blocks to have a numerical rank equal
to zero. However, the bound on the ranks rG is strictly positive, and thus the theory
does not account for zero-rank blocks. This leads to a theoretical sparsity constant csp
equal to p = m/b (i.e. all blocks are considered nonzero-rank), while in fact the actual
value of csp (number of nonzero-rank blocks) may be much less than p.

Clearly, the number of zero-rank blocks increases with the threshold ε and with the
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mesh size N . What is more interesting, as shown in Table 7, is that the number of zero-
rank blocks (NZR) has a much faster rate of increase with respect to the mesh size than
the number of nonzero low-rank blocks (NLR). For example, for ε = 10−2, the number
of zero-rank blocks represents 74% of the total for N = 64 while it represents 97% for
N = 320.

N
64 96 128 160 192 224 256 320

ε = 10−14 NFR 40.8 35.5 31.3 30.3 26.4 26.4 23.6 13.4
NLR 59.2 64.5 68.6 69.6 73.6 73.6 76.4 86.6
NZR 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

ε = 10−10 NFR 21.3 19.1 16.6 17.0 14.6 14.6 12.8 5.8
NLR 78.6 80.9 83.4 82.9 85.4 85.4 87.1 94.2
NZR 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

ε = 10−6 NFR 2.9 3.2 3.0 3.1 2.5 2.5 2.1 0.6
NLR 97.0 96.5 96.7 96.4 96.4 95.7 95.3 93.3
NZR 0.1 0.3 0.3 0.5 1.0 1.7 2.5 6.1

ε = 10−2 NFR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NLR 26.2 17.4 12.2 9.4 7.6 6.4 5.5 3.0
NZR 73.8 82.6 87.8 90.6 92.4 93.6 94.5 97.0

Table 7: Number of full-rank/low-rank/zero-rank blocks in percentage of the total num-
ber of blocks.

This could suggest that, asymptotically, the major part of the blocks are zero-rank
blocks. Then, the number of low-rank blocks in Table 1 would not be O(p) but rather
O(pα), with α < 1. For example, for ε = 10−2, the complexity of O(n1.32) could be
explained by a number of nonzero-rank blocks of order O(1): indeed, if we assume the
number of nonzero-ranks blocks per row and/or column remains constant, then the dense
flop complexity equation (20) is only driven by full-rank operations and becomes:

C(m,x) = O(m2+x +m2r) = O(m2+x) (34)

since r ≤ b = mx. With the optimal x∗ = 0, the previous equation leads to a dense
complexity in O(m2), which, as shown in Section 4, Table 2, leads to a sparse complexity
in O(n1.33).

Note that for the sake of conciseness, we present our low-rank threshold analysis on
flop complexity and on the standard UFSC variant only. A similar analysis on the other
variants and on factor size complexity leads to the same results and conclusions.

7.2.4 Block size

For our theoretical complexity, we have assumed that the block size varies with the
front size. Here, we want to show that the complexity of the BLR factorization is not
strongly impacted by the choice of the block size, as long as this choice remains reasonable.
The choice of a good block size is currently an ongoing research focus; the tuning of the
block size for performance is out of the scope of this paper. In Figure 13, we show the
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number of operations for the BLR factorization of the root node (which is of size m = N2)
of the Poisson problem, for block sizes b ∈ [128, 640]. Three trends can be observed.

First, for each matrix, there is a reasonably large range of block sizes around the
optimal one that lead to a number of operations that is reasonable with respect to the
minimal one. For example, for the UFSC variant and m = 2562, the optimal block size
among the ones tested is b = 448. However, any block size in the range [320, 640] (all
those under the dashed black line) leads to a number of operations at most 10% greater
than the minimal one. Thus, we have the flexibility to choose the block size which in
turn gives the flexibility to tune the performance of the BLR factorization.

The second trend is that the range of acceptable block sizes (i.e., the block sizes for
which the number of operations is not too far from the minimal one) increases with the
size of the matrix m. For example, for the UFSC variant, the range of block sizes leading
to a number of operations at most 10% greater than the minimal one is [192, 384] for
m = 1282, [256, 576] for m = 1922 and [320, 640] for m = 2562. This is expected and
in agreement with the theory, at least under the assumption that the block size is of
the form b = O(mx∗). This shows the importance of having a variable block size during
the multifrontal factorization to adapt to the separators’ size along the assembly tree, as
opposed to fixed block size.

The third trend is observed when comparing the three factorization variants. Com-
pared to the standard UFSC variant (Figure 13(a)), the UFSC+LUA variant (Fig-
ure 13(b)) tends to favor smaller block sizes. This is because the low-rank term of the
complexity equation (31) has been further reduced, and thus, in relative, the full-rank
term (which increases with the block size) represents a greater part of the computations.
This is accounted for by the theory with the optimal value x∗ being equal to 1/3 instead
of 1/2. In turn, compared to the UFSC+LUA variant, the CUFS+LUA (Figure 13(c))
benefits from bigger block sizes. This comes from the fact that the full-rank term has
been reduced from (31) to (32). This is again consistent with the theory, which leads to
x∗ = 1/2.
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(a) Standard UFSC variant
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(b) UFSC+LUA variant
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(c) CUFS+LUA variant

Figure 13: Normalized flops (i.e., the minimal is 1) for different block sizes b (Poisson
problem, ε = 10−10). The block sizes under the dashed black line are those for which the
number of operations is at most 10% greater than the minimal one.

A similar study on the Helmholtz problem shows very flat curves (i.e., the block size
has little effect on the number of operations) as long as the block size remains reasonable.
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8 Conclusion

8.1 Summary

We have computed a bound on the numerical rank of the admissible blocks of BLR
matrices arising from discretized elliptic PDEs. This bound is the same than in the
hierarchical case (up to a constant), but cannot be obtained by applying directly the
theoretical work done on H-matrices. The main idea of the extension to BLR matrices is
to identify the blocks that are not low-rank, and to reformulate the admissibility condition
of a partition to ensure that they are in negligible number for an admissible partition.

Under this bound assumption, we have computed the theoretical complexity of the
BLR multifrontal factorization. The standard version (as defined in Amestoy et al. [1])
can reach a complexity as low as O(n1.67) (in 3D, for constant ranks). We have described
several variants who further reduce this complexity, down to O(n1.33). Our numerical
results demonstrate an experimental complexity that is in good agreement with the
theoretical bounds. The importance of zero-rank blocks and variable block sizes on the
complexity has been identified and analyzed.

8.2 Perspectives

Because the error analysis in [13, 10, 11] is based on block-wise norm estimates,
the accuracy of the low-rank approximation depends on the sparsity constant, which in
turn, in the BLR case, depends on the size of the problem n. The accuracy of the BLR
approximation could thus degrade as n increases. The effect of the BLR approximation
on the accuracy of the factorization is out of the scope of this paper and a topic of reseach
by itself.

The efficient implementation of the BLR variants, especially in a parallel setting, is
a challenging problem and will be discussed in a forthcoming paper. In particular, the
following challenges will need to be tackled: first, due to the smaller granularities of the
operations involved, it will not be immediate to translate the gains in flops obtained by
recompressing the accumulated updates in the LUA variant, into gains in time. Second,
we will need to design efficient strategies, similar to those analyzed in [9], to recompress
the accumulated updates that achieve the desired complexity while keeping the overhead
cost of the recompressions small. Third, because the traditional threshold partial pivoting
is not compatible with the CUFS variant, alternative pivoting strategies will also need
to be designed, similar to those implemented in [16]. Finally, the BLR variants will need
to be adapted to a distributed memory setting, where their influence on the pattern of
communications will need to be analyzed.
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Appendix: BLR approximants and proofs

BLR approximant of B

The construction of B̃ is the same for a BLR or an H-partitioning, and we can thus
rely on the work of Hackbusch and Bebendorf [13].

The main idea behind this construction is to exploit the decay property of Green
functions. As shown in Hackbusch and Bebendorf ([13], Theorem 3.4), for any admissible
block σ × τ ∈ BA, Bσ×τ can be approximated by a low-rank matrix Bε

σ×τ of numerical
rank less than rG.

Therefore, we construct B̃ ∈ BLR(S(I), rG, Nna) as follows:

∀σ × τ ∈ S(I)2, B̃σ×τ =

{
Bε
σ×τ if σ × τ ∈ BA

Bσ×τ otherwise
(35)

BLR approximant of M−1

The construction of M̃−1 is also very similar to the one in Hackbusch & Beben-
dorf [13]. The main idea is that the inverse mass matrix asymptotically tends towards a
block-diagonal matrix. More precisely, it is shown that, for any block σ × τ ∈ S(I)2,

‖M−1
σ×τ‖ ≤ O(

√
#σ#τ c

2d√#σ#τ dist(Xσ ,Xτ ))‖M−1‖

where c < 1 ([13], Lemma 4.2). Therefore, ‖M−1
σ×τ‖ tends towards zero when #σ,#τ

tend towards infinity (which is the case for a non-constant block size b), as long as
dist(Xσ, Xτ ) > 0, i.e., as long as σ × τ ∈ BA.

Therefore, we construct M̃−1 ∈ BLR(S(I), 0, Nna) as follows:

∀σ × τ ∈ S(I)2, M̃−1
σ×τ =

{
0 if σ × τ ∈ BA
M−1
σ×τ otherwise

(36)

Proof of Theorem 2

Proof. Let A ∈ BLR(S(I), rA, qA) and B ∈ BLR(S(I), rB, qB) be two csp × csp BLR
matrices and let P = AB be their product.

For all i, j ∈ [1, csp ], we note Aij , Bij , and Pij the (i, j)-th subblock of matrix A, B,
and P , respectively. We also note Rk (X) the numerical rank of a matrix X at accuracy
ε.

We define

qA(i) = {k ∈ [1, csp ];Aik /∈ BA}
qB(j) = {k ∈ [1, csp ];Bkj /∈ BA}

and thus qA = maxi∈[1,csp ] qA(i) and qB = maxj∈[1,csp ] qB(j).
Then, for any i, j ∈ [1, csp ], it holds:

Pij =

csp∑
k=1

AikBkj =

S1︷ ︸︸ ︷∑
Aik∈BA
Bkj∈BA

AikBkj +

S2︷ ︸︸ ︷∑
Aik∈BA
Bkj /∈BA

AikBkj +

S3︷ ︸︸ ︷∑
Aik /∈BA
Bkj∈BA

AikBkj +

S4︷ ︸︸ ︷∑
Aik /∈BA
Bkj /∈BA

AikBkj

We then seek a bound on the rank of each of the four terms S1 to S4.
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1.

Rk (S1) ≤
∑

Aik∈BA
Bkj∈BA

Rk (AikBkj) ≤
∑

Aik∈BA
Bkj∈BA

min(Rk (Aik) ,Rk (Bkj))

≤
∑

Aik∈BA
Bkj∈BA

min(rA, rB) ≤ csp min(rA, rB)

2.

Rk (S2) ≤
∑

Aik∈BA
Bkj /∈BA

Rk (AikBkj) ≤
∑

Aik∈BA
Bkj /∈BA

min(Rk (Aik) ,Rk (Bkj))

≤
∑

Aik∈BA
Bkj /∈BA

rA ≤ #qB(j) rA ≤ qBrA

3.

Rk (S3) ≤
∑

Aik /∈BA
Bkj∈BA

Rk (AikBkj) ≤
∑

Aik /∈BA
Bkj∈BA

min(Rk (Aik) ,Rk (Bkj))

≤
∑

Aik /∈BA
Bkj∈BA

rB ≤ #qA(i) rB ≤ qArB

4. It holds that

∀i ∈ [1, csp ], #{j ∈ [1, csp ]; qA(i) ∩ qB(j) 6= ∅} ≤ qAqB (37)

∀j ∈ [1, csp ], #{i ∈ [1, csp ]; qA(i) ∩ qB(j) 6= ∅} ≤ qAqB (38)

(37) states that the number of non-admissible blocks on any row of P is bounded by
qAqB, while (38) states that the number of non-admissible blocks on any column
of P is also bounded by qAqB. Thus, putting (37) and (38) together, we have
qP = qAqB.

Proof of (37). Let i ∈ [1, csp ]. For all k ∈ qA(i), it holds

#{j ∈ [1, csp ];Bkj /∈ BA} ≤ qB

and since #qA(i) ≤ qA, we conclude

#{j ∈ [1, csp ];Pij /∈ BA} ≤ qAqB

The proof of (38) works in the same way.

Therefore, Rk (S4) = S4 = 0 except for qP = qAqB blocks whose rank is not
bounded. For the rest, their rank is thus bounded by

rP = csp min(rA, rB) + qBrA + qArB
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Computation of the multifrontal complexity

We consider here the UFSC variant in the 3D case. We recall equation (28):

CMF (N) =
L∑
`=0

C`(N) =
L∑
`=0

(2d)`C((N
2`

)d−1, x∗` )

Using equation (26) leads to

C`(N) = 2−`(2+α)N5+α (39)

The case r = O(1) is equivalent to ∀`, r = O(mα`
` ), with ∀`, α` = 0 and thus (25)

yields ∀`, x∗` = x∗ = 1
2 . Then, (39) leads to

CMF (N) =
L∑
`=0

2−2`N5 (40)

which is a geometric series of common ratio Q = 2−2 < 1, and thus we obtain

CMF (N) =
1−QL+1

1−Q
N5 = O(N5) (41)

However, if r = O(N), then r is of the form r = O(mα`
` ), where α` varies with the

level and thus x∗` = (1 + α`)/2 also varies with the level. Specifically, it holds

α` =

{
L

2(L−`) if ` 6= L

0 otherwise
(42)

In the case ` = L, (39) yields CL(N) = O(N3), which is negligible and thus ignored. For
the rest of the levels, it holds

x∗` =
3L− 2`

4(L− `)
(43)

Then, noting β = α`
L = 1

2(L−`) , and since 2L = N , (39) leads to

C`(N) = 2−2`2−L`βN5+Lβ = 2−2`N5+(L−`)β = 2−2`N5.5 (44)

and thus CMF (N) is again a geometric series and is thus of order O(N5.5)
Note that in the r = O(N) case with a non-adaptive x∗` = x∗0 = 3/4, (31) yields

CMF (N) =

L∑
`=0

2−`/2N5.5 (45)

and thus the same complexity exponent is achieved (i.e. an adaptive x∗` only improves
the constant).

For the CUFS+LUA variant, (39) becomes instead

C`(N) = 2−`(1+2α)N4+2α (46)

In the r = O(1)(α = 0) case, this leads to

CMF (N) =
L∑
`=0

2−`N4 = O(N4) (47)
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In the r = O(N) case, with an adaptive x∗` ,

C`(N) = 2−`2−2L`βN4+2Lβ = 2−`N4+2(L−`)β = 2−`N5 (48)

and thus CMF (N) = O(N5). However, for a non-adaptive x∗` = x∗0 = 3/4, (32) yields

CMF (N) =

L∑
`=0

20N5 = O(N5 logN) (49)

Thus, for the CUFS+LUA variant, a non-adaptive x∗` introduces a log factor.
The computation of the factor size complexity and the flop complexity of the UFSC+LUA

variants, and the computations in the 2D case are similar and left to the reader.
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