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We study the control of the FamilyWise Error Rate (FWER) in the linear Gaussian model when the n × p design matrix is of rank p. A procedure based on a lasso-type estimator is optimized with respect to the volume of the multidimensional acceptance region. An important result of this article states that, even if the design is not orthogonal, even if residuals are not i.i.d, this optimization leads to a soft thresholded maximum likelihood estimator. Consequently, when the design matrix is of rank p, we build directly a powerful multiple testing procedure based on the maximum likelihood estimator instead to optimizing a lasso-type procedure. However, the lasso procedure optimization allows us to understand how to build a powerful multiple testing procedure based on the maximum likelihood estimator. Numerical experiments highlight the performance of our approach compared to the state-of-the-art procedures. An application to the detection of metabolites in metabolomics is provided.

Introduction

Let us consider the linear Gaussian model

Y = Xβ * + ε, (1) 
where X = (X 1 | . . . |X p ) is a n × p design matrix of rank p, ε is a centered Gaussian vector with an invertible variance matrix Γ, and β * is an unknown parameter. We want to estimate the so-called active set A = {i ∈ [[1, p]] | β * i ̸ = 0} of relevant variables. A natural way to recover A is to test the hypotheses H i : β * i = 0, with 1 ≤ i ≤ p. Several type I errors can be controlled in such multiple hypotheses tests. In this article, we focus on the Familywise Error Rate (FWER) defined as the probability to reject wrongly at least one hypothesis H i .

The lasso estimator [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], defined by β(λ) = argmin

β∈R p { 1 2 ∥Y -Xβ∥ 2 + λ∥β∥ 1 } (2)
has been designed for the high-dimensional setting (i.e. n < p that is not our framework). In this case, the lasso is an alternative to the ordinary least squares estimator which is not defined. Some components of β(λ) are exactly null, thus a very simple way to test the hypothesis H i is to reject it when βi ̸ = 0. This is probably the reason why the lasso has been widely studied both in the high-dimensional and in the small-dimensional setting (i.e. n ≥ p and rank(X) = p). [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF], [START_REF] Zhao | On model selection consistency of lasso[END_REF], [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] showed that the irrepresentable condition is an almost necessary and sufficient condition for A( β(λ)) := {i ∈ [[1, p]] | βi (λ) ̸ = 0} to be a consistent estimator of A when n tends to +∞ and p is fixed (up to a λ correctly chosen). This result could be used when n is very large, thus consistency is not an high-dimensional property. Geometrically, the irrepresentable condition means that each variable X i with i / ∈ A is almost orthogonal to the subspace Vect{X i , i ∈ A}. When the design matrix is close to an orthogonal matrix (which implies the irrepresentable condition), an explicit λ has been provided in the SLOPE multiple testing procedure [START_REF] Ma Lgorzata Bogdan | Slope -adaptive variable selection via convex optimization[END_REF][START_REF] Su | Slope is adaptive to unknown sparsity and asymptotically minimax[END_REF] or to estimate the active set [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of lasso and dantzig estimators[END_REF]. However, such a results are not available for a general matrix X of rank p.

The lasso knots were first introduced by [START_REF] Lockhart | A significance test for the lasso[END_REF] for the covariance test. The knots λ1 ≥ λ2 ≥ . . . correspond to values of λ at which the estimated active set A( β( λ)) changes. In the same setting as ours (rank(X) = p), recent multiple testing procedures developed by [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF], [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] use lasso knots. Both procedures compare knots of the original lasso ( λi ) to the knockoff lasso knots ( λi ).

One can view knots of the knockoff lasso ( λi ) as knots of the lasso when ∀i ∈ [[1, p]], β * i = 0.

As discussed above, recent multiple testing procedures such as the SLOPE, the knockoffs or the procedure derived from the covariance test [START_REF] Grazier | Sequential selection procedures and false discovery rate control[END_REF] use a lasso-type estimator. These procedures are not restricted to the high-dimensional setting when p > n, they are also used when the design matrix X has a rank p. In particular, G'Sell et al. [2015] and [START_REF] Ma Lgorzata Bogdan | Slope -adaptive variable selection via convex optimization[END_REF] studied the case in which X is orthogonal and the knockoffs procedure is only devoted to the case in which rank(X) is p. In this setting, lasso-type multiple testing procedures are alternative procedures to classical multiple testing procedures based on the maximum likelihood estimator [START_REF] Jean Dunn | Multiple comparisons among means[END_REF][START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF][START_REF] Joseph | Exact and approximate stepdown methods for multiple hypothesis testing[END_REF].

Because lasso-type procedures have been developed recently, one could expect them to be more powerful than classical and older ones. Since our aim is to provide a powerful multiple testing procedure, we first naively developed a lasso-type procedure. Because the irrepresentable condition means that the design is almost orthogonal and because the lasso has an explicit expression in the orthogonal case, we orthogonalize the design X before using the lasso. In section 3, we prove that, up to a transformation U * which orthogonalizes the design matrix X and that minimizes the volume of the multidimensional acceptance region, the lasso-type estimator βU * has the following expression ∀i ∈ [[1, p]], βU * i (λ) = sign( βmle i )

( | βmle i | -λ/δ * i ) +
, where βmle := (X T Γ -1 X) -1 X T Γ -1 Y.

(3)

This expression delivers a simple message, when X is of rank p and when one wants to maximise the "power", the obtained lasso estimator is just the soft thresholded maximum likelihood estimator. This is not so surprising because the maximum likelihood estimator is efficient but it shows that choosing the lasso to optimise the power was definitely a naive idea. Because rejecting H i :

β i = 0 when βU * i (λ) ̸ = 0 is equivalent to reject H i when | βmle i | > λ/δ * i
, a lasso-type estimator is useless. The construction of this "lasso-type" procedure allowed us to discover a new multiple testing procedure procedure which is only based on the maximum likelihood estimator. General testing procedures (see the book of [START_REF] Lehmann | Testing Statistical Hypotheses[END_REF]) reject H i as soon as

| βmle i |/se( βmle i ) > µ, where se( βmle i
) is the standard error of βmle i . One should notice that in these decisions rules, the critical value µ is the same for all i.

In contrast, the value δ * in (3) giving a multidimensional acceptance region with a minimal volume leads to decision rules where µ varies with the tested hypothesis H i .

This article is organized as follows. In section 2, we study the particular case in which the design matrix X has orthogonal columns (i.e. X T X is diagonal). In this setting, we provide a "lasso-type" procedure which controls the FWER. Section 3 addresses the general case where X is a design matrix of rank p. We establish that the lasso-type estimator obtained by minimizing the volume of the multidimensional acceptance region is just a soft thresholded maximum likelihood estimator. Section 4 gives the construction of the new multiple testing procedure based on the maximum likelihood estimator. Section 5 is devoted to simulation experiments:

we compare our multiple testing procedure with 1) the stepdown multiple testing procedure of [START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF] and the generic stepdown multiple testing procedure of Romano and Wolf [2005] and [START_REF] Lehmann | Testing Statistical Hypotheses[END_REF] (p. 352), 2) the active set estimation provided by [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of lasso and dantzig estimators[END_REF], 3) the multiple testing procedure that uses knockoff knots described in [START_REF] Janson | Familywise error rate control via knockoffs[END_REF]. Section 6 details the analysis of metabolomic data which motivated this work.

Orthogonal-columns case

By convenience, we write that the X matrix has orthogonal columns when X T X is diagonal. An orthogonal matrix is thus an orthogonal columns matrix but with X T X = Id p . When the design matrix X of the Gaussian linear model (1) has orthogonal columns, the lasso estimator has a closed form. This closed form allows to choose the tuning parameter in order to control the FWER at a given level. As an example, when X is orthogonal, the lasso estimator has the following expression [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition[END_REF][START_REF] Bühlmann | Statistics for High-Dimensional Data: Methods, Theory and Applications[END_REF] βi (λ) = sign( βols i )

( | βols i | -λ ) +
where βols is the ordinary least squares estimator of β * . Let Z ols denotes a centered Gaussian vector with the same covariance matrix as βols , the tuning parameter giving a FWER at level α is the 1 -α quantile of max{|Z ols 1 |, . . . , |Z ols p |}. When X has orthogonal columns, the Proposition 1 provides a closed form for the lasso estimator and an explicit tuning parameter λ 0 to control the FWER.

Proposition 1 Let X be a n × p matrix such that X T X = diag(d 1 , . . . , d p ) then ∀i ∈ [[1, p]], βi (λ) = sign( βols i ) ( | βols i | -λ/d i ) + .
Let Z ols := (Z ols 1 , . . . , Z ols p ) be a random variable distributed according to a N

( 0, (X T X) -1 X T ΓX(X T X) -1 ) distribution. Let α ∈ (0, 1), if λ 0 is the 1 -α quantile of max i∈[[1,p]] {d i × |Z ols i |} then, P(∀i / ∈ A, βi (λ 0 ) = 0) ≥ 1 -α. ( 4 
)
When the covariance matrix Γ is given a priori, the distribution of Z ols is known and λ 0 can be obtained by simple numerical simulations. In the next section we study the more general case where X has no longer orthogonal columns.

3 General case: when the lasso is a soft thresholded likelihood estimator

In this section, we assume that the design matrix X is a matrix of rank p. Let us consider the set G of applications that orthogonalise X. In other terms, if U ∈ G, the matrix (U X) T U X is diagonal. For example the matrix

U := (X T X) -1 X T is a transformation of G.
Without any other assumption on X, the lasso estimator has no closed form. Consequently, it becomes challenging to choose a tuning parameter λ 0 to control the FWER. To overcome this problem, we propose to apply a linear transformation U ∈ G to each member of the model (1).

This leads to the new linear Gaussian model

Ỹ = Xβ * + ε with Ỹ = U Y, X = U X and ε = U ε. (5)
Because X has orthogonal columns, it is possible to use the Proposition 1 of the previous section. For all λ ≥ 0, the lasso estimator of

β * is βU (λ) = ( sign( βols i (U )) ( | βols i (U )| -λ/d i (U ) ) + ) 1≤i≤p .
The tuning parameter λ U 0 giving a FWER α is the 1 -α quantile of max i∈ [[1,p]] {d i (U ) × |Z ols i (U )|}. In the previous expression, βols (U ), Z ols (U ) and (d i (U )) 1≤i≤p are respectively the ordinary least squares estimator of (5), a centered Gaussian vector with the same covariance matrix as βols (U ) and the diagonal coefficients of XT X.

Since the hypothesis β * i = 0 is rejected as soon as βU i (λ U 0 ) ̸ = 0 in other terms when

| βols i (U )| ≥ λ U 0 /d i (U ), one
proposes to look for a linear transformation U such that the thresholds λ U 0 /d 1 (U ), . . . , λ U 0 /d p (U ) are as small as possible. Such a choice should increase the "power" of our test procedure: the smaller are the thresholds, the higher is the number of non-null detected components. Of course, a p-uplet can be minimized in several ways.

We propose to choose U ∈ G so that the function

ϕ(U ) = ∏ p i=1 λ U 0 di(U ) is minimal.
Intuitively, this choice can be understood by noticing that under the assumption that when β * = 0,

1 -α = P(∀i ∈ [[1, p]], βU i (λ U 0 ) = 0), = P(∀i ∈ [[1, p]], d i (U ) × | βols i (U )| ≤ λ U 0 ), = P ( βols (U ) ∈ [ - λ U 0 d 1 (U ) , λ U 0 d 1 (U ) ] × • • • × [ - λ U 0 d p (U ) , λ U 0 d p (U )
]) .

The minimization of ϕ thus leads to minimize the volume of the multidimensional acceptance region

[ - λ U 0 d1(U ) , λ U 0 d1(U ) ] × • • • × [ - λ U 0 dp(U ) , λ U 0 dp(U )
] among those that have a level 1 -α. The following theorem shows that it is possible to pick a transformation U * for which simultaneously ϕ is minimal and the lasso is a soft thresholded maximum likelihood estimator.

Theorem 1 There exists a linear transformation

U * ∈ G, such that ∀U ∈ G, ϕ(U * ) ≤ ϕ(U ).
Furthermore, for the optimal transformation U * the lasso estimator has the following expression

∃δ * ∈ (0, +∞) p such that ∀i ∈ [[1, p]], βU * i (λ) = sign( βmle i ) ( | βmle i | -λ/δ * i ) + ,
where βmle is the maximum likelihood estimator of the model (1).

Recovering the maximum likelihood estimator via the orthogonalisation U * is satisfying because the maximum likelihood estimator is efficient. That is why this estimator is usually used for classical multiple testing procedures such as Bonferroni, Holm,.... Rejecting the null hypothesis H i : To manage the previous multiple testing procedure based on the maximum likelihood estimator, the keystone is to compute the optimal parameter δ * . The next section deals with this issue.

β * i = 0 as soon as βU * i (λ) ̸ = 0 is equivalent to reject H i when | βmle i | ≥ λ/δ * i thus

A new procedure based on the maximum likelihood estimator

The theorem 1 does not explain how to get such an optimal parameter δ * . We did not manage to obtain a closed form of it. However some simple remarks could help its numerical computation.

First, because whatever t > 0 the thresholds λ 0 (tδ

* )/tδ * 1 , . . . , λ 0 (tδ * )/tδ * p are equal to λ 0 (δ * )/δ * 1 , . . . , λ 0 (δ * )/δ * p ,
one only needs to determine an optimal value δ * for which ∥δ * ∥ ∞ = 1. Second, this problem can be translated more simply as follows. Let us set b

1 = λ 0 (δ)/δ 1 , . . . , b p = λ 0 (δ)/δ p (resp. b * 1 = λ 0 (δ)/δ * 1 , . . . , b p = λ 0 (δ)/δ * p )
and consider the acceptance region

B = [-b 1 , b 1 ] × . . . × [-b p , b p ] (resp. B * = [-b * 1 , b * 1 ] × • • • × [-b * p , b * p ]).
Let Σ be the covariance matrix of the maximum likelihood estimator and let Z mle be distributed according to N (0 R p , Σ). The rectangular parallelepiped B * has the smallest volume among rectangular parallelepiped 

B such that P ( Z mle ∈ B ) = 1 -α.
( |Z mle 1 | ≤ b 1 , . . . , |Z mle p | ≤ b p ) = 1 -α. ( 6 
)
Let T b * denotes the truncated Gaussian vector on B * having the following density

f T b * (u) = 1 (1 -α) √ (2π) p det(Σ) exp(-uΣ -1 u) u∈B * then all the diagonal coefficients of Σ -1 var(T b * ) should be equal.
Notice that if the variance matrix of T b * (here denoted by var(T b * )) was equal to Σ, all the diagonal coefficients of Σ -1 Var(T b * ) would be equal, indicating that b * is a solution of (6). Because the diagonal terms of var(T b * ) are always smaller than the diagonal terms of Σ, var(T b * ) cannot be equal to Σ. However, the condition given by Proposition 2 can be intuitively interpreted. The optimal (with respect to the volume) rectangular parallelepiped should be such that the covariance of the truncated Gaussian variable

Z mle restrained to [-b * 1 , b * 1 ]ו • •×[-b * p , b * p ]
is as close as possible to the non constraint covariance of the random variable Z mle . In the general case, the optimal B * cannot be explicitly calculated. Nevertheless, there are some simple cases of interest where its computation can be performed by hand. Let us give the optimal parameter δ * in the following three examples.

For convenience, we denote M (a, b) a matrix whose diagonal coefficients are equal to a and whose non-diagonal coefficients are equal to b.

1) In the independent case : the components βmle 1 , . . . , βmle p are independent thus, Σ is the diagonal matrix diag(var( βmle 1 ), . . . , var( βmle 1 )). From Proposition 2, the vector b * must satisfy

1 var( βmle 1 ) var(T b * 1 ) = • • • = 1 var( βmle p ) var(T b * p ).
One 3) In the block diagonal equicorrelated case : the covariance matrix Σ of βmle is the following block When the computation of the optimal B * cannot be carried out explicitly, one can assume that, up to a dilatation of the obtained b * by the diagonal coefficients of Σ, the diagonal coefficients of Σ are equal to 1.

diagonal matrix diag(M (1, ρ), M (1, ρ ′ )) where M (1, ρ) and M (1, ρ ′ ) are respectively a s × s and a p -s × p -s matrices. It follows that Σ -1 is block diagonal with Σ -1 = diag(M (a, b), M (a ′ , b ′ )). If we set δ * 1 = • • • = δ * s = k 1 and δ * s+1 = • • • = δ * p = k 2 , one deduces that var(T b * ) is block diagonal with var(T b * ) = diag(M (c, d), M (c ′ , d ′ ))
Indeed, one can check that (b * 1 / √ Σ 1,1 , . . . , b * p / √ Σ p,p ) is the solution of the following problem min p ∏ i=1 b i subject to P ( |Z mle 1 | √ Σ 1,1 ≤ b 1 , . . . , |Z mle p | √ Σ p,p ≤ b p ) = 1 -α.
To summarize, the setting up of our multiple testing procedure is detailed hereafter:

1. One computes the covariance matrix of the maximum likelihood estimator of the model (1), namely

Σ := (X T ΓX) -1 .
2. The parameter δ * ∈ (0, +∞) p is obtain by solving the problem (6). This optimal parameter must satisfies the relation Σ -1 var(T b * ) given in the proposition 2.

3. One compute λ 0 (δ * ) which is the 1 -α quantile of the random variable {δ * 1 |Z mle 1 |, . . . , δ * p |Z mle p |}. The quantile λ 0 (δ * ) is computed numerically using a large number of realizations of Z mle distributed according to N (0, Σ).

4. The multiple testing procedure rejects the null hypothesis H i :

β * i = 0 when | βmle i | > λ 0 (δ * )/δ * i .
This procedure controls the FWER at a level 1 -α.

As expected, numerical experiments of the following section show that the gain of volume for the acceptance region provides a gain in power.

Comparison with other multiple testing procedures

In this section, we compare the performances of our method to the ones of existing methods. Comparisons with the Lounici's active set estimator [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of lasso and dantzig estimators[END_REF] and with the multiple testing procedure via knockoffs [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] are carried out using different criteria but also different simulations. This is because 1) contrarily to knockoffs, the generic stepdown and the Holm's procedures that control the FWER, Lounici's work provides an active set estimator and aims at controlling the probability to recover exactly the active set 2) the knockoffs procedure requires a long computer time that precludes its performances evaluation with large values of p.

Comparison with Holm's and generic stepdown procedure

In the Gaussian linear model, the hypothesis H i : β * i = 0 is associated to the p-value

P i := 2 φ ( | βmle i |/se( βmle i ) ) ,
where φ is the complementary cumulative distribution function of a N (0, 1) distribution. The Holm multiple testing procedure [START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF] For the numerical experiments, we performed 1000 simulations. The covariance matrix Σ of the maximum likelihood estimator is Σ := diag(M (1, ρ), Id 500 ), where M (1, ρ) and Id 500 are both 500 × 500 matrices. We set 1,20]] and ∀i ∈ A, β * i = c. We performed simulations for different values of ρ ∈ {0, 0.3, 0.6, 0.9}.

β * ∈ R 1000 , A = [[
The optimal parameter δ * of the lemma 2 is

δ * 1 = • • • = δ * 500 = k 1 and δ * 501 = • • • = δ * 1000 = k 2 .
In the independent case, when ρ = 0, k 1 and k 2 can be computed by hand and we obtained k 1 = k 2 = 1 while in the other cases, k 1 and k 2 had been computed numerically. When ρ = 0.3, ρ = 0.6 and ρ = 0.9, we obtained respectively

k 1 = 1, k 2 = 0.956, k 1 = 1, k 2 = 0.895 and k 1 = 1, k 2 = 0.
690. These values of δ * were used to derive λ 0 (δ * )

giving a FWER less that α = 0.05. In figure 1, the power of each multiple testing procedure is represented as a function of β * i = c, for i ∈ A and for different values of ρ . The power is the average proportion of true discoveries that can be written respectively for our procedure, Holm's procedure and generic stepdown procedure as

1 |A| ∑ i∈A E c ( {| βmle i |>λ0(δ * )/δ * i } ) , 1 |A| ∑ s(i)∈A E c   i ∏ j=1 {P s(j) ≤ α p+1-j }   and 1 |A| ∑ s(i)∈A E c   i ∏ j=1 {t r(j) ≤|T r(j) |}   .
These numerical experiments illustrates that our procedure is more powerful than the other two procedures, especially when the maximum likelihood estimator owns strong correlated components. Comparison of power of different procedures makes sense only when these procedures share the same FWER. The table 1 provides the FWER of the three compared procedures. 

ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.

Comparison with Lounici's estimator

Lounici [2008] used a thresholded lasso estimator βth to build the following estimator of A:

A( βth i (λ L )) := {i ∈ [[1, p]] | βth i (λ L ) ̸ = 0}.
He proved that the event {A( βth i (λ L )) = A} has a controlled probability when the design matrix X is close to Figure 1: This figure shows the power our multiple testing procedure, the power of multiple testing procedures generic stepdown and the power of Holm's procedure. When ρ = 0, the three procedures have approximately the same power. When ρ increases, the difference between the power of our procedure and the other one increases.

an orthogonal matrix up to a multiplicative constant, the noise ε is Gaussian standard N (0, σ 2 Id p ), and the smallest non-null parameter |β * i | is sufficiently large. For the numerical experiments, we took the same setting as the one given in the previous subsection. However, because Lounici's estimator requires a design matrix close to an orthogonal one, we only focused on the particular case where ρ = 0. This implies that Σ = Id 1000 . In this case, the estimator βth has a closed form

∀i ∈ [[1, 1000]], βth i (λ L ) =        βi if βi ≥ 3/2λ L 0 otherwise , with βi = sign( βmle i )(| βmle i | -λ L ) +
The tuning parameter λ L is given by λ L := Aσ √ log(p) where A has to be determined to fit the desired level. When the smallest non-null parameter

|β * i | is large enough, P(A( βth i (λ L )) = A) ≥ 1 -p 1-A 2 /8 . From
this last expression, we chose A such that 1 -p 1-A 2 /8 = 0.95. Because Lounici's work proposed to control the probability of {A( βth i (λ L )) = A}, we compared the probability to recover exactly the active set with our method and with the Lounici's one. These probabilities are respectively 

P c ({i ∈ [[1, p]] | | βmle i | > λ 0 (δ * )/δ * i } = A) and P c (A( βth i (λ L )) = A)
P c ({i ∈ [[1, p]] | | βmle i | > λ 0 (δ * )/δ * i } = A)
) in black plain line. Our method recovers exactly the active set even when the non null parameters are small (c is small). When c is very large, P c (( βth

i (λ L )) = A) ≈ 1 and P c ({i ∈ [[1, p]] | | βmle i | > λ 0 (δ * )/δ * i } = A) ≈ 0.95.
The main explanation of the observed difference between P c ( ÂL (λ L ) = A) and

P c ({i ∈ [[1, p]] | | βmle i | > λ 0 (δ * )/δ * i } = A)
relies on the choice of the tuning parameter. Indeed, the parameter λ 0 (δ * ) is the 1 -α quantile of max{|Z 2, when the all the parameters β * i in the active set increase, ie when c increases, the probability

P c ({i ∈ [[1, p]] | | βmle i | > λ 0 (δ * )/δ * i } = A)
does not go to 1. This is because, when there is at least one false discovery (which occurs with a probability 0.0490), we have A( β(λ 0 )) ̸ = A, thus, one can not have P c (A( β(λ 0 )) = A) ≈ 1 even if c is very large.

Comparison with multiple testing procedure via knockoffs

A multiple testing procedure that controls the k-FWER had been proposed by [START_REF] Janson | Familywise error rate control via knockoffs[END_REF]. This procedure compares the solution path λ ∈ R + → β(λ) of the original lasso with the solution path λ ∈ R + → β(λ) of the knockoff lasso. These two estimators are defined as follow

( β(λ), β(λ)) = argmin β∈R 2p { 1 2 ∥Y -X KO β∥ 2 + λ∥β∥ 1 } ,
where the design matrix X KO = [X, X] is the concatenation of the original design matrix X with a knockoffs design matrix X whose building is given in [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF]. We can view β(λ) as the lasso estimator obtained when β * = 0 R p .

In this procedure, the number of false discovery is stochastically dominated by a negative binomial distribution N B(v, 0.5) in which the parameter v is set by the user. This procedure uses the random variables λj = sup{λ | βj (λ) ̸ = 0} and λj = sup{λ | βj (λ) ̸ = 0} that are called knots of the lasso solution path. When, 

|β * i | ≫ 0,
∑ i j=1 χ s(i) < v.
Because the building of the knockoff matrix needs a normalized matrix X (diagonal coefficients of X T X must be equal to 1), we can not determine such a matrix and a standard error σ > 0 such that σ 2 (X T X) -1 = diag(M (1, ρ), Id 500 ). Indeed, diagonal coefficients of M -1 (1, ρ) are not equal to 1 when ρ ̸ = 0. Consequently, whatever σ > 0, the matrix X T X = σ 2 diag(M -1 (1, ρ), Id 500 ) can not have diagonal coefficients equal to 1.

That is why, we only focus on the equi-correlated case.

In the numerical experiments, we set n = 250, p = 100 and

σ > 0 is such that Σ = σ 2 (X T X) -1 = M (1, ρ).
Different values of ρ have been used ρ ∈ {0, 0.3, 0.6, 0.9}. The design matrix X has smaller dimensions than in the previous subsection to avoid a too long computational time. Because we wanted the smallest FWER as possible, we set v = 1. In this case, the number of false positive is stochastically dominated by a geometric distribution N B(1, 0.5) leading to a minimal FWER equals to 0.5. If we had set v > 1, the familywise error rate would have been P (F v > 0) = 1 -0.5 v > 0.5, with F v distributed according to N B(v, 0.5). We used the R package knockoff [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF] to build the knockoff matrix and knockoff knots. The optimal parameter δ * provided by the Lemma 2 is δ * = (1, . . . , 1). Then, the parameter λ 0 (δ * ) was determined to obtain a FWER equal to 0.5.

The power of each multiple testing procedure is represented in the figure 3. The power is the average proportion of true discoveries; the expression of the power for our procedure and the knockoffs procedure are respectively equal to

1 |A| ∑ i∈A E c ( {| βmle i |>λ0(δ * )/δ * i } ) and 1 |A| ∑ s(i)∈A E c ( { ∑ i j=1 χ ρ(j) <v}
) .

These numerical experiments illustrate that our procedure is better, especially when the maximum likelihood estimator has strong correlated components. Comparison of power is meaningful when the FWER is the same for all procedures. An average of 1000 simulations allows to estimate the FWER level of our procedure. This level

is equal to P c (∃i / ∈ A | βmle > λ 0 (δ * )/δ * i ) = P(|Z mle i | > λ 0 (δ * )/δ * i )
. This probability does not depend from c, we obtained 0.462, 0.477, 0.482 and 0.495 when the correlation ρ were respectively equal to ρ = 0, ρ = 0.3, ρ = 0.6 and ρ = 0.9. The figure 4 provides the FWER level for the knockoff procedure. Surprisingly, it seems that the When non-null parameters are small (i.e c is small), the FWER level is not well controlled. When c is large enough, except in the independent case, the FWER level is largely smaller than its nominal value 0.5. Each point is an average of 1000 simulations.

knockoff multiple testing procedure does not control the FWER at a level 0.5 for small values of c.

Application in metabolomics: detection of metabolites

Metabolomics is the science concerned with the detection of metabolites (small molecules) in biological mixtures (e.g. blood and urine). The most common technique for performing such characterization is proton nuclear magnetic resonance (NMR). Each metabolite generates a characteristic resonance signature in the NMR spectra with an intensity proportional to its concentration in the mixture. The number of peaks generated by a metabolite and their locations and ratio of heights are reproducible and uniquely determined: each metabolite has its own signature in the spectra. Each signature spectrum of each metabolite can be stored in a library that could contain hundreds of spectra. One of the major challenges in NMR analysis of metabolic profiles remains to be automatic metabolite assignment from spectra. To identify metabolites, experts use spectra of pure metabolites and manually compare these spectra to the spectrum of the biological mixture under analysis. Such a method is time-consuming and requires domain-specific knowledge. Furthermore, complex biological mixtures can contain hundreds or thousands of metabolites, which can result in highly overlapping peaks. Figure 5 gives an example of an annotated spectrum of a mixture.

Recently, automatic methods have been proposed, for example, Metabohunter [START_REF] Tulpan | Metabohunter: an automatic approach for identification of metabolites from 1 H-NMR spectra of complex mixtures[END_REF], BAT-MAN [START_REF] Astle | A bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures[END_REF][START_REF] Hao | BATMAN -an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a bayesian model[END_REF], Bayesil [START_REF] Ravanbakhsh | Accurate, fully-automated NMR spectral profiling for metabolomics[END_REF] or the software Chenomx [START_REF] Aalim | Targeted profiling: quantitative analysis of 1 H-NMR metabolomics data[END_REF]. Most of these methods are based on a modelling using a Lorentzian shape and a Bayesian strategy.

Nevertheless, most are time-consuming and thus cannot be applied to a large library of metabolites, and/or their statistical properties are not proven. Thus, establishment of a gold-standard methodology with proven statistical properties for identification of metabolites would be very helpful for the metabolomic community.

Because the number of tests is not too much large (one can expect to analysed a mixture with about 200 metabolites), because NMR experts want to recover all metabolites present in the mixture but, did not want to observe a false discovery, we have developed a multiple testing procedure that control the FWER.

Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact interval T. We assume that we have a library of spectra containing all p = 36 metabolites {f i } 1 i p (with ∫ T f i (t)dt = 1) that can be found in a mixture. This family of p spectra is assumed to be linearly independent. In a first approximation, the observed spectrum of the mixture Y can be modelled as a discretized noisy convex combination of the pure spectra:

Y j = ( p ∑ i=1 β * i f i (t j ) ) + ε j with 1 j n and t 1 < • • • < t n a subdivision of T .
The random vector (ε 1 , . . . , ε n ) is a standard Gaussian N (0, σ 2 Id n ). The variance σ 2 is estimated using several observations of a metabolite spectrum.

Real dataset

The method for the detection of metabolites was tested on a known mixture. The NMR experts supplied us with a library of 36 spectra of pure metabolites and a mixture composed of these metabolites. The number of used metabolites and their proportions were unknown to us. The results are presented in The 6 metabolites that are present in the complex mixture are detected, including those with small proportions. There is no false discovery because any hypothesis associated to the 30 other metabolites was rejected.

Because the whole procedure is quite fast, lasting only a few seconds, it could be easily applied to a library containing several hundred metabolites. We refer the interested reader on this application to metabolomics to [START_REF] Patrick | ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1 H NMR spectra[END_REF] where our procedure is compared to the existing ones on more complex datasets.

Conclusions

When the rank of the n × p design matrix X is p, we prove that even if X is not orthogonal, even if residuals of the Gaussian model (1) are not i.i.d, up to an orthogonalisation, the lasso estimator is just a soft thresholded maximum likelihood estimator. Thus, in this setting, lasso estimator is not useful, maximum likelihood is more appropriate to build a powerful multiple testing procedure. In our new procedure based on the maximum likelihood estimator, one rejects the null hypothesis H i :

β * i = 0 when | βmle i | > λ 0 (δ * )/δ * i . The parameter δ *
is the optimal one given in proposition 2 and λ 0 (δ * ) is the 1 -α quantile of max{δ * 1 |Z mle 1 |, . . . , δ * p |Z mle p |}. The keystone of this procedure is to compute the optimal parameter δ * , an exact computation of δ * is documented in three particular cases. Numerical comparisons illustrate the benefit of our procedure comparing to the state-of-the-art procedures that control the FWER. Concerning the application in metabolomic a numerical approximation of the parameter δ * is implemented. However, this computation could be improved. In a future work, we aim to develop a fast and accurate numerical scheme for the computation of δ * . It is a challenging issue to provide a useful multiple testing when p is very large. Finally, a stepdown multiple testing procedure based on our procedure could increase the power.

8 Appendix 1 : construction of the matrix U *

The theorem 1 gives the existence of U * but does not give a construction of it. The building of an optimal U * can be performed in two steps. First, because we want a small tuning parameter λ U 0 , we select a set of applications of G that minimize the variance of βols (U ). Actually, we will see that there exists a set of transformations that allow βols (U ) to become an efficient estimator having thus the same distribution as the maximum likelihood estimator of the model (1). Second, we look for an application U * minimizing ϕ(U ) among the applications selected at the first step. These two steps are described in the following two lemmas. Let δ = (δ 1 , . . . , δ p ) ∈ (0, +∞) p and consider the p × n matrix V δ defined by

V δ = ( ∆ ∆A -1 11 A 12 ) P, with ∆ = diag( √ δ 1 , . . . , √ δ p ).
Then, for all δ ∈ (0, ∞) p , the matrix V δ belongs to G, and βols (V δ ) = βmle , where β mle is the maximum likelihood estimator of the model ( 1).

The matrix P given in the lemma 1 is not unique. To obtain such a matrix P , one completes the linearly independent family X 1 , . . . , X p with the vectors v p+1 , . . . , v n of R n to obtain a basis and set P := (X 1 | . . . |X p |v p+1 | . . . |v n ) -1 . Lemma 1 evidences V δ transformations that both orthogonalise the design and allow to gain efficiency instead of keeping an ordinary least squares estimator. A traditional transformation to get an efficient estimator in model ( 5) is to apply the linear transformation Γ -1/2 . Because (Γ -1/2 X) T (Γ -1/2 X) = X T Γ -1 X = var( βmle ) -1 , contrarily to the V δ transformations, the obtained design matrix X = Γ -1/2 X in general does not have orthogonal columns. The Puffer transformation F = U D -1 U , where U and D are given by the singular value decomposition of X, is a transformation given in [START_REF] Jia | Preconditioning the lasso for sign consistency[END_REF] which relax the irrepresentable condition. When the rank of X is p, F X is orthogonal thus F ∈ G. However contrarily to the V δ transformations, the estimator βols (F ) is not efficient.

As an example for Lemma 1, let us set Γ = diag(1, 2, 3, 4) and X the following matrix

X :=    1 1 -1 1 1 -1 1 -1    T .
A (not unique) couple of matrices P and V (1,1) satisfying Lemma 1 is

P :=          0.5 0.5 0 0 0.5 -0.5 0 0 0 1 1 0 0 -1 0 1          and V (1,1) := 1 26    13 6 -4 3 13 -6 4 -3    .
Let us set X = V (1,1) X. The following equality guarantees that V (1,1) ∈ G and βols (V (1,1) ) is the maximum likelihood estimator X = Id 2 and βols (

V (1,1) ) = ( XT X) -1 XT Ỹ = V (1,1) Y = (X T Γ -1 X) -1 X T Γ -1 Y = βmle .
The following lemma shows that there exists at least a linear transformation U * among the linear transformations (V δ ) δ∈]0,+∞[ p that optimizes ϕ.

Lemma 2 Set

U * = V δ * with δ * = arginf δ∈]0,+∞[ p ϕ(V δ ), (7) 
then, for all U ∈ G, we have

ϕ(U * ) ϕ(U ).
As shown in the proof (given in the following appendix), there always exists at least a vector δ * ∈]0, +∞[ p such that the infimum is reached. Consequently, Theorem 1 holds for U * = V δ * .

Appendix 2 : Proofs

Proof (Proposition 1) The lasso estimator β(λ) is the point for which the function ψ(β) = 1 2 ∥Y -Xβ∥ 2 +λ∥β∥ 1 reaches its global minimum. Because the penalty term is a L 1 norm, the function ψ is not differentiable everywhere. However, as ψ is a convex function, it has a subdifferential. To find where the global minimum of ψ is reached, we are going to determine β ∈ R p for which the subdifferential ∂ψ(β) contains 0 R p [Hiriart-Urruty and Lemaréchal, 2013]. We have ∂ψ

(β) = -X T Y + Dβ + λ∂ ∥.∥1 (β) with ∂ ∥.∥1 (β) = C 1 × • • • × C p , with C i = [-1, 1] if β i = 0 and C i = sign(β i ) otherwise. Indeed, the differential of β → 1 2 ∥Y -Xβ∥ 2 is -X T Y +X T Xβ = -X T Y +Dβ and ∂ ∥.∥1 (β) is the subdifferential of β → ∥β∥ 1 . The function ψ reaches its global minimum at β(λ) consequently 0 R p ∈ ∂ψ( β(λ)) ; this holds if and only if 0 R p ∈ βols + β(λ) + λD -1 ∂ ∥.∥1 ( β(λ)) ⇔ β(λ) = sign( βols i ) ( | βols i | - λ d i ) + .
The multiple testing procedure does not have any false discovery if ∀i / ∈ A, βi (λ) = 0. We are going to see that {∀i / ∈ A, βi (λ) = 0} has a probability larger than 1 -α when the tuning parameter is λ 0 . When i / ∈ A, the Gaussian vector ( βols i ) i / ∈A has the same distribution as (Z ols i ) i / ∈A because β * i = 0. Therefore, the following inequalities hold

P ( ∀i / ∈ A, βi (λ 0 ) = 0 ) = P ( ∀i / ∈ A, | βols i | - λ 0 d i 0 ) , = P ( ∀i / ∈ A, |Z ols i | × d i λ 0 ) , P ( ∀i ∈ [[1, p]], |Z ols i | × d i λ 0 ) = 1 -α. Proof (Lemma 1) The matrix V δ orthogonalises X. Indeed, X = V δ X is the following diagonal matrix X = ( ∆ ∆A -1 11 A 12 ) P X = ( ∆ ∆A -1 11 A 12 )    Id p 0    = ∆. The estimator βols (V δ ) is equal to βols (V δ ) = ( XT X) -1 XT Ỹ , = ∆ -1 V δ Y = ( Id p A -1 11 A 12 ) P Y.
It remains to show that βmle = (

Id p A -1 11 A 12 ) P Y . βmle = (X T Γ -1 X) -1 X T Γ -1 Y, = (X T P T (P T ) -1 Γ -1 P -1 P X) -1 X T P T (P T ) -1 Γ -1 P -1 P Y, = ( (P X) T AP X ) -1 (P X) T AP Y, =    ( Id p 0 )    A 11 A 12 A 21 A 22       Id p 0       -1 ( Id p 0 )    A 11 A 12 A 21 A 22    P Y, = ( 
Id p A -1 11 A 12 ) P Y = βols (V δ ).
The proof of lemma 2 relies on two main steps. In the first step, using lemmas A and B given below, we Lemma B The function f : δ ∈ (0, +∞) p → ϕ(V δ ) reaches its minimum for at least one element δ * .

Proof Let us remind the expression of the function f

∀δ ∈ (0, +∞) p , f (δ) = λ 0 (δ) δ 1 × • • • × λ 0 (δ) δ p .
Since λ 0 is homogeneous, f satisfies the property ∀k > 0, f (kδ) = f (δ). Consequently, if the minimum of f over

E := {δ ∈ (0, +∞) p | ∥δ∥ ∞ = 1} is reached at a point δ ∈ E then f reaches its minimum on the set {kδ | k > 0}.
To prove that the minimum of f over E cannot be reached for "small δ", we are going 1) to decompose E in two disjoint sets E := A η0 ∪ B η0 , where

A η0 := {δ ∈ (0, +∞) p | ∥δ∥ ∞ = 1 and min{δ 1 , . . . , δ p } ≥ η 0 } and B η0 := {δ ∈ (0, +∞) p | ∥δ∥ ∞ = 1 and min{δ 1 , . . . , δ p } < η 0 }.
2) and then to prove that there exists η 0 ∈ (0, 1) and a point δ A in A η0 such that f (δ A ) < inf δ∈Bη 0 {f (δ)}. This will show that inf δ∈E {f (δ)} is equal to inf δ∈Aη 0 {f (δ)}. The final step of the proof will show that the minimum of f is reached over A η0 .

Let us first build η 0 ∈ (0, 1). For all

i ∈ [[1, p]], let us denote q i := se( βmle i )z 1-α/2 with z 1-α/2 the 1 -α/2
quantile of a N (0, 1) distribution. Defined as this, q i is also the 1-α quantile of |Z mle 

f (δ) = λ 0 (δ) δ 1 × • • • × λ 0 (δ) δ p ≥ m δ 1 × • • • × m δ p > m p η 0 .
In particular, this shows that ∀δ ∈ B η0 , f (δ) > f (δ A ) consequently, the minimum cannot be reached on B η0 .

Because f is continuous on A η0 and A η0 is compact, f reaches its minimum on A η0 .

The following lemma is a consequence of corollary 3 of Anderson [1955].

Lemma C (Anderson) Let V = (V 1 , . . . , V n ) and W = (W 1 , . . . , W n ) be centred Gaussian vectors with variance matrices Γ V and Γ W , respectively. Assume that the matrix Γ W -Γ V is a positive semidefinite matrix; Proof (Lemma 2) For any U ∈ G, the matrix (U X) T U X is diagonal and (U X) T U X = ∆ = diag(δ 1 , . . . , δ p ) = diag(δ). The difference between the covariance matrices of the Gaussian vectors (δ 1 Z ols 1 (U ), . . . , δ p Z ols p (U )) = ∆Z ols (U ) and (δ 1 Z mle 1 , . . . , δ p Z mle p ) = ∆Z ols (V δ ) is semidefinite positive. Indeed, reminding that Σ is the covariance matrix of the maximum likelihood estimator, we obtain that ∀x ∈ R p , x T (var(∆Z ols (U )) -var(∆Z mle ))x = (∆x) T (var(Z ols (U )) -Σ)∆x, = (∆x) T (var( βols (U )) -Σ)∆x 0.

The last inequality is a consequence of the Gauss-Markov theorem [START_REF] Alvin | Linear Models in Statistics[END_REF] 

ϕ(V δ ) = λ V δ 0 δ 1 × • • • × λ V δ 0 δ p ≤ λ U 0 δ 1 × • • • × λ U 0 δ p = ϕ(U ).
Finally, using lemma B, the inequality ϕ(V δ ) ϕ(V δ * ) gives the result.

Proof (Theorem 1)

The lemmas 1 and 2 allow to prove the theorem 1. ) dx,

Proof (Proposition

with R = 1/((2π) p/2 det(Σ) 1/2 ). Next, the expression of the partial derivative

∂ ∂b i ( - 1 2
x T DΣ -1 Dx + ln(det(D))

) = 1 b i - p ∑ j=1 Σ -1 i,j x i x j b j ,
implies that the gradient of F is equal to 

∂F ∂b i (b 1 , . . . , b p ) = 1 b i F (b 1 , . . . , b p ) -R p ∑ j=1 ∫ [-1,1] p (Σ -1 i,j x i x j b j ) exp ( - 1 2 x T DΣ -1 Dx ) det(D)dx = 1 -α b i -R p ∑ j=1 ∫ [-1,1] p (Σ -1 i,j x i x j b j ) exp ( - 1 2 x T DΣ -1 Dx ) det ( 
⇔ ∀i ∈ [[1, p]], p ∑ j=1 Σ -1 i,j ∫ [-1,1] p x i b * i x j b * j R exp ( - 1 2 x T DΣ -1 Dx ) det(D)dx = k, ⇔ ∀i ∈ [[1, p]], p ∑ j=1 Σ -1 i,j ∫ u∈R p u i u j R 1 -α exp ( - 1 2 uΣ -1 u ) u∈B * du = k 1 -α . ( 9 
)
The expression ( 9) is obtained via the change of variables ∀i ∈ [[1, p]], u i = x i b * i . To conclude, one recognizes that ∫

u∈R p u i u j R 1 -α exp ( - 1 2 uΣ -1 u ) u∈B * du = E ( T b * i T b * j ) = cov ( T b * i , T b * j
) .

Thus the diagonal coefficients of Σ -1 var(T b * ) are equals to k/(1 -α).

  This is a constraint optimization problem whose solutions are stationary points of the Lagrangian. The condition given in the following proposition should hold for B * .

  deduces that b * 1 = se( βmle 1 ), . . . , b * p = se( βmle p ). Consequently, the vector δ * = (δ * 1 , . . . , δ * p ) is collinear to (1/se( βmle 1 ), . . . , 1/se( βmle p )). In this particular case, the variances of δ * the equicorrelated case : the components of βmle 1 , . . . , βmle p have unit variance and ∀i ̸ = j, we set cov( βmle i , βmle j ) = ρ thus, Σ = M (1, ρ). It follows that Σ -1 = M (a, b) for some a and b. When δ * = (1, . . . , 1), we have var(T b * ) = M (c, d) for some c and d. In this case, all the diagonal coefficients of Σ -1 var(T b * ) = M (a, b)M (c, d) are equal. As in the previous case 1), the variances of δ *

  for some c, d, c ′ , d ′ . Consequently, whatever k 1 and k 2 , the s first diagonal coefficients of Σ -1 var(T b * ) are equal and the p -s last diagonal coefficients of Σ -1 var(T b * ) are equal. It remains to tune k 1 and k 2 such that all the diagonal coefficients of Σ -1 var(T b * ) become equal. Conversely to the cases 1) and 2), the variances of δ * 1 βmle 1 , . . . , δ * p βmle p are not equals. Because in this case variances are not all equals, comparison with classical procedures for which components of βmle are re-scaled to have unit variance is interesting.

Figure 2 :

 2 Figure 2: This figure represents the probabilities to recover the active set with Lounici's method ( P c ( ÂL (λ L ) = A)) in red dotted line and with our method (P c ({i ∈ [[1, p]] | | βmle

Figure 3 :Figure 4 :

 34 Figure3: In this figure, we compared the power our multiple testing procedure with the power of the knockoff multiple testing procedure. Each point is an average of 1000 simulations. In the case where ρ = 0, components of βmle are independent and two procedures have approximately the same power. In the case where βmle have equi-correlated components, our procedure is more powerful.

Figure 5 :

 5 Figure 5: Example of an annotated mixture spectrum. There are overlaps between peaks of lipides and valine and between the peaks of glutamine and lysine.

Lemma 1 (p 0 )

 10 Let P be an invertible n × n matrix such that (P X) T = Id and set A the n × n invertible matrix A := (P ΓP T ) A 11 a p × p matrix. Remind that Γ = var(ε).

i|.

  Notice that q i > 0 because se( βmle i ) > 0 and α ∈ (0, 1). By definition, λ 0 (δ) is the 1 -α quantile of max 1≤i≤p {δ i |Z mle i |}. Consequently, when δ ∈ E we have λ 0 (δ) ≥ min{q 1 , . . . , q p } because at least one component of δ is equal to 1. Let us denote m := min{q 1 , . . . , q p }, δ A := (1, . . . , 1) and η 0 := min{m p /f (δ A ), 1/2}. Let δ ∈ B η0 , because δ 1 × • • • × δ p < η 0 the following inequality holds

  2) To simplify the computation of the gradients, we consider the following problem which has the same solution as the problem (6)min f (b) = p ∑ i=1 ln(b i ) subject to F (b) = P ( |Z mle 1 |/b 1 ≤ 1, . . . , |Z mle p |/b p ≤ 1 ) = 1 -α.Because this problem reaches its minimum at b * , ∇f (b * ) is collinear to ∇F (b * ). Let us set D the matrix D = diag(b 1 , . . . , b p ), we have the following expression for F (b 1 , . . . , b p ) F (b 1 , . . . , b p ) -1 Dx + ln(det(D))

.

  D)dx Thus, ∇F (b) = (1 -α)∇f (b) + v(b), where v(b) ∈ R p is the following vector vConsequently, ∇f (b * ) and ∇F (b * ) are collinear if and only if ∇f (b * ) and v(b * ) are collinear. ∃k ∈ R such that v(b * ) = k∇f (b * ),

  -α quantile of max{δ 1 |Z mle 1 |, . . . , δ p |Z mle p |} where δ = (δ 1 , . . . , δ p ) ∈ (0, +∞) p .

	unit variance. To provide a mutiple testing procedure which reject H i : β * i = 0 as soon as | βmle i	| ≥ λ/δ * i the
	parameter λ have to be chosen as the 1 -α quantile of max{δ * 1 |Z mle 1 |, . . . , δ * p |Z mle p |}. From now on, we denote
	λ 0 (δ) the 1			
			lasso-type estimator is useless. Consequently, to manage this
	new procedure, it is not useful to construct the transformation U * ; discussions about this matrix and an explicit
	construction of U * are given in Appendix 1.		
	In general, the optimal parameter δ * of the theorem 1 is not collinear to 1/se( βmle 1 ), . . . , 1/se( βmle p ). Con-
	sequently the random variables δ * 1	βmle 1 , . . . , δ * p	βmle p	have different variances. This remark is the main difference
	with the classical procedures for which statistical tests βmle 1 /se( βmle 1 ), . . . , βmle p /se( βmle p ) are re-scaled to have

  The generic stepdown procedure defined by[START_REF] Joseph | Exact and approximate stepdown methods for multiple hypothesis testing[END_REF],[START_REF] Lehmann | Testing Statistical Hypotheses[END_REF] p.352[START_REF] Dudoit | Multiple Testing Procedures with Applications to Genomics[END_REF] p. 126 takes into account the joint distribution of βmle . Because the Holm's multiple testing procedure only takes into account the marginal distribution of βmle , the generic stepdown procedure has a higher power than the Holm's multiple testing procedure. To describe the generic stepdown procedure, let us denote T i = βmle Gaussian vector with the same covariance matrix as T := (T 1 , . . . , T p ). The statistical tests are sorted from the most significant to the least significant, namely |T r(1) | ≥ • • • ≥ |T r(p) |.The rejection of the hypotheses H r(1) , . . . , H r(p) is done sequentially as explain hereafter. The hypothesis H r(1) is rejected if |T r(1) | ≥ t r(1) . The hypothesis H r(2) is rejected if |T r(1) | ≥ t r(1) and |T r(2) | ≥ t r(2) and so on. In the previous expressions, the threshold t r(s) is the 1 -α quantile of max{|Z r(s) |, . . . , |Z r(p) |}.

is a stepdown procedure for which p-values are sorted from the most significant to the least significant, namely P s(1) ≤ P s(2) ≤ • • • ≤ P s(p) . The rejection of the hypotheses H s(1) , . . . , H s(p) is carried-out sequentially as explain hereafter. The hypothesis H s(1) is rejected if and only if P s(1) ≤ α/p. The hypothesis H s(2) is rejected if and only if P s(1) ≤ α/p and P s(2) ≤ α/(p -1) and so on. This procedure insures a FWER control at a level α and improves the Bonferroni procedure since the cutoff α/(p -i + 1) associated to the hypothesis H s(i) is smaller than α/p. i /se( βmle i ) the statistical test and Z = (Z 1 , . . . , Z p ) a centered

Table 1 :

 1 This table gives the empirical FWER estimated with 1000 simulations. The FWER level of our procedure and the generic stepdown procedure is close to the nominal level of 5%. The FWER level of the Holm procedure decreases when the maximum likelihood estimator has strong correlated components.

	9

  one would expect that W j = max{ λj , λj } is large and χ j = λj > λj is equal to 0. The random variablesW 1 , . . . , W p are sorted as follow W s(1) ≥ W s(2) ≥ • • • ≥ W s(p)and the hypothesis H s(i) is rejected if and only if

Table 2 .

 2 

	Metabolites	Actual proportions Rejection for the nullity of the proportion
	Choline chloride	0.545	Yes
	Creatinine	0.209	Yes
	Benzoic acid	0.086	Yes
	L-Proline	0.069	Yes
	D-Glucose	0.060	Yes
	L-Phenylalanine	0.029	Yes
	30 other metabolites	0	No

Table 2 :

 2 This table presents the results for the 36 metabolites of the library. The actual proportions of each metabolite are presented in the first column. For each metabolite, evidence against the nullity of the proportion is given in the second column.

  then, ∀x 0, P(max{|W 1 |, . . . , |W n |} x) P(max{|V 1 |, . . . , |V n |} x).

This inequality implies that max{|W 1 |, . . . , |W n |} is stochastically greater than max{|V 1 |, . . . , |V n |}.

  (page 146). Because λ U 0 and λ V δ 0 are the respective 1 -α quantiles of max{δ 1 |Z ols 1 (U )|, . . . , δ p |Z ols p (U )|} and max{δ 1 |Z mle 1 |, . . . , δ p |Z mle p |}, the lemma C gives λ U

	0	λ V δ 0 . This last inequality gives
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obtain that the function δ ∈ (0, +∞) p → ϕ(V δ ) is minimized for at least one element δ * . In the second step, we prove that the linear transformation

It is straightforward to show that the function λ 0 verifies the following two properties.

1. The function δ ∈ (0, +∞) p → λ 0 (δ) is homogeneous:

The following lemma provides the continuity of the function δ ∈ (0, +∞) p → λ 0 (δ).

Lemma A Let g be a function that satisfies the two previous properties; then, the function g is continuous.

Proof Let x = (x 1 , . . . , x p ) ∈ (0, +∞) p , for an arbitrary ϵ > 0, we are going to construct η > 0 such that ∥y -x∥ ∞ ≤ η implies |g(y) -g(x)| ≤ ϵ which gives the continuity of g at x. We set u = (u 1 , . . . , u p ) the unit vector u = x/∥x∥. Let r < ∥x∥, the function g is homogeneous, consequently,

Let y ∈ (0, +∞) p be such that the following inequality occurs componentwise: x -ru y x + ru. Because g is componentwise-increasing, we have g(x -ru) g(y) g(x + ru). More precisely,

Let ϵ > 0; one can choose r 0 0 small enough such that r 0 |g(x)|/∥x∥ ϵ. We set η = r 0 min{u 1 , . . . , u p }; thus, the inequality (8) gives ∥y -x∥ ∞ η ⇒ |g(y) -g(x)| ϵ, which proves the continuity of g on (0, +∞) p .